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Supplementary Methods 

Inclusion criteria for training, test, TKI-treated and ICI-treated cohorts 

             For the development of EGFR mutation status prediction model, patients with informed 

consent were accrued from the Shanghai Pulmonary Hospital (SPH), Shanghai, China and he 

fourth Hospital of Hebei Medical University (HBMU), Hebei, China, between January 2017 and 

June 2018 with following inclusion criteria were included: 1) histologically confirmed primary 

NSCLC; 2) pathological examination of EGFR expression; 3) PET/CT scans were obtained; 4) 

baseline clinical characteristics (including age, sex, stage, histology, and smoking history) were 

available. The exclusion criteria included: 1) No EGFR status in record; 2) Pre-treatment was 

received before Bx; 3) Interval between PET/CT imaging and biopsy (Bx) for 

immunohistochemistry (IHC) exceeded one month. Based on these inclusion and exclusion 

criteria, 616 patients were identified and subsequently assigned to a training cohort (training, N 

=429) and validation cohort (test, N = 187) according to the ratio of 70/30. 

        For the external test of EGFR prediction and the prognostic value of EGFR-TKI treatment, all 

the 102 patients with histologically NSCLC who were evolved in a prospective 18F-MPG study 

(ClinicalTrials.gov: NCT02717221) were enrolled in this study. After applying the exclusion 

criteria including 1) Claustrophobia, pregnancy, lactation and metal implants in the thorax; 2) 

No 18FDG-PET/CT before TKI, 72 patients were identified as the external test cohort. 

        For the distinct cohorts to predict patient outcomes of immunotherapy, all the 447 patients 

with histologically confirmed advanced stage (stage IIIB and IV) NSCLC who were treated with 

immunotherapy (anti-PD-L1 or anti-PD-1) between June 2011 and June 2019 at HLM were 

enrolled. After applying the exclusion criteria including 1) No PET/CT images during the interval 

(less than 3 months) of the last treatment (or diagnosis) and the start of immunotherapy; 2)  

other treatment were performed during the interval; 3)  follow-up time was less than 6 months; 

4) received  anti-PD(L)1 antibodies combined with chemotherapy, 149 patients were finally 

identified. 

In total, PET/CT Images and clinical data of 837 NSCLC patients curated from four 

institutions were analyzed to train and test a deep learning model. 

 

 



 

Details of the training of the deep learning model 

Preparation of the input images 

Pipeline of input images generation is shown in Supplementary Fig. S9. In clinical practice, a 

non-contrast CT scan was acquired first and then PET scan was acquired subsequent. The PET 

and CT images were co-registered on the same machine by scanner software. Thus, almost all 

cases of this study are already registered. A few cases had minor misalignment due to 

respiratory motion.  For these cases, an experienced nuclear medicine radiologist manually 

adjusted the alignment using ITK-SNAP.  Then a square or an irregular box that was close to the 

boundary of the tumor was delineated by the experienced nuclear medicine radiologist. After 

resampling with bicubic spline interpolation, dilation of the smallest square mask including the 

selected region, and resize using cubic spline interpolation, the PET region of interest (ROI) and 

CT ROI were obtained keeping the entire tumor and its peripheral region with the same size 

(64×64). Subsequently, the fusion images were calculated through the α-fusion equation: 

𝐼𝐹𝑈𝑆𝐸 = 𝐼𝑃𝐸𝑇𝑛𝑜𝑟𝑚 + 𝐼𝐶𝑇𝑛𝑜𝑟𝑚,                                 (1) 

where 𝐼𝑃𝐸𝑇𝑛𝑜𝑟𝑚 and 𝐼𝐶𝑇𝑛𝑜𝑟𝑚 are the normalized PET and CT pixel-wise image data by z-score 

normalization, which means the ROI image is subtracted by the mean intensity value and 

divided by the standard deviation of the ROI image intensity. The fusion ROI was further 

standardized by z-score normalization, and constructed a 3-channel hyper-image together with 

the normalized PET ROI and normalized CT ROI. This hyper-image was used as the input of the 

SResCNN model. Z-score normalization is performed before inputting to the deep learning 

model to reduce the effect of different equipment and different reconstruction parameters. 

Because of the big difference of the central slice and peripheral slices, only the slices with the 

area larger than the 30% of the maximum area of this patient were regarded as valid input 

images and were used as the input of the deep learning model. The area here means the area 

of the smallest square including the selected region (Supplementary Fig. 9c).  Finally, 13,583 

training ROI-based hyper-images were generated for training. 

 

Structure of the SResCNN network 

        The 2D SResCNN is based on several residual blocks with 3-channel input images, which is 

similar to the well-known Resnet18 network with fewer filters for each layer. Given single 

resolution may not be optimal and depends on the scale of the objects within the image, multi-

resolution CNN model was proposed and proved to have significantly better performance1, 2. 

Therefore, the concept of multi-resolution was further incorporated into the architecture, 



which was shown in Supplementary Fig. S8. Specifically, the architecture was comprised with 

three convblocks (including a 3 × 3 convolutional layer followed by a batch normalization layer 

and a rectified linear unit (ReLU) activation layer) for three different resolutions of the input 

hyper-images, 8 residual blocks (Resblock), and one fully connected layer. Finally, a softmax 

activation layer was connected to the last fully connected layer, which was used to yield the 

prediction probabilities of nodule candidates. Additionally, one dropout layer with probability 

of 0.5 was added to the fully connected layers.  The determination of this architecture was 

provided in the following Determination of architectures of CNN network section. 

 

Training of the SResCNN network 

        The training of the model focuses on the optimization of the parameters of the SResCNN 

model to build a relationship between PET/CT images and EGFR mutation status (positive: 1 or 

negative: 0). Binary cross entropy was employed as the loss function, while the Adam optimizer 

was used with an initial learning rate = 0.0001, beta_1=0.9, beta_2=0.999. The learning rate 

was reduced by a factor of 5 if no improvement of the loss of the validation dataset was seen 

for a ‘patience’ number (n=10) of epochs. 

       The number of the filters, the number of resolutions, the learning rate and the batch size 

was determined according the predictive performance on the validation cohort using grid 

search method. 

        In order to reduce the risk of overfitting, several techniques were deployed. 1) 

Augmentation: During the training, augmentation including width/height-shift, 

horizontal/vertical-flip, rotation and zoom were used to expand the training dataset to improve 

the ability of the model to generalize. 2) Regularization: L2 regularization was used, which 

added a cost to the loss function of the network for large weights. As a result, a simpler model 

that was forced to learn only the relevant patterns in the training data would be obtained. 3) 

Dropout: Dropout layer, which would randomly set output features of a layer to zero during the 

training process, was added. 4) Early stop: During training, the model is evaluated on the 

validation dataset after each epoch. The training was stopped after waiting an additional 30 

epochs since the validation loss started to degrade.  

  

Application of the SResCNN network 

        The generated hyper-image was input into the SResCNN model after z-score normalization, 

and a deeply learned score (DLS) representing the EGFR mutation positivity could be yielded 



after a sequential activation of convolution and pooling layers. To develop a robust prediction, 

all valid slices of each patient were fed into the SResCNN model and the average DLSs with 

equal weight for each slice was regarded as the final EGFR positive probability of the tumor. 

 

Determination of architectures of CNN network 

To select the optimal architecture, we first compared the ResNet18 with a similar architecture 

but smaller number of filters for each layer (referred as 1-resolution model later, shown in 

Supplementary Fig. 10 (a)). Trained with our tumor images, the ResNet18 achieved AUCs of 

0.88 (95%CI: 0.85, 0.91), 0.78 (95%CI: 0.72, 0.85) and 0.70 (95%CI: 0.57, 0.83) in the training, 

validation and external test cohorts, respectively. Compared to the 1-resolution model (AUC: 

training: 0.84, 95%CI: 0.80, 0.87; validation: 0.78, 95%CI: 0.72, 0.85; test: 0.71, 95%CI: 0.59, 

0.84), the AUC is higher in the training cohort, but nearly the same in the validation cohorts and 

slightly lower in the test cohort (Supplementary Fig. 11). This suggests that greater number of 

filters would not increase the predictive performance, but does increase the risk of overfitting 

for the task in our study. Additionally, during the training of Resnet18, it took 200 seconds for 

training each epoch, which was ten times longer than training 1-resolution model. Therefore, 

the ResNet18-similar architecture with fewer filters for each layer is more appropriate in our 

study. 

Further, in order to validate the necessary of multi-resolution and determine the number of 

resolutions, architectures with different number of resolutions were trained (Supplementary 

Fig. 10) and tested on the conditions that the structures of other convolutional layers were kept 

the same. From the performance shown in Supplementary Fig. 11, when the number of 

resolution was less than 4, the predictive performance was improved in the training and 

validation cohorts with the increase number of different resolution. When the number of 

resolution was 4, though predictive performance was improved in the training cohort, no 

improvement was found for validation cohort. In order to keep the architecture with fewer 

parameters, we used 3 different resolutions in this work. Additionally, the advantage of multi-

resolution architecture was also proved in the external test cohort, which has more advanced 

stage cases wither larger tumor volume. That is to say, the multi-resolution architecture is more 

independent on the scale of the objects within the image.  

Based on the above comparison, the current SResCNN network was arrived at and used in this 

work. 

 



Radiomic quality score (RQS) 

Radiomics is a rapidly maturing field in machine learning.   To rigorously assess the quality of 

study design, Lambin et al. developed a 36-point “Radiomics Quality Score” (RQS) metric that 

evaluates 16 different key components3. The full list of criteria is described in Supplementary 

Table S12, which shows that the current study had an RQS of 16. To put this in perspective, a 

recent meta-analysis4 analyzed 77 radiomics publications and documented that the mean ±S.D. 

RQS across all studies was 9.4±5.6, indicating that the current study is in the upper 20 

percentage of radiomics study designs. 



Supplementary Figures 

 

 

Supplementary Fig. 1. Visualization of the model using different ROIs of the same patients in 

Fig. 3. (a) and (b) are the patients with wild-type EGFR and EGFR L858 mutant, respectively, 

which are corresponding to the patients (c) and (d) in Fig. 3. The first lines are the original input 

ROIs, and the second line show the two of the activation maps of the fourth ResBlocks, the 

positive filter and the negative filter generated with the original input ROI. The third and fourth 

lines are the input ROIs with more organs/tissues included, and the corresponding activation 

maps and positive/negative filter. 
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Supplementary Fig. 2. Distribution of EGFR-DLS among different radiologists’ delineation. (a) 

is the correlation of EGFR-DLS among different radiologist’s delineation; (b) is the ROC curves of 

the EGFR-DLSs obtained with different radiologist’s delineation. 

 

 

 

 

Supplementary Fig. 3. Comparison of progression survival between the molecular biomarkers 

(EGFR and PD-L1) and image-based biomarkers (EGFR-DLS and PDL1-DLS). (a) is the 

progression survival of TKI-treated patients with EGFR mutation status relative to the EGFR 

mutation and EGFR-DLS (cutoff:0.5). (b) is the progression survival of ICI-treated patients with 

PD-L1 status relative to the PDL1-DLS (cutoff:0.54) and PD-L1 status. Note. p value was from 

log rank test. 
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Supplementary Fig. 4. Correlation between EGFR-DLS and PD-L1 expression. (a), (b) and (c) are 

the EGFR-DLS distribution across different PD-L1 expression in the training, test and HLM ICI-

treated sub-cohorts, respectively. In the box plots, the central line represents the median, the 

bounds of box the first and third quartiles, and the whiskers are the interquartile range. In (a), n 

= 191, 42, and 34 for 0%, 1-49% and ≥50% groups, respectively. In (b), n = 80, 15, and 17 for 0%, 

1-49% and ≥50% groups, respectively. In (c), n = 34, 19, and 22 for 0%, 1-49% and ≥50% groups, 

respectively. 

 

 

 

 

Supplementary Fig. 5. Prognostic value of the EGFR-DLS in the ICI-treated cohorts of different 

histology type. (a) is the progression survival of adenocarcinoma patients relative to the EGFR-

DLS (cutoff:0.5) and PD-L1 status. (b) is the progression survival of squamous cell carcinoma 

patients relative to the EGFR-DLS (cutoff:0.5) and PD-L1 status. Comparisons of the above 

progression survival curves were performed with a two-sided log-rank test. 
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Supplementary Fig. 6. NCCN Guideline Version 2.2020 for Non-Small Cell Lung Cancer. 

 

 

 

Supplementary Fig. 7. Predictive value of the EGFR-DLS and PDL1-DLS in the combined TKI-

treated and ICI-treated cohorts with adenocarcinoma. (a) Progression free survival of patients 

with high EGFR-DLS. (b) Progression free survival of patients with low EGFR-DLS. H and L refer 

to higher and lower than median scores, with first letter referring to EGFR-DLS and second to 

PDL1-DLS.  TKI and ICI refer to patients treated with EGFR inhibitors or immune checkpoint 

inhibitors, respectively. Comparisons of the above progression survival curves were performed 

with a two-sided log-rank test. 
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Supplementary Fig. 8. Illustration of the SResCNN model. This model is composed of 

convolutional layers, batch normalization, pooling, and drop out layers. Note. /2 and /4 mean 

the convolution layer of the Convblock with stride of 2 and 4, respectively. 1x1 and 3x3 mean 

the kernel size, without speculation, the default kernel size is 3x3.   

 

 

Supplementary Fig. 9. Illustration of the generation of the input hyper-image. A square or an 

irregular box, which was close to the boundary of the tumor, was delineated manually in ITK 

software firstly, and then the hyper-image was generated after resampling (cubic 

interpolation), dilation and fusion automatically.  
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Supplementary Fig. 10. Illustration of the different CNN model.  (a) is 1-resolution model with 

1 resolution with image size of 64x64; (b) is 2-resolution model with 2 resolutions with image 

size of 64x64, and 32x32; (c) is 4-resolution model with 4 resolutions with image size of 64x64, 

32x32, 16x16 and 8x8. 
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Supplementary Fig. 11. Comparison of different architectures based on predictive 

performance. 1-resolution means the model with only 1 resolution with image size of 64x64; 2-

resolution means the model with 2 resolutions with image size of 64x64, and 32x32; 3-

resolution means the proposed model in this work with 3 different resolutions with image size 

of 64x64, 32x32 and 16x16; and 4-resolution means the model with 4 resolutions with image 

size of 64x64, 32x32, 16x16 and 8x8. Detailed architectures were provided in Supplementary Fig. 

10. Each point represents the performance of the corresponding model in the corresponding 

cohort.  
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Supplementary Tables 

Supplementary Table 1. EGFR predictive performance of different models 

 Training cohort Validation cohort HMU test cohort 

AUC    

SUVmax 0.62 (0.56, 0.67) 0.69 (0.61, 0.77) 0.50 (0.35, 0.65) 

CS 0.78 (0.74, 0.82) 0.78 (0.72, 0.84) 0.70 (0.58, 0.82) 

EGFR-DLS 0.86 (0.83, 0.90) 0.83 (0.78, 0.89) 0.81 (0.72, 0.92) 

CMS 0.88 (0.85, 0.91) 0.88 (0.84, 0.93) 0.84 (0.74, 0.93) 

Accuracy    

SUVmax 58.04 (53.85,62.24) 72.19 (65.78,78.07) 53.85 (43.08,64.62) 

CS 72.49 (68.07,76.69) 72.73 (66.31,79.14) 64.62 (53.85,76.92) 

EGFR-DLS 81.12  (77.39, 84.62) 81.82 (76.22,86.63) 78.46 (68.50, 87.69) 

CMS 82.28 (78.79 85.78) 82.89 (77.01,88.24) 80.00 (70.77,89.23) 

Sensitivity    

SUVmax 34.33 (27.36,41.29) 52.00 (40, 62.67) 72.22 (58.33,86.11) 

CS 78.11 (71.64,83.58) 76.00 (65.33,85.33) 72.22 (58.33,86.11) 

EGFR-DLS 84.58 (79.86,89.05) 90.67 (84, 97.33) 69.44 (55.56,83.33) 

CMS 83.58 (78.61,88.56) 90.67 (84, 97.33) 69.44 (55.56,83.33) 

Specificity    

SUVmax 78.95  (73.68,84.21) 85.71 (78.57,91.96) 31.03 (13.79, 8.28) 

CS 67.54 (61.40, 73.68) 70.54 (62.50,78.57) 55.17 (37.93, 2.41) 

EGFR-DLS 78.07 (72.81,83.33) 75.89 (67.86,83.93) 89.66 (77.67, 100) 

CMS 81.14 (76.11,85.96) 77.68 (69.64,84.82) 93.10 (82.76, 100) 
 

 

 

Note. Cutoffs for CS, EGFR-DLS and CMS are 0.5. Cutoff for SUVmax is 5 (according to ROC curves of 

training cohort). CS is short for clinical signature; CMS is short for combined EGFR-DLS and clinical 

signature. 



Supplementary Table 1. Logistic regression analysis of factors for EGFR prediction 

Training 
cohort 

Univariate Clinical signature Combined signature 

Odds Ratio(95% CI) p Odds Ratio (95% CI) p Odds Ratio (95% CI) p 

Age 0.99 (0.99-1.00) 0.17     

Sex 1.11(0.98-1.26) 0.096 2.44 (1.30-4.59) 0.006   

Stage 0.96 (0.85-1.01) 0.088     
Histology 0.75(0.64-0.87) <.001 0.093(0.03-0.27) 0.006 0.16 (0.052-0.52) 0.002 

Smoke 0.30(0.22-0.42) <.001 0.45 (0.23-0.85) 0.014 0.24 (0.14-0.42) <.001 
SUVmax 0.97 (0.95-0.99) 0.001     

EGFR-DLS 19.52(11.9-32.02) <.001   14.53 (8.50-24.86) <.001 

Constant   4.71 0.063 2.71 0.13 

 

Validation 
cohort 

Univariate Clinical signature Combined signature 

Odds Ratio(95% CI) p Odds Ratio(95% CI) p Odds Ratio (95% CI) p 

Age 1.00 (0.97-1.03) 0.93     

Sex 7.74(3.99-15.03) <.001 5.07(2.54-10.13) <.001 5.91(2.54-13.77) <.001 

Stage 0.92 (0.71-1.21) 0.57     
Histology 0.036(0.01-0.27) .001 0.094(0.012-0.74) .025   

Smoke 0.16(0.084-0.31) <.001     
SUVmax 0.88(0.82-0.94) <.001 0.93(0.87-1.00) 0.055   

EGFR-DLS 30.58(12.55-74.5) <.001   25.77(10.06-66.0) <.001 

Constant   1.52 0.93 0.007 <.001 

 

HMU test 
cohort 

Univariate Clinical signature Combined signature 

Odds Ratio(95% CI) p Odds Ratio (95% CI) p Odds Ratio (95% CI) p 

Age 0.98(0.93-1.03) 0.35     

Sex 2.83(1.03-7.80) 0.044 2.83(1.03-7.80) 0.044   

Stage 1.12 (0.74-1.67) 0.60     
Histology - -     

Smoke 0.36(0.13-0.99) .048     
SUVmax 1.01 (0.94-1.08) 0.81     

EGFR-DLS 19.70(4.91-79.05) <.001   19.70 (4.91-79.05) <.001 

Constant   0.25 0.095 0.42 0.017 

Note., For Sex: male was assigned set as the referent group and for histology, adenocarcinoma was set 

as the referent group. 

 



Supplementary Table 2. Multivariate Linear regression analysis of EGFR-DLS on the training 

cohort 

 Standardized Coefficients 
(95% CI) 

p Partial Correlations 
Collinearity 
Tolerance 

VIF 

Age 0.015 (-0.002~0.003) 0.72 0.017 0.97 1.03 

Sex 0.18 (0.024~0.15) 0.007 0.13 0.40 2.50 

Stage -0.037 (-0.027~0.011) 0.41 -0.040 0.89 1.12 
Histology -0.31(-0.26~-0.14) <.001 -0.30 0.74 1.35 

Smoke -0.044(-0.084~0.042) 0.51 -0.032 0.39 2.55 
SUVmax -0.14(-0.010~0.002) 0.005 -0.14 0.78 1.28 

Note., CI, confidence interval; VIF, variance inflation factor. Parameters in bold were significant in 

multivariate linear regression analysis. All variance inflation factor (VIF) <5 proved no collinearity among 

parameters. For Sex: male was assigned 1 and female was assigned 2; for histology, adenocarcinoma 

was assigned 1 and squamous cell carcinoma was assigned 2. 

 

Supplementary Table 3. Response prediction of EGFR-DLS in TKI-treatment   

 TKI-patients 

 EGFR-DLS (median, IQR) AUC (95%CI, p) 

Objective response identification 
 PR/CR 0.53 (0.33-0.64) 

0.67 (0.54-0.80, p=0.019) 
SD/PD 0.39 (0.14-0.52) 

Controlled disease identification 
PR/CR/SD 0.52 (0.30-0.63) 

0.68 (0.55-0.81, p=0.012) 
PD 0.38 (0.12-0.48) 

Note. IQR is short for Interquartile range, and CI is short for confidence interval. p values were 

calculated using two-sided non-parametric Mann-Whitney- U-Test. 

 

 

 

 

 

 



Supplementary Table 4. Univariate cox analysis of risk factors for PFS on the independent TKI-

treated and ICI-treated cohorts 

 TKI-patients ICI-patients 

 Hazard ratio (95% CI) p Hazard ratio (95% CI) p 

Age 1.03(0.99-1.08) 0.099 0.99 (0.98-1.01) 0.79 
Sex 0.84 (0.43-1.64) 0.61 0.73 (0.48-1.11) 0.14 

Stage 1.07 (0.80-1.42) 0.65 1.02 (0.71-1.46) 0.92 
Histology(baseline) 1.29 (0.45-3.67) 0.64 2.19 (1.45-3.31) <.001 

Smoke 1.17 (0.59-2.30) 0.66 0.95(0.42-2.15) 0.89 
SUVmax 0.95 (0.90-1.02) 0.97 1.00 (0.98-1.03) 0.93 

EGFR-DLS 0.24 (0.11-0.57) <.001 2.33 (1.51-3.60) <.001 
PD-L1 status NaN  0.39 (0.22-0.68) 0.001 

Note., For Sex: male was assigned set as the referent group and for histology, adenocarcinoma was set 

as the referent group. P values were derived from Cox proportional hazards model.  

 

Supplementary Table 5. Relationship between Response of ICI-treatment and EGFR-DLS  

 EGFR-DLS EGFR-DLS 

 
High 

(N=39) 
Low 

(N=110) 

High Low 

 
PD-L1 + 
(N=11) 

PD-L1 - 
(N=15) 

PD-L1 + 
(N=30) 

PD-L1 - 
(N=19) 

Clinical benefit, NO. (%)      
DCB 13 (33.33) 74 (67.27) 6 (54.55) 3 (20.00) 23 (76.67) 11 (57.89) 
NDB 26 (66.66) 36 (32.73) 5 (45.45) 12 (80.00) 7 (23.33) 8 (42.11) 

Hyper progression, NO. (%)      
Hyperprogression 13 (33.33) 18 (16.36) 2 (18.18) 9 (60.00) 2 (6.67) 7 (36.84) 

non-
hyperprogression 

26 (66.66) 92 (83.64) 9 (81.82) 6 (40.00) 28 (93.33) 12 (63.16) 

 

 

 

 

 

 



Supplementary Table 6. ICI-treated patients’ outcomes stratified by EGFR-DLS and histology 

subtypes 

Histology 

ADC SCC 

High EGFR-DLS 
(N=20) 

Low EGFR-DLS 
(N=79) 

High EGFR-DLS 
(N=19) 

Low EGFR-DLS 
(N=31) 

Median (IQR), 
months 

7.85 
[3.32,11.85] 

10.73 
[4.47,18.25] 

2.30 
[1.47,4.80] 

6.57 
[2.09,12.96] 

HR [95%CI] 1.87 [1.01,3.48] 2.74 [1.45, 5.17] 

p (cox)  0.048* 0.002* 
p (K-M) 0.09 0.001* 

 Note., :  p (cox) values were derived from two-sided Cox proportional hazards model, while p (K-M)  was 

determined with a two-sided log-rank test. * means P value <.05.  

 

Supplementary Table 7. ICI-treated patient outcomes stratified by EGFR-DLS and PD-L1 

expression 

PD-L1 
expression 

PD-L1 positive PD-L1 negative 

High EGFR-DLS 
(N=11) 

Low EGFR-DLS 
(N=30) 

High EGFR-DLS 
(N=15) 

Low EGFR-DLS 
(N=19) 

PFS 

Median (IQR), 
months 

6.97 
[2.30,14.80] 

12.00 
[6.07,-] 

1.77 
[1.10,5.00] 

7.67 
[1.47,17.00] 

HR [95%CI] 1.57[0.64,3.86] 2.28 [1.07, 4.84] 

p (cox)  0.33 0.032* 
p (K-M) 0.32 0.026* 

Note., :  p (cox) values were derived from two-sided Cox proportional hazards model, while p 

(K-M)  was determined with a two-sided log-rank test. * means P value <.05.  

 

 

 

 

 

 



Supplementary Table 8. ADC ICI-treated patients’ outcomes stratified by EGFR-DLS and PD-L1 

expression  

PD-L1 
expression 

PD-L1 positive PD-L1 negative 

High EGFR-DLS 
(N=6) 

Low EGFR-DLS 
(N=18) 

High EGFR-DLS 
(N=9) 

Low EGFR-DLS 
(N=16) 

PFS 

Median (IQR), 
months 

14.80 
[14.80,-] 

27.37 
[11.2,-] 

2.90 
[1.30,8.37] 

7.67 
[1.47,17.00] 

HR [95%CI] 1.25 [0.24,6.48] 1.97 [0.81,4.78] 

p (cox)  0.79 0.14 
p (K-M) 0.79 0.13 

Note., :  p (cox) values were derived from two-sided Cox proportional hazards model, while p 

(K-M)  was determined with a two-sided log-rank test. * means P value <.05.  

 

Supplementary Table 9. SCC ICI-treated patients’ outcomes stratified by EGFR-DLS and PD-L1 

expression  

PD-L1 
expression 

PD-L1 positive PD-L1 negative 

High EGFR-DLS 
(N=5) 

Low EGFR-DLS 
(N=12) 

High EGFR-DLS 
(N=6) 

Low EGFR-DLS 
(N=3) 

PFS 

Median (IQR), 
months 

2.30 
[1.87,4.20] 

6.07 
[2.77,8.70] 

1.40 
[1.10,1.77] 

1.63 
[1.37,-] 

HR [95%CI] 2.43[0.75,7.84] 1.96 [0.39, 9.84] 

p (cox)  0.13 0.41 
p (K-M) 0.12 0.39 

Note., : p (cox) values were derived from two-sided Cox proportional hazards model, while p (K-

M)  was determined with a two-sided log-rank test.  * means P value <.05 

 

 

 

 

 

 



Supplementary Table 10. Acquisition parameters for the PET/CT imaging for each cohort 

Characteristic Training cohort Test cohort HMU cohort HLM cohort 

Manufacturer, No. (%)    

SIMENS 220 (51.28) 112 (59.89) 0 28 (18.79) 

GE Medical 48 (11.19) 0 72 (100) 99 (66.44) 

PHILIPS 161 (37.53) 75 (40.11) 0 22 (14.77) 

Kilovoltage peak(kVp) , No. (%)   

120 409 (95.34) 187 (100) 72 (100) 125 (91.67) 

130 12 (2.80) 0 0 18 (6.25) 

140 8 (1.86) 0 0 6 (2.08) 

Current (mA)    

Median(range) 228 (59-463) 229 (90-407) 138 (98-404) 81.5 (29-299) 

Interval between administration and image acquisition  

Mean ± SD 90.49 ± 51.76 90.20 ± 48.18 83.48 ±20.38 93.75 ± 23.55 

Dosage Mbq/kg    

Mean ± SD 4.38 ± 1.0 4.43 ± 1.28 4.91 ±1.40 5.93± 1.69 

PET Slice Thickness    

Median(range) 5 (3.26 -5) 5 (4-5) 3.27 3.27(3.26-5) 

PET Pixel Spacing    

Median(range) 4.07(2.73-4.07) 4.07 (4-4.07) 3.65 3.65(2.73-5.47) 

CT Slice Thickness    

Median(range) 3 (3 -5) 3 (3 -5) 3.75 3.27(3.27-5) 

CT Pixel Spacing    

Median(range) 0.98(0.98-1.17) 0.98(0.98-1.17) 0.98(0.98-1.37) 1.37(0.98-1.37) 



Supplementary Table 11. The criteria and maximal radiomic quality score as well as the actual score of this work 

Criteria Points system 
Maximal 

score 
Actual score of 

this work  

Image protocol quality - well-documented image 
protocols (for example, contrast, slice thickness, energy, 
etc.) and/or usage of public image protocols allow 
reproducibility/replicability 

+ 1 (if protocols are well-documented) 
+ 1 (if public protocol is used) 

2 1 

Multiple segmentations - possible actions are: 
segmentation by different physicians/algorithms 
/software, perturbing segmentations by (random) noise, 
segmentation at different breathing cycles. Analyse 
feature robustness to segmentation variabilities 

1 1 0 

Phantom study on all scanners - detect inter-scanner 
differences and vendor-dependent features. Analyse 
feature robustness to these sources of variability 

1 1 0 

Imaging at multiple time points - collect images of 
individuals at additional time points. Analyse feature 
robustness to temporal variabilities (for example, organ 
movement, organ expansion /shrinkage) 

1 1 0 

Feature reduction or adjustment for multiple testing - 
decreases the risk of overfitting. Overfitting is inevitable 
if the number of features exceeds the number of 
samples. Consider feature robustness when selecting 
features 

−3 (if neither measure is implemented) 
+ 3 (if either measure is implemented) 

3 0 

Multivariable analysis with non radiomics features (for 
example, EGFR mutation) - is expected to provide a 
more holistic model. Permits correlating /inferencing 
between radiomics and non radiomics features 

1 1 1 



Detect and discuss biological correlates - demonstration 
of phenotypic differences (possibly associated with 
underlying gene–protein expression patterns) deepens 
understanding of radiomics and biology 

1 1 1 

Cut-off analyses - determine risk groups by either the 
median, a previously published cut-off or report a 
continuous risk variable. Reduces the risk of reporting 
overly optimistic results 

1 1 1 

Discrimination statistics - report discrimination statistics 
(for example, C-statistic, ROC curve, AUC) and their 
statistical significance (for example, p-values, confidence 
intervals). One can also apply resampling method (for 
example, bootstrapping, cross-validation) 

+ 1 (if a discrimination statistic and its 
statistical significance are reported) + 1 
(if a resampling method technique is 
also applied) 

2 2 

Calibration statistics - report calibration statistics (for 
example, Calibration-in-the-large/slope, calibration 
plots) and their statistical significance (for example, P-
values, confidence intervals). One can also apply 
resampling method (for example, bootstrapping, cross-
validation) 

+ 1 (if a calibration statistic and its 
statistical significance are reported) + 1 
(if a resampling method technique is 
also applied) 

2 0 

Prospective study registered in a trial database - 
provides the highest level of evidence supporting the 
clinical validity and usefulness of the radiomics 
biomarker 

+ 7 (for prospective validation of a 
radiomics signature in an appropriate 
trial) 

7 0 



Validation - the validation is performed without 
retraining and without adaptation of the cut-off value, 
provides crucial information with regard to credible 
clinical performance 

- 5    (if validation is missing)  + 2 (if 
validation is based on a dataset from 
the same institute) + 3 (if validation is 
based on a dataset from another 
institute)  + 4  (if validation is based on 
two datasets from two distinct 
institutes) + 4 (if the study validates a 
previously published signature)  + 5 (if 
validation is based on three or more 
datasets from distinct institutes) 

5 5 

Comparison to 'gold standard' - assess the extent to 
which the model agrees with/is superior to the current 
'gold standard' method (for example, TNM-staging for 
survival prediction). This comparison shows the added 
value of radiomics 

2 2 2 

Potential clinical utility - report on the current and 
potential application of the model in a clinical setting 
(for example, decision curve analysis) 

2 2 0 

Cost-effectiveness analysis - report on the cost-
effectiveness of the clinical application (for example, 
QALYs generated) 

1 1 0 

Open science and data - make code and data publicly 
available. Open science facilitates knowledge transfer 
and reproducibility of the study 

+ 1 (if scans are open source) +1 (if 
region of interest segmentations are 
open source)  + 1 (if code is open 
source) + 1 (if radiomics features are 
calculated on a set of representative 
ROIs and the calculated features and 
representative ROIs are open source) 

4 3 

Total score  36 16 
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