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Supplementary Methods
1 Existing methods for ASM analysis

Nonparametric independent method. The methylation state within an allele that contains N
CpG sites n = 1, 2, . . . , N can be modeled by using theN×1 stochastic methylation state vector
X = [X1, X2, . . . , XN ]T , where Xn = 0 if the n-th CpG site is unmethylated and Xn = 1 if
it is methylated. An early model for ASM analysis1, 2 assumes that CpG methylation occurs in
a statistically independent manner. This implies that the probability distribution of methylation
(PDM) is given by

p(x) = Pr[X = x] =
N∏
n=1

qn(xn), for every x ∈ {0, 1}N , (1)

with
qn(xn) = Pr[Xn = xn] = πxnn (1− πn)1−xn , (2)

where πn = Pr[Xn = 1] is the probability that the n-th CpG site is methylated. Note that
we use here capital letters to denote random variables/vectors and small letters to denote their
observed values.

Evaluation of the methylation probability p(x) requires knowledge of the probabilities πn,
for n = 1, 2, . . . , N . These probabilities can be estimated from available WGBS data using a
maximum-likelihood approach that solves the following optimization problem:

{π̂1, π̂2, . . . , π̂N} = arg max
{π1,π2,...,πN}

ln p(x1,x2, . . . ,xM), (3)

where p(x1,x2, . . . ,xM) is the probability of observing M independent (and possibly partial)
reads {x1,x2, . . . ,xM} of the allele’s full methylation state. From Supplementary Equations (1)
and (2), note that

p(x1,x2, . . . ,xM) = Pr[X = x1,X = x2, . . . ,X = xM ]

=
M∏
m=1

Pr[X = xm]

=
M∏
m=1

N∏
n=1

πxm,n
n (1− πn)xm,n
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=
N∏
n=1

π
∑M

m=1 xm,n
n (1− πn)

∑M
m=1 xm,n

=
N∏
n=1

πMn
n (1− πn)Un , (4)

where Mn and Un are the numbers of reads in which the n-th CpG site is methylated and
unmethylated, respectively. Supplementary Equations (3) and (4) lead to an empirical estimate
π̂n of the probability πn, given by

π̂n =
Mn

Mn + Un
, for n = 1, 2, . . . , N, (5)

which in turn provides the following estimates q̂n(xn) and p̂(x) of the methylation probabilities
qn(xn) and p(x):

q̂n(xn) =

(
Mn

Mn + Un

)xn ( Un
Mn + Un

)1−xn
, for every xn, (6)

and

p̂(x) =
N∏
n=1

(
Mn

Mn + Un

)xn ( Un
Mn + Un

)1−xn
, for every x. (7)

Due to the independence assumption, we refer to the ASM analysis method that uses the
previous approach as the nonparametric independent (NPI) method. Note, however, that the in-
dependence assumption underlying this method seems unrealistic, given the known processivity
of the DNMT enzymes3–5 and the fact that analysis of WGBS data reveal extensive coopera-
tivity in methylation6. Moreover, reliable estimation of the methylation probabilities πn that is
consistent under experimental replication requires that the number of available observations at
each CpG site is much larger than the number of methylation states (i.e., Mn + Un � 2, for
every n), which may not always be achievable when using WGBS data.

Nonparametric dependent method. In a recent paper7, an approach was proposed by Onuchic
et al. for modeling the methylation state within a homologous allele that does not impose the
assumption of statistical independence. Given M independent reads {x1,x2, . . . ,xM} of the
full methylation state within the allele, this approach calculates the maximum likelihood esti-
mate p̂(x) of the methylation probability p(x) by solving the following constrained optimization
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problem

{p̂(x)} = arg max
p

ln p(x1,x2, . . . ,xM)

= arg max
p

ln
∏
x

[p(x)]M(x)

= arg max
p

∑
x

M(x) ln p(x), (8)

subject to ∑
x

p(x) = 1, (9)

where M(x) is the number of reads in which the methylation state within the allele is x. This
leads to an empirical estimate p̂(x) of the probability p(x), given by

p̂(x) =

{
M(x)/

∑
x′M(x′), if x ∈ {x1,x2, . . . ,xM}

0, otherwise.
(10)

Since the previous approach does not assume statistical independence between the methy-
lation states at individual CpG sites, we refer to the ASM analysis method that uses this ap-
proach as the nonparametric dependent (NPD) method. Note, however, that performing ASM
analysis using the NPD method requires reads that correspond to fully observed methylation
states. Moreover, to produce reliable estimates of the methylation probabilities, this approach
requires that the number of such reads is much larger than the number of methylation states (i.e.,
M � 2N ), which is not possible using current WGBS technologies when considering alleles
containing many CpG sites. For this reason, the analysis by Onuchic et al. is limited to genomic
regions that contain 4 CpG sites, which are referred to as epialleles.

2 A Potential energy function for ASM analysis

By invoking the well-known maximum-entropy principle8, we can show that the probability
distribution of the methylation state X that is consistent with methylation means and pair-wise
correlations at each CpG site of a genomic region that contains N CpG sites 1, 2, . . . , N , is
given by

p(x) =
1

Z
exp {−U(x)} , for every x ∈ {0, 1}N , (11)

where

U(x) = −
N∑
n=1

an(2xn − 1)−
N−1∑
n=1

bn(2xn − 1)(2xn+1 − 1) (12)
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is the potential energy function, an and bn are two parameters associated with the n-th CpG site,
and

Z =
∑
x

exp{−U(x)} (13)

is a normalizing constant, known as the partition function.

In a previous work by Jenkinson et al.6, 9, the goal was to perform DNA methylation
analysis along the entire genome using the potential energy function given by Supplementary
Equation (12). However, reliable estimation of its 2N parameters a and b from available WGBS
data is not feasible since, for largeN , such estimation requires the availability of a large amount
of data, which is not possible with current WGBS technology. This problem was previously
addressed by Jenkinson e al. by partitioning the genome into non-overlapping estimation regions
of 3-kb each and by setting, within the k-th region,

an = ck,1 + ck,2ρn and bn = ck,3/dn, (14)

where ck,1, ck,2, and ck,3 are three parameters characteristic to the k-th estimation region, ρn is
the CpG density at site n, and dn is the distance between CpG sites n and n+ 1. This approach
reduced the problem of parameter estimation to estimating only the three parameters ck,1, ck,2,
and ck,3 within the k-th estimation region, as opposed to estimating 2N parameters.

It turns out that, even when employing the Supplementary Equations (14), performing
methylation analysis using Supplementary Equations (11)-(13) is highly problematic, since
computing key statistical quantities within a genomic region of interest requires evaluation of
partition functions and marginalizing probabilities based on computationally intensive formu-
las, as well as extensive Monte Carlo estimation, which take an unrealistic amount of time even
on a high performance computer cluster. There are two underlying reasons for this problem:
(i) the combinatorial complexity of the methylation state-space, which grows geometrically
with N (the state-space contains 2N methylation patterns for a genomic region with N CpG
sites), and (ii) the dependence of the a and b parameters of the potential energy function on
the CpG sites. These issues were previously addressed by Jenkinson et al.6, 9 by partitioning
the genome into non-overlapping genomic units, composed of 150 bp each, and by performing
methylation analysis at the resolution of one genomic unit. This led to characterizing DNA
methylation using the probability distribution of the methylation level within a genomic unit
(i.e., the average of all methylation states at individual CpG sites within the genomic unit),
which resulted in a computationally manageable approach to genome-wide methylation analy-
sis.
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In contrast to the above, the goal in this paper is to perform hap-ASM analysis by iden-
tifying significant differences between the distributions of methylation patterns, and associated
statistics that correspond to the homologous alleles of a given haplotype. This requires compu-
tation of the probabilities of individual methylation patterns (e.g., 1111100000 and 0000011111
within an allele containing 10 CpG sites), as compared to the previous method by Jenkin-
son et al.6, 9, which instead uses the probabilities of the methylation level within small genomic
units. This distinction does not seem to be an issue when dealing with small genomic units
containing a few CpG sites (e.g., within a genomic unit of 150 bp containing 4 CpG sites the
difference between methylation patterns 1100 and 0011 may not be of significant importance
since they both have the same methylation level of 0.5 and the CpG sites are located in close
proximity to each other). However, it is quite important when dealing with large haplotypes
(e.g., within a homologous allele containing 10 CpG sites, the difference between patterns
1111100000 and 0000011111, which have the same methylation level of 0.5, may be signif-
icant, considering the fact that some CpG sites may not be located close to each other). For this
reason, the previous approach to methylation analysis by Jenkinson et al. is not appropriate for
hap-ASM analysis.

Due to limitations in read-based phasing, which is often constrained by the length of WGS
reads and the low coverage of WGBS, current sequencing technologies only allow analysis of
relatively small haplotypes (for example, the size of more than 99% of the haplotypes analyzed
in the real data was no more than 1-kb). Given the small amount of available WGBS data,
it is reasonable to assume that we can accurately observe only the average of the methylation
means at individual CpG sites within small subregions of a given allele. Moreover, since pair-
wise correlations are second-order moments, requiring more data for reliable estimation than the
means, we can also assume that we can accurately observe only the average of these correlations
at individual CpG sites within the entire allele. For these reasons, we subdivide each allele into
a minimum number K of equally sized non-overlapping subregions of size no more than G.
Given the previous constraints, and by invoking the maximum-entropy principle, we can show
that the potential energy function associated with the probability distribution of the methylation
state X within a given allele that is consistent with the average of the methylation means within
each allelic subregion and the average of the pair-wise correlations within the entire allele is
given by

U(x) = −
K∑
k=1

αk
∑
n∈Nk

(2xn − 1)− β
N−1∑
n=1

(2xn − 1)(2xn+1 − 1), (15)

where Nk is the set of all CpG sites within the k-th allelic subregion, αk is a parameter char-
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acteristic to the k-th allelic subregion, and β is a parameter characteristic to the entire allele.
Parameter αk influences the propensity of CpG sites in the k-th allelic subregion Rk to be
methylated due to non-cooperative factors, while β accounts for the fact that the methylation
status of two contiguous CpG sites n and n+ 1 within the allelic regionR is most often highly
correlated due to the known processivity of the DNMT enzymes3–5. Notably, the previous
energy function given by Supplementary Equation (15), when used in conjunction with Supple-
mentary Equations (11) and (13), does not imply equal mean methylation levels and pair-wise
correlations at each CpG site of an allele, which can be shown to depend on the CpG site n.

The previous energy function leads to a coarse-grained version of the one in Supple-
mentary Equation (12) which allows the CPEL method to perform hap-ASM analysis using a
computationally feasible method that employs probability distributions of the methylation state,
instead of the probability distributions of the methylation level utilized by Jenkinson et al.6, 9.
In subsequent sections, we show that computations in this case can be performed efficiently
by multiplying 2× 2 matrices evaluated by spectral decompositions, which require eigenvalues
and eigenvectors that are calculated by analytical formulas, as well as by employing standard
derivative approximations and a limited number of Monte Carlo estimations. Consequently, the
CPEL method can perform hap-ASM analysis in the original space of individual methylation
patterns, which allows this approach to identify types of significant allele-specific methylation
imbalances inaccessible to current approaches.

The potential energy function associated with the CPEL method leads to a version of the
well-known one-dimensional Ising model of statistical physics10 characterized by a single inter-
action parameter β and an external field parameter α that is not necessarily constant but depends
on the specific subregion of a given allele. This simple choice enjoys several advantages: (i) its
estimation from data involves computing the values of at most K + 1 parameters, which can be
done reliably using current WGBS technologies, (ii) when β 6= 0, it accounts for correlations in
methylation at contiguous CpG sites, and (iii) it allows for the derivation of analytical formulas
for necessary calculations, which can then be performed in a computationally efficient manner.
Note that, when β = 0, the CPEL model is reduced to the NPI model. Moreover, as sequencing
technology improves producing larger read sizes and coverage, the potential energy function
given by Supplementary Equation (15) can be modified to better handle large haplotypes by
allowing the interaction parameter β to also depend on the specific subregion of a given allele.

Using the CPEL model requires that we determine a value for parameter G (in bp). This
value directly affects the granularity of modeling due to the dependence of the energy function
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on the K + 1 parameters α1, α2, . . . , αK , and β, a number that increases with decreasing G.
Since successful estimation of an increasing number of parameters requires more data in gen-
eral, we expect the number of haplotypes analyzed by the CPEL method in a given sample to
decrease with smaller values of G. This observation leads to the following scheme for deter-
mining an appropriate value for G that strikes a balance between a finer model description of
the methylation state and the number of haplotypes analyzed by the CPEL method using this
value.

Procedure for determining the modeling granularity G

1. Compute the minimum integer j0 such that G = j0 × 100 bp implies K = 1 for all
alleles in a given sample, as well as the number nj0 of haplotypes analyzed by the CPEL
method with the computed value of G by counting all pairs of homologous alleles for
which parameter estimation was successful in both alleles. Set j = j0 − 1.

2. Set G ← G − 100 and determine the number nj of haplotypes analyzed by the CPEL
method with the new value of G.

3. If (nj0 − nj)/nj0 ≤ 0.05, then set j ← j − 1 and go to Step 2.

4. If (nj0 − nj)/nj0 > 0.05, then STOP and use the current value of G when analyzing the
sample.

This scheme determines the finest possible model description of the methylation state (i.e., the
smallest possible value of G) that leads to no more than a 5% loss in the number of haplotypes
analyzed by the CPEL method in a given sample when comparing to the case of maximum
model granularity. Notably, by applying this strategy on the real data, we consistently found
that G = 500 bp in all samples.

3 Computing the partition function

Let us first consider the case when K = 1. In this case, the potential energy given by Supple-
mentary Equation (15) becomes

U(x) = −α1

N∑
n=1

(2xn − 1)− β
N−1∑
n=1

(2xn − 1)(2xn+1 − 1), (16)

where N is the number of CpG sites in an allelic regionR. We now have that
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Z =
∑
x

exp{−U(x)}

=
∑
x

exp
{α1

2
(2x1 − 1)

}
×

(
N−1∏
n=1

exp
{α1

2
(2xn − 1) + β(2xn − 1)(2xn+1 − 1) +

α1

2
(2xn+1 − 1)

})
× exp

{α1

2
(2xN − 1)

}
. (17)

If we set

u1 =

[
e−α1/2

eα1/2

]
, (18)

and

W1 =

[
eβ−α1 e−β

e−β eβ+α1

]
, (19)

then Supplementary Equation (17) becomes

Z = uT1 WN−1
1 u1. (20)

Now, let us consider the case when K = 2. In this case,

U(x) = −α1

N1∑
n=1

(2xn − 1)− α2

N1+N2∑
n=N1+1

(2xn − 1)− β
N1+N2−1∑

n=1

(2xn − 1)(2xn+1 − 1), (21)

where N1 and N2 respectively denote the numbers of CpG sites in the two subregions R1 and
R2 ofR. We now have that

Z =
∑
x

exp{−U(x)}

=
∑
x

exp
{α1

2
(2x1 − 1)

}
×

(
N1−1∏
n=1

exp
{α1

2
(2xn − 1) + β(2xn − 1)(2xn+1 − 1) +

α1

2
(2xn+1 − 1)

})
× exp

{α1

2
(2xN1 − 1) + β(2xN1 − 1)(2xN1+1 − 1) +

α2

2
(2xN1+1 − 1)

}
×

(
N1+N2−1∏
n=N1+1

exp
{α2

2
(2xn − 1) + β(2xn − 1)(2xn+1 − 1) +

α2

2
(2xn+1 − 1)

})
× exp

{α2

2
(2xN1+N2 − 1)

}
. (22)

8



If we set

u2 =

[
e−α2/2

eα2/2

]
, (23)

W2 =

[
eβ−α2 e−β

e−β eβ+α2

]
, (24)

and

V2 =

[
eβ−(α1+α2)/2 e−β−(α1−α2)/2

e−β+(α1−α2)/2 eβ+(α1+α2)/2

]
, (25)

then Supplementary Equation (22) becomes

Z = uT1 WN1−1
1 V2W

N2−1
2 u2. (26)

By following similar steps, we can show in general that

Z = uT1 WN1−1
1

(
K∏
k=2

VkW
Nk−1
k

)
uK , for K ≥ 2, (27)

where Nk is the number of CpG sites within the k-th subregionRk ofR,

uk =

[
e−αk/2

eαk/2

]
, (28)

Wk =

[
eβ−αk e−β

e−β eβ+αk

]
, (29)

and

Vk =

[
eβ−(αk−1+αk)/2 e−β−(αk−1−αk)/2

e−β+(αk−1−αk)/2 eβ+(αk−1+αk)/2

]
. (30)

The expression in Supplementary Equation (27) provides a formula for efficiently com-
puting the partition function using 2× 2 matrix multiplications. This formula however requires
calculating powers WNk−1

k of matrix Wk, which can be computationally inefficient for large
values of Nk. If Wk = EkΛkE

T
k is the spectral decomposition of Wk, where the columns of

Ek are the (orthonormal) eigenvectors ek,1, ek,2 of Wk, and Λk is a diagonal matrix with entries
the corresponding eigenvalues λk,1, λk,2, then
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WNk−1
k = EkΛ

Nk−1
k ET

k

= λNk−1
k,1 ek,1e

T
k,1 + λNk−1

k,2 ek,2e
T
k,2, (31)

which provides a formula for efficiently computing WNk−1
k . It can be verified that

λk,1 = eβ coshαk − e−β
√

1 + e4β(sinhαk)2 (32)

λk,2 = eβ coshαk + e−β
√

1 + e4β(sinhαk)2, (33)

with corresponding (orthonormal) eigenvectors given by

ek,1 =
1√

1 +
[
e2β sinhαk +

√
1 + e4β(sinhαk)2

]2
[
e2β sinhαk +

√
1 + e4β(sinhαk)2

−1

]
(34)

ek,2 =
1√

1 +
[
e2β sinhαk −

√
1 + e4β(sinhαk)2

]2
[
e2β sinhαk −

√
1 + e4β(sinhαk)2

−1

]
. (35)

4 Marginalizing methylation probabilities

In general, methylation reads are subject to missing information. Suppose that, in a given read x

of the methylation state of an allele that is partitioned into K subregions Rk, k = 1, 2, . . . , K,
the methylation status of the last mk1 CpG sites within subregion Rk1 is not observed, and
the same is true for the first mk1+1 CpG sites of the next subregion Rk1+1. Let p1 and q1 be
the indices that determine the position of the first and the last unobserved CpG sites in the
methylation vector x, respectively, and let x̃ be the observed portion of x. Then, the likelihood
of observing x̃ is obtained by marginalizing the probability Pr[X = x] of the methylation
state X over the unobserved CpG sites, leading to

Pr[X̃ = x̃] =
1

Z

∑
{xp1 ,...,xq1}

exp

{
K∑
k=1

αk
∑
n∈Nk

(2xn − 1) + β
N−1∑
n=1

(2xn − 1)(2xn+1 − 1)

}

=
e−U0(x̃)

Z

∑
{xp1 ,...,xq1}

exp

αk1
p1+mk1

−1∑
n=p1

(2xn − 1) + αk1+1

q1∑
n=p1+mk1

(2xn − 1)

+ β

q1∑
n=p1−1

(2xn − 1)(2xn+1 − 1)

}
, (36)
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with

U0(x̃) = −
K∑
k=1

αk
∑
n∈N ′k

(2xn − 1)− β
∑
n∈N ′′

(2xn − 1)(2xn+1 − 1), (37)

whereN ′k is the set of CpG sites within subregionRk of the allele other than {p1, p1+1, . . . , q1}
and N ′′ is the set of CpG sites within the entire allele other than {p1 − 1, p1, . . . , q1}.

Note now that

∑
{xp1 ,...,xq1}

exp

αk1
p1+mk1

−1∑
n=p1

(2xn − 1) + αk1+1

q1∑
n=p1+mk1

(2xn − 1) + β

q1∑
n=p1−1

(2xn − 1)(2xn+1 − 1)


=
∑

{xp1 ,...,xq1}

exp
{[αk1

2
+ β(2xp1−1 − 1)

]
(2xp1 − 1)

}

×
p1+mk1

−2∏
n=p1

[
exp

{αk1
2

(2xn − 1) + β(2xn − 1)(2xn+1 − 1) +
αk1
2

(2xn+1 − 1)
}]

× exp
{αk1

2
(2xp1+mk1

−1 − 1) + βxp1+mk1
−1xp1+mk1

+
αk1+1

2
(2xp1+mk1

− 1)
}

×
q1−1∏

n=p1+mk1

[
exp

{αk1+1

2
(2xn − 1) + β(2xn − 1)(2xn+1 − 1) +

αk1+1

2
(2xn+1 − 1)

}]
× exp

{[αk1+1

2
+ β(2xq1+1 − 1)

]
(2xq1 − 1)

}
. (38)

If we set

uk(x) =

[
e−αk/2−βk(2x−1)

eαk/2+βk(2x−1)

]
, (39)

then

∑
{xp1 ,...,xq1}

exp

αk1
p1+mk1

−1∑
n=p1

(2xn − 1) + αk1+1

q1∑
n=p1+mk1

(2xn − 1) + β

q1∑
n=p1−1

(2xn − 1)(2xn+1 − 1)


= [uk1(xp1−1)]

TW
mk1
−1

k1
Vk1+1W

mk1+1−1
k1+1 uk1+1(xq1+1), (40)

where the matrices Wk and Vk are given by Supplementary Equations (29) and (30), respec-
tively. As a result, we obtain

Pr[X̃ = x̃] =
e−U0(x̃)

Z
[uk1(xp1−1)]

TW
mk1
−1

k1
Vk1+1W

mk1+1−1
k1+1 uk1+1(xq1+1), (41)
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where U0(x̃) is given by Supplementary Equation (37). Note that the potential energy U0(x̃)

in this expression is defined over the observed portion of x and is similar to the one given by
Supplementary Equation (15). Moreover, the vector uk1(xp1−1) takes into account the portion
of the potential energy at the boundary between the observed and unobserved parts of Rk1 ,
whereas the vector uk1+1(xq1+1) takes into account the portion of the potential energy at the
boundary between the unobserved and observed parts of Rk1+1. Finally, the matrix product
term W

mk1
−1

k1
Vk1+1W

mk1+1−1
k1+1 accounts for the marginalization of the methylation states over

the unobserved CpG sites p1, p1 + 1, . . . , q1. Note also that powers of the matrices Wk1 and
Wk1+1 can be efficiently computed using the spectral decomposition approach employed for
computing the partition function.

More generally, if the methylation status of the last mk1 CpG sites within subregion Rk1

and the first mk1+1 CpG sites of subregion Rk1+1 is not observed, and the same is true for the
last mk2 CpG sites within another subregion Rk2 and the first mk2+1 CpG sites of subregion
Rk2+1, where k2 ≥ k1 + 2, then we can show that

Pr[X̃ = x̃] =
e−U0(x̃)

Z
[uk1(xp1−1)]

TW
mk1
−1

k1
Vk1+1W

mk1+1−1
k1+1 uk1+1(xq1+1)

× [uk2(xp2−1)]
TW

mk2
−1

k2
Vk2+1W

mk2+1−1
k2+1 uk2+1(xq2+1), (42)

with U0(x̃) given again by Supplementary Equation (37), where p1 and q1 are the indices that
determine the position of the first and the last unobserved CpG sites within the region Rk1 ∪
Rk1+1, p2 and q2 are the indices that determine the position of the first and the last unobserved
CpG sites within the regionRk2∪Rk2+1,N ′k contains all CpG sites in subregionRk of the allele
other than {p1, p1 + 1, . . . , q1, p2, p2 + 1, . . . , q2}, and N ′′ contains all CpG sites in the entire
allele other than {p1− 1, p1, . . . , q1, p2− 1, p2, . . . , q2}. Note that the potential energy U0(x̃) in
this expression is again defined over the observed portion of x and is similar to the one given by
Supplementary Equation (15). As before, the vector uk1(xp1−1) takes into account the portion of
the potential energy at the boundary between the observed and unobserved parts ofRk1 , whereas
the vector uk1+1(xq1+1) takes into account the portion of the potential energy at the boundary
between the unobserved and observed parts of Rk1+1. Moreover, the vector uk2(xp2−1) takes
into account the portion of the potential energy at the boundary between the observed and
unobserved parts of Rk2 , whereas the vector uk2+1(xq2+1) takes into account the portion of the
potential energy at the boundary between the unobserved and observed parts ofRk2+1. Finally,
the term W

mk1
−1

k1
Vk1+1W

mk1+1−1
k1+1 accounts for the marginalization of the methylation states

over the unobserved CpG sites p1, p1 + 1, . . . , q1, whereas the term W
mk2
−1

k2
Vk2+1W

mk2+1−1
k2+1
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accounts for the marginalization of the methylation states over the unobserved CpG sites p2,
p2 + 1, . . . , q2.

By following the previous steps and rules, we can also derive formulas for computing the
probability Pr[X̃ = x̃] of a methylation read for the general case in which a given read x of the
methylation state of a given allele is subject to multiple stretches of unobserved CpG sites.

5 Performing maximum-likelihood estimation

The Supplementary Equation (15) defines a potential energy landscape U(x), x ∈ {0, 1}N ,
which is fully specified by the K + 1 parameters α1, α2, . . . , αK , and β. Since for subregions
that do not contain any CpG sites the α parameters can be set equal to zero, it is expected that
the number of parameters associated with most alleles to be less than K + 1 and, therefore, the
potential energy function involves a small number of parameters (at most K + 1) that must be
estimated from available WGBS data.

Given M independent and fully observed reads x1,x2, . . . ,xM of the methylation state in
a given allele, obtained by properly mapping WGBS data to each identified allele (see Methods
in the main paper), the CPEL method estimates the parameters θ = [α1, α2, . . . , αK , β]T of the
potential energy landscape by solving the following maximum-likelihood optimization problem

θ̂ = arg max
θ

M∑
m=1

ln pθ(xm). (43)

However, due to the relatively low coverage of WGBS data and other technical difficulties as-
sociated with this technology, any method for hap-ASM analysis must be designed to handle
partial observations of the methylation state (i.e., observations in which the methylation state
is not observed at all CpG sites). If the m-th read provides a partial observation x̃m of the
methylation state, then the probability pθ(xm) in Supplementary Equation (43) is replaced with
a probability computed from the former by marginalization (i.e., by summing over the methy-
lation states of all unobserved CpG sites). Note, however, that the log-likelihood function will
not be in general concave in this case, and maximum-likelihood estimation must be done by a
non-convex global optimization algorithm.

To determine an appropriate algorithm for this task, we compared ten global optimization
methods and found three of them to outperform the rest. We evaluated the performance of each
algorithm by generating data from a CPEL model with known parameter values in the five cases
depicted in Supplementary Table 8, by computing the time it took for convergence, by evalu-
ating the error in parameter estimation, and by repeating this process 100 times with different
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initializations. Particle Swarm11, QuadDIRECT (https://github.com/timholy/QuadDIRECT.jl),
a method inspired by DIRECT12 and Multilevel Coordinate Search13, as well as Simulated
Annealing14, were found to be the most accurate and fastest algorithms and selected these
methods for a more refined comparison. Among the algorithms we discarded after the first
comparison were Simultaneous Perturbation Stochastic Approximation15, exponential Natural
Evolution Strategies16, and Direct Search17.

During the second comparison, we tested Particle Swarm, QuadDIRECT with four differ-
ent values for the maximum number of objective function evaluations, and Simulated Annealing
with four different values for the temperature reduction factor r (new temperature = r × old
temperature). According to representative results depicted in Supplementary Figure 10, Parti-
cle Swarm (PS) and Simulated Annealing with r = 10−4 (SA3) produced the best estimation
performance in terms of the median and interquartile range (IQR) of the resulting errors, quan-
tified by the Euclidean distance between the estimated parameter values and their true values.
However, PS took substantially more time to converge, whereas all four versions of Simulated
Annealing converged must faster than PS. Finally, some versions of QuadDIRECT converged
faster than Simulated Annealing, but produced larger estimation errors. In light of these re-
sults, we chose SA3 for global optimization, which we implemented using the Optim.jl

package18 of Julia19. These observations, together with our parameter estimation results (see
Supplementary Figure 2), which show that the use of SA3 recovers the true parameter values
with increasing accuracy as more data become available, demonstrates the stability of SA3 for
parameter estimation.

6 Homozygous and heterozygous haplotypes

Haplotypes are mostly homozygous, which means that there is a perfect match between the CpG
sites in the two homologous alleles. However, a SNP may remove a CpG site from one of the
two alleles or introduce a new CpG site. In this case, the haplotype is heterozygous, meaning
that the CpG sites in its two homologous alleles will not match at certain genomic locations.
Notably, about 20% of the haplotypes in the data considered in this paper are heterozygous.
Since homologous alleles in heterozygous haplotypes contain mismatched CpG sites, we can-
not model their methylation using state vectors of the same dimensionality and, therefore, we
cannot directly compare them in terms of their methylation. To address this issue, we describe
methylation within an allele of a heterozygous haplotype using the vector X̃ of the methylation
states at all CpG sites that are common to its homologous pair. We then characterize methylation
by means of the probabilities Pr[X̃ = x̃], which we compute by marginalizing the correspond-
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ing estimated probabilities Pr[X = x] over the methylation states at all non-matching CpG sites
using the method described in Supplementary Section 4.

7 Computing the mean methylation level

Homozygous haplotypes. Consider a homozygous allelic region R with N CpG sites n =

1, 2, . . . , N . From Eq. (7) in the main paper, note that

µ(X) = E

[
1

N

N∑
n=1

Xn

]

= E

[
1

2
+

1

2N

N∑
n=1

(2Xn − 1)

]

=
1

2
+

1

2N
E

[
N∑
n=1

(2Xn − 1)

]

=
1

2
+

1

2N
E

[
K∑
k=1

∑
n∈Nk

(2Xn − 1)

]

=
1

2
+

1

2N

K∑
k=1

E

[∑
n∈Nk

(2Xn − 1)

]
, (44)

whereNk is the set of CpG sites within the subregionRk ofR. From a known result shown by
Bickel and Doksum20 (Corollary 1.6.1), and since the CPEL model given by Eqs. (1)-(3) in the
main paper is a canonical exponential family, we can show that

E

[∑
n∈Nk

(2Xn − 1)

]
=
∂ lnZ

∂αk
, for k = 1, 2, . . . , K, (45)

in which case

µ(X) =
1

2

(
1 +

1

N

K∑
k=1

∂ lnZ

∂αk

)
. (46)

This formula provides a fast method for evaluating the MML µ(X), which can be done by
computing the partition function using the method discussed in Supplementary Section 3, as
well as the derivatives of the logarithm of the partition function with respect to parameters α
using a standard derivative approximation technique.
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Heterozygous haplotypes. For a heterozygous allele with M CpG sites m = 1, 2, . . . ,M

common to its homologous pair, we define the MML by

µ(X̃) = E

[
1

M

M∑
m=1

X̃m

]
, (47)

where X̃ is the vector of the methylation states at all common CpG sites. Since we compute the
probabilities of X̃ from the estimated probabilities Pr[X = x] of the entire methylation state
X within the heterozygous allele using marginalization (see Supplementary Section 4), this
distribution will not in general be in a canonical exponential form and, therefore, the previous
derivative-based method cannot be used to evaluate µ(X̃). However,

µ(X̃) = E

[
1

M

M∑
m=1

X̃m

]
=

1

M

M∑
m=1

E[X̃m] =
1

M

M∑
m=1

∑
x=0,1

xPr[X̃m = x]

=
1

M

M∑
m=1

Pr[X̃m = 1]. (48)

This implies that we can evaluate the MML µ(X̃) using Supplementary Equation (48), provided
that we know the probabilities Pr[X̃m = 1], m = 1, 2, . . . ,M . We can directly compute
these probabilities from the probabilities Pr[X = x] using marginalization (see Supplementary
Section 4).

8 Computing the normalized methylation entropy

Homozygous haplotypes From Eqs. (1), (2), and (8) in the main paper and for a homozygous
allelic regionR with N CpG sites n = 1, 2, . . . , N , we have

h(X) = − 1

N

∑
x

p(x) log2 p(x)

= − 1

N ln 2

∑
x

p(x) ln p(x)

= − 1

N ln 2

{
− lnZ + E

[ K∑
k=1

αk
∑
n∈Nk

(2Xn − 1) + β
N−1∑
n=1

(2Xn − 1)(2Xn+1 − 1)
]}

=
1

N ln 2

{
lnZ −

K∑
k=1

αkE
[ ∑
n∈Nk

(2Xn − 1)
]
− βE

[N−1∑
n=1

(2Xn − 1)(2Xn+1 − 1)
]}

. (49)
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Since the CPEL model given by Eqs. (1)-(3) in the main paper is a canonical exponential family,
we can show, in addition to Supplementary Equation (45), that

E

[
N∑
n=1

(2Xn − 1)(2Xn+1 − 1)

]
=
∂ lnZ

∂β
, (50)

which, together with Supplementary Equation (49), leads to

h(X) =
1

N ln 2

{
lnZ −

K∑
k=1

αk
∂ lnZ

∂αk
− β∂ lnZ

∂β

}
. (51)

Similarly to MML, this formula provides a fast method for evaluating the NME h(X). This
can be done by computing the partition function using the method discussed in Supplementary
Section 3 and by evaluating the derivatives of the logarithm of the partition function with respect
to the α and β parameters using a standard derivative approximation technique.

Heterozygous haplotypes. For a heterozygous allele with M CpG sites m = 1, 2, . . . ,M

common to its homologous pair, we define the NME by

h(X̃) = − 1

M

∑
x̃

Pr[X̃ = x̃] log2 Pr[X̃ = x̃], (52)

where X̃ is the vector of the methylation states at all common CpG sites. Similarly to the
MML, we cannot use the previous derivative-based method to evaluate h(X̃). To illustrate how
to compute h(X̃), consider an allelic region R that is partitioned into four subregions R1, R2,
R3, R4, and assume that we are interested in computing the NME within three contiguous
stretches of CpG sites spanning from CpG site 1 to CpG site p − 1, from CpG site q + 1

(q ≥ p + 1) to CpG site p′ − 1, and from to CpG site q′ + 1 (q′ ≥ p′ + 1) to CpG site N .
Let us also assume that CpG sites p, p + 1, . . . , q are contained within the first two subregions
R1 and R2, with R1 containing m1 of these sites and R2 containing m2 sites, while CpG sites
p′, p′ + 1, . . . , q′ are contained within subregions R3 and R4, with R3 containing m3 sites and
R4 containing m4 sites. In this case, and by following similar arguments as the ones we used to
show Supplementary Equations (37) and (42), we have that

Pr[X̃ = x̃] =
e−U0(x̃)

Z
[u1(xp−1)]

TWm1−1
1 V2W

m2−1
2 u2(xq+1)

×[u3(xp′−1)]
TWm3−1

3 V4W
m4−1
4 u4(xq′+1), (53)

with

U0(x̃) = −
4∑

k=1

αk
∑
n∈N ′k

(2xn − 1)− β
∑
n∈N ′′

(2xn − 1)(2xn+1 − 1), (54)
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where X̃ is the methylation state at CpG sites 1, 2, . . . , p − 1, q + 1, . . . , p′ − 1, q′ + 1, . . . , N ,
N ′k contains all CpG sites in subregionRk ofR other than p, p+ 1, . . . , q, p′, p′+ 1, . . . , q′, and
N ′′ contains all CpG sites inR other than p− 1, p, . . . , q, p′ − 1, p′, . . . , q′. If we now set

g1(Xp−1, Xq+1) = ln
(
[u1(Xp−1)]

TWm1−1
1 V2W

m2−1
2 u2(Xq+1)

)
, (55)

and
g2(Xp′−1, Xq′+1) = ln

(
[u3(Xp′−1)]

TWm3−1
3 V4W

m4−1
4 u4(Xq′+1)

)
, (56)

then the NME of X̃ satisfies

h(X̃) = − 1

L

∑
x̃

Pr[X̃ = x̃] log2 Pr[X̃ = x̃]

= − 1

L ln 2

∑
x̃

Pr[X̃ = x̃] ln Pr[X̃ = x̃]

=
1

L ln 2

(
lnZ + E[U0(X̃)]− E[g1(Xp−1, Xq+1)]− E[g2(Xp′−1, Xq′+1)]

)
, (57)

with L = N + p− q + p′ − q′ − 2, where

E[U0(X̃)] = −
4∑

k=1

αk
∑
n∈N ′k

(
2 Pr[X̃n = 1]− 1

)
−β
∑
n∈N ′′

(
4 Pr[X̃n = 1, X̃n+1 = 1]− 2 Pr[X̃n = 1]− 2 Pr[X̃n+1 = 1] + 1

)
, (58)

E[g1(Xp−1, Xq+1)] =
∑
x=0,1

∑
x′=0,1

g1(x, x
′) Pr[Xp−1 = x,Xq+1 = x′], (59)

and
E[g2(Xp′−1, Xq′+1)] =

∑
x=0,1

∑
x′=0,1

g2(x, x
′) Pr[Xp′−1 = x,Xq′+1 = x′]. (60)

This implies that we can evaluate the NME h(X̃) using Supplementary Equation (57), provided
that we know the probabilities associated with Supplementary Equations (58)-(60), which we
can directly compute from the probabilities Pr[X = x] using the marginalization method dis-
cussed in Supplementary Section 4.

We can also apply the previous steps to more complex cases in which an allele is parti-
tioned into an arbitrary number of subregions and arbitrary stretches of CpG sites. Due however
to the complicated nature of the resulting formulas, we do not provide them here.

18



9 Computing the uncertainty coefficient

Homozygous haplotypes. Since we are considering diploid organisms, the probability of find-
ing one of the two homologous alleles of a given haplotype in a biological sample can be taken
to be equal to the probability of finding the other allele. We can therefore set Pr[A = 1] =

Pr[A = 2] = 1/2, in which case Eqs. (8) and (11) in the main paper result in

I(X;A) = −
∑
x

∑
a=1,2

Pr[X = x, A = a] log2

Pr[X = x, A = a]

Pr[X = x] Pr[A = a]

= Nh(X) +
∑
a=1,2

Pr[A = a]
∑
x

Pr[X = x | A = a] log2 Pr[X = x | A = a]

= Nh(X) +
1

2

∑
a=1,2

∑
x

Pr[X = x | A = a] log2 Pr[X = x | A = a]

= N

(
h(X)− 1

2
[h1(X) + h2(X)]

)
, (61)

with h(X) being the NME of the methylation state X without knowing its allele of origin, and
h1(X), h2(X) being the NMEs associated with each of the two homologous alleles. This result,
together with Eq. (10) in the main paper, leads to

Q(X;A) = 1− 1

2

[
h1(X) + h2(X)

h(X)

]
, (62)

which can be used to evaluate the uncertainty coefficient, given that we can compute the NMEs
h1(X), h2(X), and h(X).

Although we can compute the NMEs h1(X) and h2(X) using the methylation reads cor-
responding to each homologous allele and the method discussed in Supplementary Section 8,
we cannot do so for the NME h(X), since the probabilities of the allele-agnostic methylation
state X within a haplotype do not necessarily follow a Gibbs distribution with potential energy
of the form given by Supplementary Equation (15). However, one way to compute h(X) is to
realize that

Pr[X = x] = Pr[X = x | A = 1] Pr[A = 1] + Pr[X = x | A = 2] Pr[A = 2]

=
1

2

(
Pr[X = x | A = 1] + Pr[X = x | A = 2]

)
=

1

2
P (x), (63)

where
P (x) = Pr[X = x | A = 1] + Pr[X = x | A = 2]. (64)
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In this case,

h(X) = − 1

N

∑
x

Pr[X = x] log2 Pr[X = x]

= − 1

N

∑
x

[1

2
P (x)

]
log2

[1

2
P (x)

]
=

1

N

{
1− 1

2

∑
x

P (x) log2 P (x)

}
, (65)

which allows computation of h(X) by explicitly evaluating the required summation. Note that,
for each state x, we can compute the term P (x) from the estimated CPEL models Pr[X = x |
A = 1] and Pr[X = x | A = 2] using Supplementary Equation (64). However, we found
that explicit evaluation of the summation in Supplementary Equation (65) is feasible only for
haplotypes containing at most 16 CpG sites.

For haplotypes containing more than 16 CpG sites, we can compute an estimate ĥ(X) of
h(X) using Monte Carlo (MC) sampling. We can do so by setting

ĥ(X) =
1

N

{
1− 1

L

L∑
l=1

log2 P (xl)

}
, (66)

where {x1,x2, . . . ,xL} are L samples of the methylation state, with the l-th sample drawn from
the conditional probabilities Pr[X = x | A = 1] or Pr[X = x | A = 2] with equal probability.

To draw a sample from the PMF Pr[X = x | A = 1] (as well as from the PMF Pr[X =

x | A = 2]), note that the CPEL model implies that the methylation state X within the j-th
homologous allele is a first-order Markov chain with inhomogeneous transition probabilities.
Indeed, as a direct consequence of Eqs. (1)-(3) in the main paper, we have that

Pr[Xn = xn | Xn−1 = xn−1, . . . , X1 = x1]

=
Pr[Xn = xn, Xn−1 = xn−1, . . . , X1 = x1]∑
x Pr[Xn = x,Xn−1 = xn−1, . . . , X1 = x1]

=
gn(xn) exp

{
αn(2xn − 1) + β(2xn−1 − 1)(2xn − 1)

}∑
x gn(x) exp {αn(2x− 1) + β(2xn−1 − 1)(2x− 1)}

, (67)

where gn(xn) is a term that takes into account the marginalization of the PMF p(x) over CpG
sites n + 1, n + 2, . . . , N (we set gN = 1, since there is no marginalization in this case), and
αn = αk if the n-th CpG site belongs to the k-th subregion of the allelic region R. This
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shows that the conditional probability of the methylation state at the n-th CpG site, given the
methylation state at all upstream CpG sites 1, 2, . . . , n−1, depends only on the methylation state
at CpG site n−1. As a consequence, X1, X2, . . . , XN is a Markov chain with (inhomogeneous)
first-order transition probabilities, given by

Pr[Xn = xn | Xn−1 = xn−1] =
gn(xn) exp

{
αn(2xn − 1) + β(2xn−1 − 1)(2xn − 1)

}∑
x gn(x) exp {αn(2x− 1) + β(2xn−1 − 1)(2x− 1)}

. (68)

This Markov chain is initialized with a probability Pr[X1 = x1], given by

Pr[X1 = x1] =
g1(x1)

Z
exp

{
α1(2x1 − 1)

}
, (69)

which is obtained by marginalizing the PMF Pr[X = x] over CpG sites 2, 3, . . . , N .

As a consequence of the previous observation, we can recursively generate a sample x

of the methylation state X by drawing a sample x1 from the initial probability distribution
Pr[X1 = x1], and by sequentially drawing samples xn, n = 2, 3, . . . , N , from the transition
probability distributions Pr[Xn = xn | Xn−1 = xn−1].

Heterozygous haplotypes. For a heterozygous haplotype with M CpG sites m = 1, 2, . . . ,M

common to its homologous pair, we define the uncertainty coefficient by

Q(X̃;A) =
1

M

I(X̃;A)

h(X̃)
, (70)

where X̃ is the vector of the methylation states at all common CpG sites, I(X̃;A) is the mutual
information between the methylation state at the common CpG sites and the allele of origin,
and h(X̃) is the NME of X̃ regardless of the allele of origin. By following similar steps as in
Supplementary Section 9 above, we can show that

Q(X̃;A) = 1− 1

2

[
h1(X̃) + h2(X̃)

h(X̃)

]
, (71)

where hj(X̃) is the NME of X̃ associated with the j-th homologous allele. We can use this
expression to evaluate the uncertainty coefficient in a heterozygous haplotype, given that we
can compute the NMEs h1(X̃), h2(X̃), and h(X̃), which we can do by the method discussed
in Supplementary Section 8, for the NMEs h1(X̃) and h2(X̃), and by the method discussed in
Supplementary Section 9, for the NME h(X̃) associated with the methylation vector X̃.

21



10 Hypothesis testing

Performing hypothesis testing, using one of the tests statistics T given by Eqs. (4)-(6) in the
main paper, requires that we know the cumulative distribution function F0(t;N) = Pr[T <

t] of T associated with a haplotype containing N CpG sites, under the null hypothesis that
the observed value of T can be explained by the variability present in homozygous genomic
regions. We can then calculate the P -value associated with an observation t∗ of T by p =

1 − F0(t∗;N), which we can subsequently correct using the Benjamini-Hochberg procedure21

while controlling for the false discover rate (FDR) to account for simultaneously testing a large
number of hypotheses. We can then use the resulting Q-values to detect significant imbalances
in mean methylation level and normalized methylation entropy between haplotype alleles, as
well as to identify genetically informative haplotypes that demonstrate significant differences
between the probability distributions of methylation within their homologous alleles.

Unfortunately, we do not know F0(t;N) and, therefore, we cannot compute P -values
exactly. Nevertheless, we can compute an estimate

F̂0(t;N) =
1

L

L∑
l=1

I[tl < t] (72)

using an empirical bootstrap procedure, where t1, t2, . . . , tL is a set of null statistics generated
by the scheme described below and I[·] is the Iverson bracket, taking value 1 when its argument
is true and 0 otherwise. This allows us to compute an estimate p̂ of the P -value associated with
an observation t∗ of the test statistic T by

p̂ = 1− 1

L+ 1

L+1∑
l=1

I[tl < t∗] =
1

L+ 1

L+1∑
l=1

I[tl ≥ t∗] =
1

L+ 1

{
1 +

L∑
l=1

I[tl ≥ t∗]

}
, (73)

where we set TL+1 = t∗. It is however important to note that, for a haplotype that contains
N CpG sites, the statistical variability emanating from estimating the CPEL model is expected
to increase with decreasing coverage and an increasing number of parameters that need to be
estimated. To avoid complications arising from the fact that the coverage C changes along
the genome, and that the same is true for the number K + 1 of parameters to be estimated
within each haplotype, we uniformly consider in our bootstrap procedure the coverage along
the genome to be the minimum coverage Cmin observed within all analyzed haplotypes (we set
Cmin = 5), and assume that the same number Kmax(N) + 1 of parameters must be estimated
in each haplotype containing N CpG sites, where Kmax(N) is the maximum K value observed
in all such haplotypes. This leads to a rather conservative approach to hypothesis testing that is
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expected to result in a slight overestimation of the true P -values and lead to a robust test char-
acterized by a reduced number of false positives. This follows from the fact that the generated
null statistics in this case will contain the maximum amount of statistical variability present in
the set of analyzed haplotypes.

With the previous facts in mind, we estimate P -values using the following scheme.

CPEL’s hypothesis testing procedure

For a given N ≥ 1:

1. Find all haplotypes containing N CpG sites and calculate the maximum number
Kmax(N) + 1 of parameters that must be estimated within these haplotypes.

2. Find all genomic regions that have not been labeled as haplotypes and contain N or more
CpG sites.

3. Randomly select one of these regions with replacement and randomly choose a set of N
contiguous CpG sites within the selected region.

4. Randomly partition the set of WGBS reads overlapping these CpG sites into two com-
plementary groups that contain the same number of reads (to avoid introducing read bias
between the two homologous alleles) until each group results in a coverage of at least
Cmin and, in each group, methylation is observed in at least 80% of the CpG sites. If this
cannot be done, repeat this step up to 20 times. If the step fails discard the region and go
back to Step 3.

5. Keep randomly reducing the number of reads in each group, one read at a time, until the
coverage in each group is between Cmin and Cmin + ∆C, for some small ∆C (we set
∆C = 2) and methylation is observed in each group at least 80% of the CpG sites. If this
is not possible, then discard the region and go back to Step 3.

6. Perform parameter estimation of the CPEL models corresponding to the two homologous
alleles using the WGBS reads obtained in Step 5. If parameter estimation is unsuccessful,
return to Step 4. If parameter estimation is successful, compute the values of the test
statistics TMML, TNME, and TPDM under the null hypothesis, swap a pair of reads in the
two groups at random and redo parameter estimation. Repeat Step 6 a maximum of 10

times for each region obtained in Step 3.

7. Repeat Steps 3-6 until a required minimum number L (we take L ≥ 1,000) of null statistic
values are obtained.
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8. For an observed test statistic value t∗ that is computed from a haplotype containing N
CpG sites, estimate the associated P -value using Supplementary Equation (73), where
t1, t2, . . . , tL are the values of the corresponding test statistic under the null hypothesis.

Note that larger values of ∆C in Step 5 will lead to more detections in the hypothesis testing
step at the expense of a higher number of false positives. This follows from the fact that, in this
case, some null statistics will be computed at coverages that are much larger than Cmin, whereas
some test statistics will be computed at coverages close to Cmin. Finally, generating at least
1,000 null statistics for each N is sufficient for consistent hypothesis testing at a significance
level of 5%. That is, if an observed test statistic t∗ is truly significant at a 5% significance level,
then the estimate p̂ of the true P -value computed in Step 8 using at least 1,000 null statistics
will generally deem t∗ to be significant or near significant22.
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Supplementary Discussion
In a previous ASM study1, Gertz et al. performed ASM analysis using reduced representation
bisulfite sequencing (RRBS) data23. We identified two main methodological flaws in their work.
First, alignment was performed by transforming all cytosines (Cs) in the RRBS reads, and the
reference genome into thymidines (Ts) and by using an in-house script to align these reads to
a C-to-T transformed reference genome using Bowtie24. However, this is not a good alignment
strategy (a more appropriate bisulfite sequencing alignment technique should have been used,
such as Bismark25), since it can result in a significant number of methylation reads not being
aligned to the reference genome, thus seriously affecting subsequent analyses. Second, each
SNP was associated with (possibly) multiple CpG sites and allele-specific analysis of mean
methylation was performed at these CpG sites using the NPI method and Fisher’s exact test.
As a result, marginal statistical analysis was performed at each individual SNP, which cannot
capture correlations between the methylation states at neighboring CpG sites and ignores the
joint effects of multiple genetic differences on methylation stochasticity. As has been shown by
Jenkinson et al.9, a marginal approach to detecting methylation imbalances may also lead to loss
of specificity (true negative rate) and sensitivity (true positive rate), which will seriously affect
its statistical performance. In addition, such an approach may lead to sensitivity that coincides
with the Type I error rate (false positive rate), indicating a performance that is no better than
random guessing. Finally, independently applying Fisher’s exact test can lead to poor detection
performance that is characterized by unacceptably low sensitivity and specificity. Due to these
shortcomings, we believe that the biological conclusions reached by Gertz et al.1 cannot be
trusted.

We also found several methodological issues with the recent work of Onuchic et al.7,
which can directly affect the validity of the conclusions reached in that study. These investiga-
tors performed ASM analysis at groups of 4 CpG sites (known as epialleles), with each group
being associated with an individual SNP, by employing WGBS data and by modeling methy-
lation stochasticity using the NPD method. Individual SNPs were then identified for which
significant imbalances in mean methylation levels were detected between the associated homol-
ogous epialleles using Fisher’s exact test on the percentage of methylated and unmethylated
CpG sites observed within the two epialleles. Methylation stochasticity was also evaluated us-
ing Shannon’s entropy and the relationship between genetic variation at individual SNPs and
epiallelic stochasticity was quantified using the uncertainty coefficient (previously was referred
to by Onuchic et al. as the coefficient of constraint).
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Although, the Onuchic et al. approach to ASM analysis takes into account correlations
between the methylation states of neighboring CpG sites, this is limited to correlations between
the methylation states at CpG sites of individual epialleles. Moreover, and similarly to the ap-
proach of Gertz et al.1, this approach ignores the joint effects of multiple genetic differences on
methylation stochasticity. In addition, and due to the fact that current WGBS technology can-
not produce data with sufficient coverage, using the NPD method for ASM analysis may not be
appropriate since, as we discuss in in this paper, sound model estimation is highly problematic
in this case. Notably, the data used by Onuchic et al. are characterized by coverages ranging
from 4× to about 75×, which are definitely not adequate for reliably estimating the required 16

epiallelic probabilities. This problem is further exacerbated by the fact that estimation of epial-
lelic probabilities requires WGBS reads for which the methylation state is observed at all 4 CpG
sites, which effectively reduces available coverage. Inaccurate estimation of epiallelic proba-
bilities obtained by using insufficient data, can result in erroneous computations of methylation
entropies and uncertainty coefficients6, which can seriously affect downstream ASM analysis
and limit the reliability of this analysis to a small number of SNPs exhibiting sufficient WGBS
coverage. We should note here that, in an effort to address these issues, Onuchic et al. pooled
WGBS reads across all tissues and donors used in their study achieving a 1,691× total coverage.
However, pooling multi-tissue/donor data is biologically questionable, since it can seriously ob-
scure tissue- and donor-specific information and can therefore result in highly questionable and
misleading biological conclusions.

In addition to the above, the hypothesis testing methods employed by the previous two
studies are limited to identifying only significant mean methylation imbalances, and cannot
be used to detect imbalances in methylation entropies or identify genetically informative hap-
lotypes exhibiting significant differences between the probability distributions of methylation
within their homologous alleles, which is especially important for providing a more complete
picture of methylation stochasticity in ASM studies. Most importantly however these meth-
ods do not take into account variability present in homozygous genomic regions and, therefore,
cannot test true allele-specific methylation events, an issue that can seriously affect their sen-
sitivity (true positive rate) and specificity (true negative rate). We should finally note that the
methodological issues associated with the work of Onuchic et al. become more pronounced
when the objective is haplotype-dependent allele-specific methylation analysis, since haplo-
types may contain more than 4 CpG sites (see Supplementary Figure 4b). As a consequence,
we cannot recommend their approach for use in genome-wide hap-ASM analysis.
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Supplementary Figures
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Supplementary Figure 1 Additional model estimation results using simulated data. Boxplots depict-
ing distributions of Jensen-Shannon distance values when comparing estimated probability distributions
of methylation (PDMs) to the true PDMs for a wide range of conditions using the NPI, NPD, and CPEL
methods and simulated data. Estimation was independently performed 1,000 times, each using 20 fully
observed or 20 partially observed reads, as indicated. The results demonstrate a consistently superior
performance of the CPEL method for correctly estimating methylation probabilities in a haplotype allele
when compared to the NPI and NPD methods. a-c Fully observed correlated data and increased number
of CpG sites. d Partially observed non-correlated data and increased number of CpG sites. Center line
of box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value
and 25th percentile minus 1.5 × interquartile range; upper whisker: smaller of maximum value and 75th
percentile plus 1.5 × interquartile range.
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Supplementary Figure 2 Simulated evaluation of parameter estimation performance. Performance
evaluation examples of estimating the parameters of the CPEL model using simulated data correspond-
ing to the examples depicted in Fig. 3 of the main paper and in Supplementary Figure 1. Estimation was
independently performed 1,000 times, each using 20 fully observed or 20 partially observed reads, as
indicated. The boxplots depict distributions of estimated parameter values associated with the methyla-
tion potential energy landscape, whereas the dashed lines depict the true parameter values. Center line
of box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value
and 25th percentile minus 1.5 × interquartile range; upper whisker: smaller of maximum value and 75th
percentile plus 1.5 × interquartile range.
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Supplementary Figure 3 Estimated cumulative distributions of ‘null’ P-values using simulations.
Representative examples of empirically estimated cumulative distribution functions of P -values obtained
by CPEL’s one-sided empirical bootstrap hypothesis testing procedure under the null hypothesis using
simulations. The test statistics given by Eqs. (4)-(6) in the main paper lead to almost linear cumulative
distribution functions for haplotypes containing N = 2, 4, 6, 8, 10 CpG sites, demonstrating that the
probability distributions of the P -values are close to being uniform under the null hypothesis. In these
simulations, Kmax(2) = 2, Kmax(4) = 3, and Kmax(6) = Kmax(8) = Kmax(10) = 4, in agreement with
the values observed in all haplotypes analyzed by the CPEL method in the real data.
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Supplementary Figure 4 Haplotype distributions in the real data. Distributions of 715,155 haplo-
types identified by read-based SNP phasing. a Distribution in terms of the number of heterozygous SNPs
found within the haplotypes. For clarity, this distribution is limited to 10 SNPs, although haplotypes were
found to be associated with up to 121 SNPs. b Distribution in terms of the number of homozygous CpG
sites found within the haplotypes.
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Supplementary Figure 5 Estimated cumulative distributions of ‘null’ P-values using the real data.
Examples of empirically estimated cumulative distribution functions of P -values obtained by CPEL’s
one-sided empirical bootstrap hypothesis testing procedure under the null hypothesis using the real data
corresponding to the aorta tissue. The test statistics given by Eqs. (4)-(6) in the main paper lead to linear
cumulative distribution functions for haplotypes containing N = 2, 4, 6, 8, 10 CpG sites, demonstrating
that the probability distributions of the P -values are uniform. These results are representative of the
general behavior in the data.
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Supplementary Figure 6 Performance of hypothesis testing in the real data. a Percentage of false
positives produced by CPEL’s one-sided empirical bootstrap procedure for hypothesis testing, using the
three test statistics given by Eqs. (4)-(6) in the main paper, when applied on ‘null’ genomic regions
which are not labeled to be haplotypes in the real data. As expected, no more than 5% of these regions
exhibit significant methylation imbalances under the null hypothesis (P -value ≤ 0.05). b Controlling
the false discovery rate (FDR) using the Benjamini-Hochberg procedure with a 0.05 threshold for the
adjusted P -values produces no false positives in all cases. Number of ‘null’ genomic regions consid-
ered: 34,095 (adipose); 45,666 (aorta); 49,017 (colon); 51,150 (esophagus); 34,857 (gastric); 40,803
(intestine); 37,029 (muscle); 47,607 (pancreas); 50,493 (spleen); 33,435 (ventricle).
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Supplementary Figure 7 Q-Q plot comparisons of P-values in the real data. Q-Q plots, for each
test statistic given by Eq. (5) in the main paper and each tissue of the real data, of quantiles of − log10

P -values observed within haplotypes versus expected quantiles of − log10 P -values under the null hy-
pothesis. Although some small− log10 P -values are located on the diagonal line in each plot, other small
values are placed slightly below this line. This is due to the conservative nature of CPEL’s hypothesis
testing procedure, which results in slight overestimation of the true P -values.
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Supplementary Figure 8 Distributions of MML and NME values within haplotypes in the real data.
Boxplots of distributions of MML and NME values associated with the homologous alleles of the haplo-
types identified by the CPEL method in each tissue of the real data. Number of haplotypes considered:
140,358 (adipose); 210,584 (aorta); 160,605 (colon); 162,780 (esophagus); 143,100 (gastric); 45,162
(intestine); 163,066 (muscle); 179,152 (pancreas); 114,089 (spleen); 148,478 (ventricle). Center line of
box: median value; box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value
and 25th percentile minus 1.5 × interquartile range; upper whisker: smaller of maximum value and 75th
percentile plus 1.5 × interquartile range.
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Supplementary Figure 9 Distributions of test statistic values within haplotypes in the real data.
Boxplots of distributions of test statistic values associated with significant and nonsignificant haplotypes
identified by the CPEL method in each tissue of the real data. Overlaps between significant and non-
significant test statistic values are due to the fact that the critical value at which the null hypothesis is
rejected depends on the number of CpG sites contained in a haplotype. Number of haplotypes con-
sidered: 135,259 (adipose); 204,506 (aorta); 157,090 (colon); 159,186 (esophagus); 137,582 (gastric);
44,440 (intestine); 157,864 (muscle); 172,884 (pancreas); 155,323 (spleen); 135,833 (ventricle).
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Supplementary Figure 10 Evaluation of optimization algorithms for parameter estimation. Box-
plots of convergence times and Euclidean distances between estimated and true parameter values of
a CPEL model computed by three global optimization algorithms: Particle Swarm (PS), QuadDI-
RECT (QD), and Simulated Annealing (SA). These boxplots were generated for Case 5 in Supplemen-
tary Table 8 by performing parameter estimation 100 times using different initializations. This case is
the most challenging among the five considered, since it involves missing data at the two extremes (be-
ginning and end) and in the middle of the allele. Similar results were obtained for the other four cases
in Supplementary Table 8. The maximum number of function evaluations in QuadDIRECT was taken to
be 2500 (QD1), 1250 (QD2), 500 (QD3), and 250 (QD4). The temperature reduction factor in SA was
taken to be 10−2 (SA1), 10−3 (SA2), 10−4 (SA3), and 10−5 (SA4). Center line of box: median value;
box bounds: 25th and 75th percentiles; lower whisker: larger of minimum value and 25th percentile
minus 1.5 × interquartile range; upper whisker: smaller of maximum value and 75th percentile plus 1.5
× interquartile range.
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Supplementary Tables

Supplementary Table 1 Data-set used for hap-ASM analysis.

Name Tissue Type Donor ID GWC NHC A1C A2C
adipose Adipose tissue STL003 39 42 8 8
aorta Aorta STL003 64 69 13 13
colon Sigmoid colon STL003 48 53 10 10
esophagus Esophagus STL003 49 50 10 10
gastric Gastric STL003 40 43 8 8
intestine Small intestine STL003 18 20 5 5
muscle Psoas muscle STL003 44 47 9 9
pancreas Pancreas STL003 48 49 10 10
spleen Spleen STL003 45 49 10 10
ventricle Right ventricle STL003 41 44 9 9

GWC: average genome-wide WGBS coverage; NHC: average genome-wide WGBS
coverage within non-haplotype regions; A1C: average WGBS coverage within
haplotype alleles of the first genetic origin; A2C: average WGBS coverage within
haplotype alleles of the second genetic origin.
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Supplementary Table 2 Odds-ratio analysis of MML-haps overlapping
genomic features/regions.

Features/Regions OR 95% CI P-value
CGIs 2.50 [1.81, 3.35] < 0.001

CGI shores 1.47 [1.26, 1.69] < 0.001

CGI shelves 0.83 [0.66, 1.03] 0.09

open seas 0.79 [0.70, 0.90] < 0.001

promoters 1.67 [1.34, 2.06] < 0.001

exons 1.57 [1.29, 1.88] < 0.001

introns 1.11 [1.02, 1.20] 0.01

intergenic 0.96 [0.88, 1.04] 0.31

enhancers 1.86 [1.67, 2.07] < 0.001

CG-rich 1.57 [1.36, 1.81] < 0.001

CG-poor 0.64 [0.56, 0.74] < 0.001

transcriptional 1.82 [1.66, 2.00] < 0.001

non-transcriptional 0.56 [0.51, 0.63] < 0.001

Enrichment analysis of MML-haps, identified by CPEL, overlapping
selected genomic fetures/regions using the odds-ratio (OR) statistic and
Fisher’s two-sided exact test. OR > 1 indicates enrichment; OR < 1

indicates depletion; CI: confidence interval.
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Supplementary Table 3 Odds-ratio analysis of NME-haps overlapping
genomic features/regions.

Genomic Features OR 95% CI P-value
CGIs 0.10 [0.08, 0.12] < 0.001

CGI shores 0.47 [0.45, 0.48] < 0.001

CGI shelves 0.72 [0.69, 0.75] < 0.001

open seas 1.76 [1.72, 1.81] < 0.001

promoters 0.63 [0.59, 0.66] < 0.001

exons 0.43 [0.41, 0.46] < 0.001

introns 0.88 [0.87, 0.89] < 0.001

intergenic 1.15 [1.14, 1.17] < 0.001

enhancers 0.64 [0.62, 0.65] < 0.001

CG-rich 0.45 [0.43, 0.47] < 0.001

CG-poor 2.15 [2.06, 2.23] < 0.001

transcriptional 0.58 [0.57, 0.60] < 0.001

non-transcriptional 1.23 [1.20, 1.26] < 0.001

Enrichment analysis of NME-haps, identified by CPEL, overlapping
selected genomic fetures/regions using the odds-ratio (OR) statistic and
Fisher’s two-sided exact test. OR > 1 indicates enrichment; OR < 1

indicates depletion; CI: confidence interval.
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Supplementary Table 4 Odds-ratio analysis of PDM-haps overlapping
genomic features/regions.

Genomic Features OR 95% CI P-value
CGIs 0.46 [0.18, 0.94] 0.03

CGI shores 0.64 [0.50, 0.80] < 0.001

CGI shelves 0.80 [0.62, 1.01] 0.07

open seas 1.48 [1.24, 1.77] < 0.001

promoters 1.01 [0.74, 1.34] 0.94

exons 0.90 [0.68, 1.17] 0.49

introns 0.91 [0.83, 1.00] 0.05

intergenic 1.14 [1.04, 1.25] 0.01

enhancers 1.42 [1.25, 1.61] < 0.001

CG-rich 0.65 [0.52, 0.81] < 0.001

CG-poor 1.59 [1.26, 2.03] < 0.001

transcriptional 1.27 [1.13, 1.42] < 0.001

non-transcriptional 1.13 [0.97, 1.31] 0.12

Enrichment analysis of PDM-haps, identified by CPEL, overlapping
selected genomic fetures/regions using the odds-ratio (OR) statistic and
Fisher’s two-sided exact test. OR > 1 indicates enrichment; OR < 1

indicates depletion; CI: confidence interval.
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Supplementary Table 5 Odds-ratio analysis of significant haplotypes
overlapping imprinted genes.

Haplotypes OR 95% CI P-value
MML-haps 74.73 [42.58, 126.99] < 0.001

NME-haps 1.18 [0.49, 2.38] 0.56

PDM-haps 25.58 [7.74, 64.66] < 0.001

Enrichment analysis of statistically significant haplotypes overlapping the
promoter regions of 107 known imprinted genes, obtained from
http://www.geneimprint.com, using the odds-ratio (OR) statistic and
Fisher’s two-sided exact test. OR > 1 indicates enrichment; OR < 1

indicates depletion; CI: confidence interval.
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Supplementary Table 6 Genes with promoters overlapping MML-haps.

Gene Imprinted Gene Imprinted
AGPAT4 MGAT2
BCLAF1 MIR4684
C22orf31 MTRR
C3 NAV1
C8G NHSL1
CD180 NNAT *
CEP112 NOSTRIN
CRISP2 NT5DC3
DEFA11P OPRM1
FAM222A OTOP1
FAM240A PTBP2
FES PYROXD2
FMN1 RFPL3
GDPD1 RPLP0P2
GNAS * RTN4IP1
GNB4 S100A14
GSDMD SCGB1D2
GZMM SCRN2
H19 * SNORD114-6
IQSEC1 SNURF *
KRTAP2-4 SPATC1L
LINC00298 SYT3
LINC01168 TMEM169
LRP10 VTRNA2-1 *
MAGEL2 * ZNF205-AS1
MEF2D ZNF79
MESTIT1 *

Genes with promoter regions overlapping haplotypes identified by the CPEL method
to exhibit significant imbalances in mean methylation levels (MML-haps) in at least
one tissue in the real data. The marked genes are known to be imprinted.
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Supplementary Table 7 Significant haplotypes and imprinted genes.

Imprinted gene MML-hap NME-hap PDM-hap #

GNAS * 6
* * 0
* * 0
* * * 0

H19 * 1
* * 0
* * 2
* * * 0

MAGEL2 * 3
* * 1
* * 2
* * * 0

MESTIT1 * 1
* * 0
* * 0
* * * 0

NNAT * 0
* * 1
* * 0
* * * 0

SNURF * 1
* * 0
* * 0
* * * 0

VTRNA2-1 * 3
* * 0
* * 1
* * * 0

Number of haplotypes with a particular ASM significance pattern,
identified by the CPEL method across all tissues in the real data, which
overlap the promoter regions of the imprinted genes in Supplementary
Table 6. Although the CPEL method identified 32 haplotypes, only 22
exhibited significant imbalances in mean methylation level in the data.
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Supplementary Table 8 Cases for comparing optimization algorithms.

Case 1 2 3 4 5
M 20 20 40 40 60

K 1 3 3 6 6

{Nk} {9} {3, 3, 3} {3, 3, 3} {3, 3, 3, 3, 3, 3} {3, 3, 3, 3, 3, 3}
{αk} {1} {1, 0,−1} {1, 0,−1} {1, 0,−1, 0, 1, 0} {1, 0,−1, 0, 1, 0}
β 0.5 0.5 0.5 0.5 0.5

MDE NO NO YES YES YES
MDM NO NO NO NO YES

M : number of methylation reads within an allele; K: number of subregions within
the allele; {Nk}: numbers of CpG sites within the allele; {αk}, β: true parameter
values; MDE: missing data at the two extremes (beginning and end) of the allele;
MDM: missing data in the middle of the allele.
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