
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The manuscript by Abante et al. entitled "Detection of haplotype-dependent allele-specific DNA 

methylation in WGBS data" explores a very interesting question. Is it possible to infer haplotypes 

in DNA methylation using a combination of WGS and WGBS? The authors developed a Julia 

package, unfortunately after downloading the zip file it is corrupted (the file downloaded is 114KB 

is this correct for the code, examples, etc.?, it seems tiny), so I could not evaluate the contents of 

the code or the implementation of the examples. A similar problem occurred when trying to 

download the data files provided as a zip file. I would recommend some detailed instructions for 

the reviewers about the contents, installation and dependencies to be able to provide any feedback 

as the github is unavailable. The authors adapt a one-dimensional Ising model that provides a 

framework for phase transitions into the CPEL (correlated potential energy landscape). If 

successful, this is an important model for future discoveries in the field. The hypothesis of the 

authors is that DNA methylation could present in some contexts allele-specific methylation, this is 

based on Kerkel et al observations of DNA methylation in specific C to T polymorphisms in some 

targeted areas or as reported by several authors (e.g. Schalkwyk et al.) due to parental imprinting 

and cis-genetic variation imbalance. Combining WGS to obtain the polymorphisms with WGBS to 

obtain the methylation state it is possible to determine the allele specific methylation. The authors 

provide a valuable context of the statistical assumptions of previous methods exploring this 

problem too. 

Comments: 

Figure 1: The graphical explanation of the three methods is very interesting, but the caption is not 

explaining what is happenning in the figure. The epialleles are clearly the two strands, but the 

WGBS are the number of reads?. I would recomment that you simplify the caption and explain the 

colors and contents of the figure for the reader. 

Page 4, paragraph 2: "Insufficient coverage can lead to unreasonably high statistical variability 

when NPD is used for hap-ASM analysis, resulting in very low statistical power and a high rate of 

false positives." Do you have any quantification of the magnitude of the error? could you provide 

an example or reference for this claim? This is expanded in the comparison later in the text after 

page 11. 

Figure 2: What is TPDM? The test for paternal vs maternal alleles? Again the summary is very 

interesting, but I would double check to help the reader to follow all the process as the notation 

and multiple acronyms were difficult to follow through the text. The notation initially seem clear, 

but the inputs X, x, A should be transparent for the reader, right now it is difficult to follow the 

inputs in the figure. This is clearer in the text in page 9, but it is difficult to follow in the figure 

which is presented earlier in the manuscript. 

Page 15 Real data analysis, Figure 5: Imbalances in methylation levels in the haplotypes was a 

very small fraction(~1%), most were due to methylation entropy (~96%) stochasticity of the 

pattern. One pattern that called my attention was that co-occurrence of PDM imbalances only 

occurred in 10% of the tissues. How can you ascertain that this is a real allele specific imbalance in 

contrast with a DNA methylation change between different cells/tissues? This is reiterated in page 

16 mentioning the 90% tissue specificity. If this is real this is huge, but I do not see how these 

results are supported by other experimental gold-standard comparisons. Do you have the means 

to perform or analyze data with some gold-standard as a comparison. Right now this claim is only 

supported by the model, but not for other experiments, could you expand on how to sustain this 

claim or moderate the message here? 



Page 16: "Notably, we found the previous co-occurrences to be higher than what is expected by 

change (all permutation ’ test p-values = 0, see Methods)," Did you mean by chance? 

Page 16: Reading your supplementary material you found several known imprinted genes, plus 

several new genes. I would advise that some of this material should be moved to the main text to 

connect the dots between your method and the biology, even moving some of the figure 5 earlier 

could help. 

Supplementary table 2 and 3: Could you check the p-values and extract the actual p-value instead 

of the table limit in R or similar. Why do you have zeroes in the supplementary table 3. Please 

double check those. 

Pages 19, supplementary table 5: You tested for enrichment the human genes known and 

validated as imprinted regions on your supplementary table 5 (n=107 genes). Of those how many 

were detected by the algorithm (only 7?)? What about the other less know genes from geneimprint 

(n= 150)? How many of those did you find in your data? how many were skipped? Could you 

expand why some of the known imprinted genes were or were not detected by the algorithm 

(coverage, sequencing problems, others)? Please also correct the p-value from the supplementary 

table 5. 

Page 20: I am curious about how the algorithm worked on the X chromosome in females? Or did 

you excluded this area from the analyses? I do not see this explicitly in your methods. Could you 

expand what will you expect on those areas? 

Reviewer #3 (Remarks to the Author): 

Allele-specific methylation (ASM) analysis is important for studying association between perturbed 

methylation and human diseases, but far from trivial. In this work, Abante et al propose a new 

approach that identifies haplotype-dependent ASM events. Their 1-dim Ising model, CPEL, enables 

the joint profiling of methylation state across multiple CpG sites. Since the methylation probability 

is defined at the read level, CPEL provides merits over existing methods. For example, the model 

is robust in either cases where the methylation of neighboring sites are dependent or independent. 

Using the concept of entropy as another difference measure for allelic methylation state is unique. 

Using homozygous sites to form a null distribution is also novel. The manuscript is clear and 

evidence provided is convincing. The manuscript can be accepted as is in my opinion, but it may 

still improve its scientific value if the authors address the following points: 

Major points: 

1. Are the SNPs included when profiling methylation state? If so, how does bismark-based strategy 

distinguish methylated C from unmethylated T allele? If not, what would you do differently in CPEL 

to include them? 

2. How would the proposed method scale when haplotype blocks are very large as in F1 hybrid 

mouse? It would be very interesting to see how CPEL would perform on a dataset by Gigante et al 

2019 NAR (ERP109201). 

3. Please show the distribution of MML, NME, and PDM. 

4. Please show if CPEL recovered parameter values that are used in the simulation. 

5. Is it feasible to run simulated annealing many times to see the stability of parameter 



estimation? 

Minor points: 

1. Clarify what “this important issue” is in Line 15 Page 10. 

2. Remove NPI, NPD, and CPEL from Figure 1 legend. 

3. Define what A is in Equation (5). 

Reviewer #4 (Remarks to the Author): 

The paper described a new method, CPEL, for detecting allele-specific methylation events on 

haplotypes. CPEL relies on a simplified version of the authors’ previous Ising model to model 

methylation events on genomic segments. CPEL examines one haplotype at a time and uses 

bootstrap to test the difference between the two haplotype alleles in terms of (a) mean 

methylation level (MML), (b) normalized methylation entropy (NME) which quantifies methylation 

variability across CpG sites on the haplotype, and (c) probability distributions of methylation 

(PDMs). CPEL is applied, along with two existing methods NPI and NPD, to examine allele specific 

methylation events in a real data set. Overall, the paper is well written, and the adaption of their 

previous method for allelic specific methylation analysis is simple but of interest. However, it is 

unclear at the moment whether CPEL is a valid statistical approach that can provide well calibrated 

type I error control. In addition, the detected MML-hap enrichment in the CpG islands in the real 

data applications is a bit concerning as it contradicts all existing literature. My main comments are 

listed below: 

1. CPEL uses a relatively complicated bootstrap process to obtain p-values for statistical test. It is 

unclearly, however, whether such test is calibrated in terms of type I error control. Demonstrating 

the CPEL can provide well controlled type I error is particularly important here, given that the 

identified MML-haps by CPEL are somehow highly enriched in CpG islands (CGIs), which 

contradicts almost all previous literature. Therefore, it would be important to show that CPEL 

controls type I error well both in simulations and in real data applications. Specifically: 

1.1 It would be useful to simulate the null data under the Ising model, and then perform a similar 

bootstrap procedure as used in the real data, to examine whether the type I error is well controlled 

in CEPL (as well as in NPI and NPD). It would be important to look at type I error control at the 

genome-wide significance level used in the real data applications. 

1.2 It would be important to provide the -log10 p-value distribution in the real data through qq-

plots, for each of the three tests (MML, NME, PDM) and in each tissue. Because the majority of the 

haplotypes do not show significance in the real data and are effectively null, one would expect the 

small -log10 p-values to adhere on the diagonal line on the qq-plot. In addition, it would be 

important to report the genomic control factors for each test and in each tissue. A genomic control 

factor that is close to 1 would indicate reasonably good type I error control in the real data 

analysis. 

1.3 Some part of the bootstrap procedure is not realistic and can be improved. For example, right 

now the reads are placed into two complementary groups that contain the same number of reads. 

The constraint that the two groups contain the same number of reads seems rather unrealistic. A 

better choice would be to randomly assign reads onto these two group without such equal read 

constraint. This can be easily achieved by assigning each read onto two haplotypes through an 

over-dispersed binomial distribution (beta-binomial) with mean of 0.5. This more realistic strategy 

could help improve type I error control and reduce potential false discoveries. 

2. A key potential bias for allelic specific methylation analysis is due to read mapping. Specifically, 

when a CpG site is in a neighborhood of a SNP, it is much harder to map a methylated read to the 



alternative allele than an unmethylated read. Consequently, methylation level for the given CpG 

site maybe artificially higher on the haplotype with the reference SNP, leading to methylation bias 

towards the reference allele. This could cause potentially false signals in the NME analysis, and, 

likely to a lesser extent, in the MML analysis. If you plot methylation levels of the CpG sites on the 

alternative SNP allele vs the reference SNP allele, would you see a bias? If there is a mapping bias, 

does the mapping bias occur preferentially on CGIs (or other regions with high CpG density), so 

that it creates a false enrichment of MML-haps on CGIs? The mapping bias can be mitigated, 

though not completely eliminated, by relaxing the mismatches during the reads mapping step. The 

mapping bias can also be mitigated by excluding CpG sites with an obvious difference in 

methylation levels between reference and alternate alleles. I am a bit concerned whether such 

mapping bias may introduce false signals in the MML and NME analysis. 

3. It would be important to apply NPI and NPD to all enrichment analysis in the real data and 

compare their results with CPEL. It is equally important to examine the ability of NPI and NPD in 

terms of identifying significant regions overlapping the promoter regions of imprinted genes, 

across different tissues. Comparing CPEL with NPI and NPD on imprinted genes would provide a 

much stronger evidence for the statistical power difference between CPEL and the other two 

methods in the real data applications. 

4. CPEL is effectively a simplified version of their previous method (introduced in ref #10). The 

simplifications include (a) removing the dependence of alpha on CpG density; (b) remove the 

dependence of beta on distance between pairs of CpG sites. These simplifications seem counter-

intuitive, given that both features (a) and (b) are rather desirable for real data applications. 

Therefore, it would be important to compare CPEL with their previous method in all real data 

applications to demonstrate the benefits of removing features (a) and (b). 

5. A critical parameter in the CPEL method is the subregion size, denoted by G. G was set to be 

500bp. How stable are the real data results with respect to the choice of G? Would these real data 

results change if you use a smaller G or a larger G? 

6. Is there a way to quantify whether these detected allelic specific methylation events are due to 

cis genetic differences? For example, do you tend to detect haplotypes with a high number of 

SNPs, a high density of SNPs, or a long region length? 

7. In the real data applications, do detected regions of either MML, NME, or PDM correlated with 

TAD boundaries? 

8. It would be useful to report the computation time of CPEL in real data applications. In addition, 

the bootstrap procedure in CPEL only keeps bootstrapped sites where CPEL estimation is 

successful. What’s the success rates of this step in the bootstrap in real data applications? 
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RESPONSE TO REVIEWERS 

We would like to thank the reviewers for the interest they showed in reading our paper and for 
providing their comments. This is a very time-consuming process and we greatly appreciate their 
thoughtful reviews. We provide our responses below.  

REVIEWER #1 

1. The authors developed a Julia package, unfortunately after downloading the zip file it is corrupted 
(the file downloaded is 114KB is this correct for the code, examples, etc.?, it seems tiny), so I could 
not evaluate the contents of the code or the implementation of the examples. A similar problem 
occurred when trying to download the data files provided as a zip file. 

We are surprised that the reviewer was unable to open the zip file, since we did not find anything 
wrong with it. The size of the zip file is small (the new version is 216 KB). This file contains the 
CpelAsm software as well as a README text file that provides info about installation and a small 
synthetic example based on simulated data. This will allow the reviewer to examine the actual 
source code, install the software on their computer (although access through GitHub will do the 
installation automatically using a single command), test the code on the example, and see the 
results. We do not provide an example using real data, since this requires using a computer cluster 
(see our response to #11 of Reviewer 4). We considered providing a small part of the real data (one 
chromosome, for example) instead of a synthetic example, but this idea did not work since correct 
implementation of CpelAsm requires estimation of the null statistics, which is done genome-wide. 
To make sure that the reviewer receives the zip file, we have also e-mailed a copy to the Senior 
Editor. 

2. I would recommend some detailed instructions for the reviewers about the contents, installation 
and dependencies to be able to provide any feedback as the github is unavailable.  

Detailed instructions about the installation of the software and running the provided example can 
be found in the README.txt file submitted as part of ‘CpelAsm-code.zip’ file. 

3. Figure 1: The graphical explanation of the three methods is very interesting, but the caption is not 
explaining what is happening in the figure. The epialleles are clearly the two strands, but the 
WGBS are the number of reads? I would recommend that you simplify the caption and explain the 
colors and contents of the figure for the reader. 

We simplified the caption and better explained the colors and content of the figure. We hope that 
now the caption is more clear and easier to understand. We also slightly modified the figure to 
accommodate the new caption. 

4. Page 4, paragraph 2: "Insufficient coverage can lead to unreasonably high statistical variability 
when NPD is used for hap-ASM analysis, resulting in very low statistical power and a high rate of 
false positives." Do you have any quantification of the magnitude of the error? Could you provide 
an example or reference for this claim? This is expanded in the comparison later in the text after 
page 11. 
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An extensive discussion on the magnitude of the statistical variability occurring when the NPD 
method is used to estimate epiallelic probabilities can be found in Section 3 of the Supplementary 
Note in [1]. According to the thorough analysis performed there, the NPD method will not result in 
accurate estimates of the epiallelic probabilities when low coverage data is used (the case of 
interest), especially in areas of the genome that exhibit high methylation stochasticity, resulting in 
substantial uncertainty in the estimates. In addition, this problem will become worse as the number 
of CpG sites included in the analysis increases, which follows from the fact that the number of 
epiallelic patterns grows geometrically with the number of CpG sites. This problem will seriously 
affect downstream statistical analysis, especially when this analysis is based on high order statistical 
quantities, such as entropy. Note that if such a quantity is to be used as a test statistic to perform 
hypothesis testing, larger variability in the test statistic will hinder the power of the test significantly, 
since larger values of the test statistic will be required in order to reject the null hypothesis. This can 
be critical when the resulting statistical variability overwhelms the underlying biological variability, 
hiding any real biological effect. In addition, one might be tempted to increase the significance level 
of the test in order to detect differences, given the large variability in the test statistic, resulting in a 
larger number of false positives.  

To briefly discuss these issues, we added on pages 4-5 of the revised Main Text the following:  

“Insufficient coverage can lead to large uncertainty and low accuracy when estimating epiallelic 
probabilities using the NPD method, especially in areas of the genome that exhibit high 
methylation stochasticity (see Jenkinson et al10, Supplementary Note, Section 3), which can 
seriously affect downstream statistical analysis. This problem is exacerbated when epialleles that 
contain more than 4 CpG sites are used in the analysis, due to the geometric growth of the 
number of epiallelic patterns associated with an increasing number of CpG sites. As a 
consequence, the NPD method is not appropriate for hap-ASM analysis, which often requires 
estimation of joint methylation probabilities within genomic regions that contain more than 4 
CpG sites.” 

[1]  G. Jenkinson, E. Pujadas, J. Goutsias, and A. P. Feinberg, “Potential energy landscapes identify 
the information-theoretic nature of the epigenome.” Nature Genetics 49(5), 719-729 (2017).  

5. Figure 2: What is TPDM? The test for paternal vs maternal alleles? Again the summary is very 
interesting, but I would double check to help the reader to follow all the process as the notation 
and multiple acronyms were difficult to follow through the text. The notation initially seem clear, 
but the inputs X, x, A should be transparent for the reader, right now it is difficult to follow the 
inputs in the figure. This is clearer in the text in page 9, but it is difficult to follow in the figure 
which is presented earlier in the manuscript. 

We now reference Figure 2 on page 11 of the revised Main Text. At this point, the reader should be 
familiar with the notation and the quantities used in this figure. We have modified the caption to 
make it more clear and complete. The caption now provides a summary of the four steps in the CPEL 
method, defines the acronyms, and refers to appropriate equations in the text.  Note that, 
throughout the manuscript, we use a standard convention in probability theory: we denote a 
random variable by an upper case letter, such as X, and its realization (observed value) using a lower 
case letter, such as x. We have added a note to that effect in the Main Text; see page 7 of the 
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revised Main text. We also made clear what A represents in Eq. (5) by specifying what it is on page 
10 of the revised Main Text.  

6. Page 15 Real data analysis, Figure 5: Imbalances in methylation levels in the haplotypes was a 
very small fraction (~1%), most were due to methylation entropy (~96%) stochasticity of the 
pattern. One pattern that called my attention was that co-occurrence of PDM imbalances only 
occurred in 10% of the tissues. How can you ascertain that this is a real allele specific imbalance in 
contrast with a DNA methylation change between different cells/tissues? This is reiterated in page 
16 mentioning the 90% tissue specificity. If this is real this is huge, but I do not see how these 
results are supported by other experimental gold-standard comparisons. Do you have the means 
to perform or analyze data with some gold-standard as a comparison. Right now this claim is only 
supported by the model, but not for other experiments, could you expand on how to sustain this 
claim or moderate the message here? 

The concern raised by the reviewer stems from the following statements: “co-occurrence of PDM 
imbalances only occurred in 10% of the tissues” and that “This is reiterated in page 16 mentioning 
the 90% tissue specificity.”  These statements misinterpret our co-occurrence and specificity results, 
which are not directly related to Figure 5. Our statement in our previous version of our paper stated  
that “We also found a 10% tissue co-occurrence for PDM-haps”. Using the definition of tissue co-
occurrence we provided in the Main Text (the percentage of all MML-haps demonstrating significant 
MML imbalances in more than one tissue, and similarly for NME-haps and PDM-haps), this result 
should be interpreted as “10% of PDM-haps co-occurred in more than one tissue”.  To avoid 
confusion, we replaced our previous statement with “We also found that 10% of PDM-haps co-
occurred in more than one tissue,” and did the same for the co-occurrence statements regarding 
MML-haps and NME-haps. See page 20 of the revised version of the Main Text.  

Similarly, using the definition of tissue specificity we provided in the Main Text [the percentage of all 
statistically significant haplotypes of the same type (MML-haps, NME-haps, PDM-haps) that occur in 
only one tissue], the 90% tissue specificity for PDM-haps should be interpreted as “90% of PDM-
haps occur in only one tissue.” To avoid confusion, we replaced our previous statement with “We 
found 85% of MML-haps and 66% of NME-haps occurring in only one tissue, and the same was true 
for 90% of the PDM-haps, suggesting a possibly important role for PDM-haps in defining the 
phenotype.” See pages 20-21 of the revised version of the Main Text.  

7. Page 16: "Notably, we found the previous co-occurrences to be higher than what is expected by 
change (all permutation’ test p-values = 0, see Methods)," Did you mean by chance? 

Yes, “chance” not “change.” We fixed this typo. 

8. Page 16: Reading your supplementary material you found several known imprinted genes, plus 
several new genes. I would advise that some of this material should be moved to the main text to 
connect the dots between your method and the biology, even moving some of the figure 5 earlier 
could help. 

We moved this material to the Main Text, as suggested; see pages 23-24. We did so by generating a 
new figure (Fig. 6), which now includes the imprinting results depicted in the old Fig. 5c, as well as 
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the ones included in the old Supplementary Figs. 3-5. The new Fig. 5 is now limited to the 
information depicted in the old Figs. 5a,b.  

9. Supplementary table 2 and 3: Could you check the p-values and extract the actual p-value instead 
of the table limit in R or similar. Why do you have zeroes in the supplementary table 3. Please 
double check those. 

We have revised the P-values in the new version of our paper following suggestions published in a 
recent paper [1]. We now report the actual P-values only when they are at least equal to 0.001 and 
all other P-values as < 0.001. According to the previous paper, “There is little practical difference 
among very small P-values when the assumptions used to compute P-values are not known with 
enough certainty to justify such precision, and most methods for computing P-values are not 
numerically accurate below a certain point.” In particular, we follow the convention of the New 
England Journal of Medicine (NEJM), which states: " In general, P values larger than 0.01 should be 
reported to two decimal places, those between 0.01 and 0.001 to three decimal places; P values 
smaller than 0.001 should be reported as P < 0.001." 

[1] S. Greenland, S. J. Senn, K. J. Rothman, et al. “Statistical tests, P-values, confidence intervals, and 
power: a guide to misinterpretations.” The American Statistician 31(4), 337-350 (2016).  

10. Pages 19, supplementary table 5: You tested for enrichment the human genes known and 
validated as imprinted regions on your supplementary table 5 (n=107 genes). Of those how many 
were detected by the algorithm (only 7?)? What about the other less known genes from 
geneimprint (n= 150)? How many of those did you find in your data? How many were skipped? 
Could you expand why some of the known imprinted genes were or were not detected by the 
algorithm (coverage, sequencing problems, others)? Please also correct the p-value from the 
supplementary table 5. 

We chose to use only the 107 human genes in www.geneimprint.com whose status have been 
classified as being ‘imprinted’ for which there is strong evidence that are indeed imprinted. The rest 
of the genes reported in that database are either based on predictions (‘predicted’), subject to 
either conflicting or provisional data (‘conflicting data’, ‘provisional data’), not imprinted at all (‘not 
imprinted’), or unknown (‘unknown’). We did so to reduce the amount of noise introduced in our 
enrichment analysis. This allowed us to show a strong association between MML-haps and PDM-
haps that might have been otherwise diluted if we had included genes of dubious imprinting status 
to the statistical analysis. We tried to make this clear in our Methods section by writing  

“We employed 107 human genes from the geneimprint database (www.geneimprint.com) for 
which there is strong evidence that they are imprinted (i.e., whose status is labeled as ‘imprinted’ 
in the database)”.  

See page 36 of the revised Main Text.   

As the reviewer points out, our algorithm detected 7/107 genes from the geneimprint database. 
There are several reasons why this is the case. First, ASM analysis using our method can only be 
done when there is available data in the corresponding region. Second, gene imprinting is known to 
be tissue specific. As such, it is possible that some genes from the geneimprint database are not 
actually imprinted in the tissues considered in our work and, therefore, we do not expect to detect 

http://www.geneimprint.com/
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allelic imbalances when this is this case. Finally, although ASM at promoter regions is a frequent trait 
of imprinted genes, this trait is not a necessary condition for an imprinted gene [1]. We could 
investigate the specific case for each gene in the database, but the results will not add any useful 
information to our analysis. Nevertheless, our enrichment analysis shows that there is strong 
enrichment of MML-haps and PDM-haps at promoter regions of imprinted genes, as one would 
expect based on the biological interpretation of MML and PDM. 

We have corrected the issue with the P-values in accordance to our answer in question 9. 

[1] M. S. Bartolomei and A. C. Ferguson-Smith. “Mammalian genomic imprinting.” Cold Spring 
Harbor Perspectives in Biology. 3(7), a002592 (2011). 

11. Page 20: I am curious about how the algorithm worked on the X chromosome in females? Or did 
you excluded this area from the analyses? I do not see this explicitly in your methods. Could you 
expand what will you expect on those areas? 

The human subject on which we applied our analysis (STL003) is a male. Since males have only one 
copy of each sex chromosome, we only performed allele-specific methylation analysis on autosomes 
in our paper. However, the reviewer raises an interesting point about the possibility of using our 
analysis to detect allele specific methylation imbalances between the two copies of the X 
chromosome in a female subject, which is possible.  

There are two types of X chromosome inactivation: imprinted and random [1]. The former is parent-
specific and involves paternal silencing. The latter is not parent-specific and involves the random 
silencing of either copy. Only one copy remains active in both cases in order to avoid a potentially 
toxic double dose of X-linked genes [1]. Nevertheless, when considering a population of cells, the 
first type of inactivation will lead to each single cell in the population to have the same copy of the X 
chromosome inactivated, whereas this will not necessarily be the case in the second type of 
inactivation. As a result, the allele of origin might not contain information about the methylation 
state when inactivation happens randomly, and we do not expect to detect allele-specific 
methylation imbalances in this case. 

When it comes to the first type of inactivation (i.e., imprinting), we expect to see a large number of 
MML-haps and PDM-haps, since X-chromosome inactivation works partly through DNA methylation 
silencing in the inactive copy [2]. This follows from the fact that we expect to see large mean 
methylation level differences between alleles, as well as large differences between the probability 
distributions of methylation, especially for genes fully expressed in the active copy and fully silenced 
in the inactive copy. On the other hand, we do not necessarily anticipate large DNA methylation 
entropy differences between alleles, given the almost binary-like behavior of X-chromosome 
inactivation. 

Therefore, we expect to see clear allele-specific imbalances (MML/PDM-haps) when X chromosome 
inactivation happens in a parental specific way, but we do not expect that to be the case when 
inactivation is random. 

[1]  J. Ahn and J. Lee. “X chromosome: X inactivation.” Nature Education 1(1), 24 (2008). 
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[2]  A. M. Cotton, E. M. Price, M. J. Jones, B. P. Balaton, M. S. Kobor, and C. J. Brown. “Landscape of 
DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-
chromosome inactivation.” Human Molecular Genetics 24(6), 1528-1539 (2015). 
 

REVIEWER #3 

1. Are the SNPs included when profiling methylation state? If so, how does bismark-based strategy 
distinguish methylated C from unmethylated T allele?  

Heterozygous CpG sites, which are created or removed by SNPs, must be taken into account when 
performing allele-specific methylation analysis, a task that the CPEL method handles in a rigorous 
manner. For example, if ALLELE 1 of a haplotype contains CpG sites 1, 2, 3, 4, 5 (but not CpG site 6 
due to a SNP) and its homologous ALLELE 2 contains CpG sites 1, 2, 4, 5, 6 (but not CpG site 3 due to 
a SNP), then the CPEL method computes a CPEL model [i.e., an Ising model given by Eqs. (1)-(3) in 
the Main Text] 𝑝𝑝1(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,𝑥𝑥4, 𝑥𝑥5) for ALLELE 1 using all available WGBS data associated with 
ALLELE 1 and A CPEL model 𝑝𝑝1(𝑥𝑥1,𝑥𝑥2,𝑥𝑥4, 𝑥𝑥5,𝑥𝑥6) for ALLELE 2 using all available WGBS data 
associated with ALLELE 2. Subsequently, and before carrying out differential analysis, the CPEL 
method computes probability distributions of methylation (PDMs) 𝑝𝑝1(𝑥𝑥1,𝑥𝑥2,𝑥𝑥4,𝑥𝑥5) and 
𝑝𝑝2(𝑥𝑥1,𝑥𝑥2,𝑥𝑥4, 𝑥𝑥5) for each allele defined only over the homozygous CpG sites 1, 2, 4, 5, by 
marginalizing the previous CPEL models over the heterozygous CpG sites 3 and 6. Then, allele-
specific methylation analysis is performed using these PDMs (see Sections 7.2, 8.2, and 9.2 in the 
Supplementary Information document). Notably, appropriately handling heterozygous CpG sites is 
unique to the CPEL method and novel. We have added a short discussion on this issue in page 27 of 
the revised Main Text.  

The Bismark-strategy followed by Arioc, the methylation caller we used in this paper, cannot 
distinguish an unmethylated C in one allele associated with a C-T SNP, which will be transformed to 
a T during bisulfite sequencing and PCR, from a T associated with the homologous allele. To avoid 
this and other potential confounding effects that introduce bias in the methylation calls at 
heterozygous CpG sites, we disregard the methylation calls performed by Arioc at these specific sites 
and treat these calls as missing data during model estimation via maximum likelihood. 

2. How would the proposed method scale when haplotype blocks are very large as in F1 hybrid 
mouse?  

There are two strategies to go about the analysis proposed by the reviewer.  

The first strategy is to partition large haplotype blocks into smaller haplotypes and apply our 
method on the resulting partitions. This is the only strategy that can use the current version of our 
method to address the problem mentioned by the reviewer. However, this approach assumes that 
the methylation states within a haplotype partition are statistically independent from those in a 
nearest-neighbor partition, which will not be true in general. Therefore, statistical analysis results 
obtained using this strategy should not be fully trusted when divisions of haplotype blocks are 
frequent.  

The second (desired) strategy would be to allow for more than one parameter 𝛽𝛽 in the potential 
energy function of the CPEL model [i.e., the Ising model given by Eqs. (1)-(3) in the Main Text] 
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characterizing DNA methylation within the entire (very large) haplotype (e.g., each allelic subregion 
could be characterize by its own 𝛼𝛼 and 𝛽𝛽 parameters). Then, by following similar mathematical steps 
as the ones provided in the Supplementary Information document, we could obtain formulas for 
efficiently computing the partition function as well as the statistical summaries used in this paper. 
Regarding the hypothesis testing part, a permutation test might be more preferable in this case than 
the bootstrap approach currently employed by the CPEL method, whose intent is to analyze 
haplotypes of relatively small sizes. Note, however, that this strategy requires the derivation of new 
mathematical formulas and development of new software. Moreover, reliable parameter estimation 
in this case will require using a better DNA methylation sequencing technology than WGBS that 
provides higher coverage, much longer and accurate reads, as well as reduced rates of missing data. 
Unfortunately, such a technology does not currently exist, with a possible exception ONT 
sequencing, which currently cannot provide high enough base-call accuracy among other issues.  

3. Please show the distribution of MML, NME, and PDM. 

We have done as suggested. We now provide boxplot distributions of MML and NME values 
associated with the two homologous alleles of the haplotypes identified by the CPEL method in each 
tissue of our data in Supplementary Fig. 8. We also provide boxplot distributions of the values of the 
three test statistics 𝑇𝑇MML, 𝑇𝑇NME , and 𝑇𝑇PDM  associated with significant and nonsignificant 
haplotypes identified by the CPEL method in each tissue of our data in Supplementary Fig. 9. We 
have also added a brief discussion of these results on pages 19 of the Main Text.  

4. Please show if CPEL recovered parameter values that are used in the simulation. 
 
We performed additional analysis to address this issue and summarized our results in the (new) 
Supplementary Fig. 2, which shows that our method can almost always reliably recover the true 
parameter values used in the simulation. Note however that in those cases that this is not true, our 
method recovers a probability distribution of methylation (PDM) that is close to the true PDM, and 
this is the only thing that matters in our ASM analysis approach, since our analysis is based on 
estimated PDMs. We have added a new paragraph explaining this on pages 13-14 of the Main Text.  
 

5. Is it feasible to run simulated annealing many times to see the stability of parameter estimation? 
 
We did so in the original version of the paper, by performing parameter estimation 100 times using 
partially observed data, and discussed the results in Section 4 of the Supplementary Information 
document (Section 5 in the new version). Figure S1 in Supplementary Information shows that, when 
using simulated annealing with temperature reduction factor 10−4 (algorithm SA3), the median 
estimation error (quantified by the Euclidean distance of the estimated parameter values from their 
true values) is the smallest, and the same is true for the interquartile range (IQR). This, together with 
the parameter estimation results depicted in (the new) Supplementary Figure 2, which show that 
use of this optimization algorithm recovers the true parameter values with increasing accuracy as 
more data are available, demonstrates the stability of the SA3 algorithm when employed  for 
parameter estimation. We added a comment to that effect at the end of Section 5 in the 
Supplementary Information document.  
 

6. Clarify what “this important issue” is in Line 15 Page 10.  
 
We have removed this statement.  
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7. Remove NPI, NPD, and CPEL from Figure 1 legend. 

 
The labels the reviewer refers to are necessary to properly reference the models depicted in the 
figure. One objective of Figure 1 is to illustrate the differences in data usage and modeling between 
the three models (NPI, NPD, and CPEL) discussed in the paper and, therefore, the labels help to 
identify each model in the figure. Note that we have simplified the legend of this figure as per 
Reviewer’s #1 request (see #3). 
 

8. Define what A is in Equation (5). 
 
We added the definition of A in the Main Text; see page 10 of the new version. 
 

REVIEWER #4 

1. CPEL uses a relatively complicated bootstrap process to obtain p-values for statistical test. It is 
unclearly, however, whether such test is calibrated in terms of type I error control. Demonstrating 
the CPEL can provide well controlled type I error is particularly important here, given that the 
identified MML-haps by CPEL are somehow highly enriched in CpG islands (CGIs), which 
contradicts almost all previous literature. Therefore, it would be important to show that CPEL 
controls type I error well both in simulations and in real data applications. It would be useful to 
simulate the null data under the Ising model, and then perform a similar bootstrap procedure as 
used in the real data, to examine whether the type I error is well controlled in CPEL (as well as in 
NPI and NPD). It would be important to look at type I error control at the genome-wide 
significance level used in the real data applications. 
 
We agree with the reviewer that showing good control of Type I error is important. Therefore, we 
followed this suggestion and performed new simulations from which we computed empirical 
estimates of the cumulative distribution functions of the ‘null’ P-values that turned-out to be linear 
(see our new discussion on pages 14-16 in the Main Text, and the new Supplementary Fig. 3). This 
shows that the ‘null’ P-values follow a uniform distribution, which implies that CPEL’s hypothesis 
testing method will provide proper control of the Type I error under the null hypothesis, since the 
probability of obtaining a P-value that is below a significance level 𝑎𝑎 will precisely be 𝑎𝑎 in this case, 
implying a Type I error of 𝑎𝑎%. Analysis of our real data leads to the same conclusion (see our new 
discussion on page 18 in the Main Text and the new Supplementary Figs. 5 & 6a). In addition to the 
above, and by following the reviewer’s suggestion, we looked at the Type I error after correcting for 
multi-hypothesis testing using the Benjamini-Hochberg procedure and consistently found that this 
error is zero (see our new discussion on page in the Main Text and the new Supplementary Fig. 6b). 
We believe that these results should convince the reader that the CPEL method performs hypothesis 
testing in a statistically sound manner.  
 
Demonstrating the same for the NPI and NPD methods is not useful, since these methods do not 
test for NME and PDM imbalances as the CPEL method does. Moreover, we have clearly shown that 
the NPI and NPD methods are fundamentally problematic for hap-ASM analysis. Therefore, we do 
not see the point for studying hypothesis testing using these methods.  
 
Finally, we would like to point out that, in addition to CpG islands, the MML-haps detected by the 
CPEL method were highly enriched in promoter regions of known imprinted genes. This suggests 
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that the detected MML-haps are true positives, since we expect stark imbalances in mean 
methylation level in this case. In addition, the PDM-haps detected by the CPEL method were also 
highly enriched in promoter regions of imprinted genes, which is consistent with our expectation of 
observing substantially different behaviors in stochastic methylation within two homologous alleles, 
resulting in significant imbalances in the probability distribution of methylation. Moreover, 
promoter regions of imprinted genes were not enriched in NME-haps detected by the CPEL method. 
This is consistent with the fact that imprinting is associated with two ordered states, a fully 
methylated and a fully unmethylated state, each associated with zero entropy and, therefore, we do 
not expect imbalances in methylation entropy between the two alleles in this case. These results 
serve as further evidence that the CPEL method detects true and important methylation imbalances. 
 

2. It would be important to provide the -log10 p-value distribution in the real data through qq-plots, 
for each of the three tests (MML, NME, PDM) and in each tissue. Because the majority of the 
haplotypes do not show significance in the real data and are effectively null, one would expect the 
small -log10 p-values to adhere on the diagonal line on the qq-plot.  

We did as the reviewer suggested (see new discussion on page 18 in the Main Text and the new 
Supplementary Fig. 7). As the reviewer suggests, large P-values associated with haplotypes that do 
not exhibit significant methylation imbalances in terms of the three test statistics in Eq. (5) of the 
Main Text must behave as expected under the null hypothesis (i.e., they should be samples drawn 
from a uniform distribution). In this case, small observed −log10 P-values must adhere to the 
diagonal of a Q-Q plot of observed vs. expected quantiles, which is shown to be true in our data (see 
new Supplementary Fig. 7). Note, however, that although some small −log10 P-values are located 
on the diagonal line in each plot, other small values are located slightly below this line. This is due to 
the conservative nature of the hypothesis testing approach used by the CPEL method, which results 
in slight overestimation of the true P-values; see Section 10 of the Supplementary Information 
document. This is a consequence of the fact that the CPEL method generates ‘null’ statistics at the 
minimum coverage and the most complex model observed in the data. As a result, the ‘null’ 
statistics will contain the largest possible amount of observed statistical variability, resulting in a 
rather conservative test and ensuring proper control of Type I error under all circumstances. 

3. It would be important to report the genomic control factors for each test and in each tissue. A 
genomic control factor that is close to 1 would indicate reasonably good type I error control in the 
real data analysis. 

Based on our (limited) understanding, genomic control factors are employed in genome-wide 
association studies (GWAS) in which hypothesis testing is performed for detecting genetic markers 
using data from multiple subjects. For a genetic marker, a statistic is computed using data from 
multiple individuals from which a P-value is calculated for evaluating statistical significance. 
However, observed statistics in association studies can be confounded by the presence of subgroups 
in a population with ancestry differences. Consequently, neglecting or not accounting for 
these differences among sample individuals can lead to a high Type I error or spurious associations, 
which is a serious concern. 

Our method was not conceived to be a tool for population-level studies, since allele-
specific methylation analysis is typically performed independently for each subject and tissue. In 
sharp contrast to GWAS, the CPEL method independently performs hypothesis testing at each 
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haplotype using data from a single subject and a single tissue (see Section 10 of the Supplementary 
Information document). That is, for a given subject and tissue, a statistic is computed at each 
haplotype and a P-value is subsequently calculated from this statistic. Since, in this case, the statistic 
used for hypothesis testing does not use data from multiple individuals, there is no need to account 
for ancestry differences among sample individuals. It therefore seems to us that using genomic 
control factors in the current framework is not appropriate. In fact, genomic control factors have not 
been used in allele-specific methylation studies to the best of our knowledge. Nonetheless, the 
evidence provided in our answers to the previous two remarks show clearly, by using both 
simulations and real data, that the CPEL method is capable of properly controlling the Type I error 
thanks to the conservative nature of the hypothesis testing scheme used. 

4. Some part of the bootstrap procedure is not realistic and can be improved. For example, right now 
the reads are placed into two complementary groups that contain the same number of reads. The 
constraint that the two groups contain the same number of reads seems rather unrealistic. A 
better choice would be to randomly assign reads onto these two group without such equal read 
constraint. This can be easily achieved by assigning each read onto two haplotypes through an 
over-dispersed binomial distribution (beta-binomial) with mean of 0.5. This more realistic strategy 
could help improve type I error control and reduce potential false discoveries. 
 
The reviewer raises an interesting point. However, we believe that implementing his suggestion 
would in fact result in worse Type I error control and a potential increase in false discoveries. 
Although we have argued this issue in Section 10 of the Supplementary Information document, we 
also include here a brief discussion (see also our response to comment #2 above). 
 
Since our objective is to control the Type I error, we choose to assign the minimum possible 
coverage to each allele, which requires that both alleles have the same coverage. This strategy 
maximizes statistical variability in the parameter estimates of both CPEL models and, therefore, the 
computed null statistics will be subject to maximum statistical variability as well. This ensures that 
the method does not compute observed test statistic values at a lower coverage than the coverage 
used to compute null statistics and, hence, P-values. As a result, this strategy will slightly 
overestimate P-values resulting in conservative hypothesis testing.  
 
By doing what the reviewer proposes would reduce the amount of statistical variability in one of the 
two alleles. This could result in a less conservative empirical null distribution and, therefore, reduced 
control of the Type I error. For this reason, we think that by equally splitting the reads is the best 
way to ensure that the Type I error is properly controlled, albeit at the cost of some miss-detections.  
 

5. A key potential bias for allelic specific methylation analysis is due to read mapping. Specifically, 
when a CpG site is in a neighborhood of a SNP, it is much harder to map a methylated read to the 
alternative allele than an unmethylated read. Consequently, methylation level for the given CpG 
site maybe artificially higher on the haplotype with the reference SNP, leading to methylation bias 
towards the reference allele. This could cause potentially false signals in the NME analysis, and, 
likely to a lesser extent, in the MML analysis. If you plot methylation levels of the CpG sites on the 
alternative SNP allele vs the reference SNP allele, would you see a bias? If there is a mapping bias, 
does the mapping bias occur preferentially on CGIs (or other regions with high CpG density), so 
that it creates a false enrichment of MML-haps on CGIs? The mapping bias can be mitigated, 
though not completely eliminated, by relaxing the mismatches during the reads mapping step. The 
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mapping bias can also be mitigated by excluding CpG sites with an obvious difference in 
methylation levels between reference and alternate alleles. I am a bit concerned whether such 
mapping bias may introduce false signals in the MML and NME analysis.  

We mask the reference genome prior to performing alignment using SNPsplit. This step replaces all 
SNP positions by ‘N’ nucleotides using the SNP information available in the VCF file of subject 
STL003. As a result, there is no penalization in the mapping score for either allele due to a potential 
mismatch in the SNP position between the read and the reference genomes (we added this 
comment in the new version of our paper; see page 30). In addition, the aligner we used is designed 
specifically for WGBS data, and ensures that there is no bias during the mapping of WGBS reads due 
to methylation levels (see [1] and [2] below). From [1], “Since residual cytosines in the sequencing 
read are converted in silico into a fully bisulfite-converted form before the alignment takes place, 
mapping performed in this manner handles partial methylation accurately and in an unbiased 
manner.” Thus, there is no bias in the mapping of WGBS reads. In fact, as our Supplementary Table 1 
shows, the average coverage of both alleles is the same in all tissues. 

[1]  F. Krueger and S. R. Andrews. "Bismark: a flexible aligner and methylation caller for Bisulfite-
Seq applications.” Bioinformatics 27(11), 1571-1572 (2011). 

[2]  R. Wilton, X. Li, A. P. Feinberg, and A. S. Szalay "Arioc: GPU-accelerated alignment of short 
bisulfite-treated reads." Bioinformatics 34(15), 2673-2675 (2018). 

6. It would be important to apply NPI and NPD to all enrichment analysis in the real data and 
compare their results with CPEL. It is equally important to examine the ability of NPI and NPD in 
terms of identifying significant regions overlapping the promoter regions of imprinted genes, 
across different tissues. Comparing CPEL with NPI and NPD on imprinted genes would provide a 
much stronger evidence for the statistical power difference between CPEL and the other two 
methods in the real data applications. 

It is not possible to reliably apply the NPD method on our real data and, therefore, we cannot repeat 
our enrichment analyses using this method in order to compare it with the CPEL method. As we 
have explained in our paper, the NPD method requires estimation of 2𝑁𝑁 probabilities within an 
allele containing 𝑁𝑁 CpG sites, which is not possible in general due to lack of sufficient WGBS data 
required for reliable estimation. Our simulation results, depicted in Fig. 3 of the Main Text and in 
Supplementary Fig. 1, show clearly how bad NPD model estimation can be, even at high coverage 
and small number of CpG sites. Moreover, we have extensively discussed this issue in Section 3 of 
the Supplementary Note in [1].  

Unfortunately, we cannot compare all enrichment analysis results obtained by the CPEL method to 
ones obtained by using the NPI method (or any other method), since there is no known ground-
truth, which will make any attempted comparison questionable at best. But even if this issue is 
ignored, there is strong statistical evidence that the CPEL method is superior to the NPI method in 
many respects. First, the CPEL method takes into account correlations in DNA methylation, whereas 
the NPI method does not. Second, NPI model estimation is not as reliable as CPEL model estimation 
under various circumstances (see Fig. 3 in Main Text and Supplementary Fig. 1). Third, analysis of 
our real data using Akaike’s Information Criterion (AIC) shows that the CPEL model is preferred over 
the NPI model, especially within alleles containing at least 4 CpG sites (see Fig. 4 in Main Text). This 
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shows that the CPEL model provides a better trade-off between ‘goodness of fit’ to available data 
and model simplicity (in terms of the number of parameters used) than the NPI model. 

Examining the ability of the NPI method to identify significant haplotypes overlapping the promoter 
regions of imprinted genes across different tissues and comparing that to CPEL’s seems an attractive 
idea, since in this case there is some ‘ground-truth’ information to work with. However, we have 
shown in [2] that the unrealistic assumption of statistical independence may lead to loss of 
specificity (true negative rate) and sensitivity (true positive rate). This will seriously affect the 
statistical performance of a method based on statistical independence, such as the NPI method (see 
our remark on page 4 of the Main Text and on page 23 of the Supplementary Information 
document). In addition, such a method may lead to sensitivity (true positive rate) that equals the 
Type I error rate (false positive rate), indicating a performance that is no better than random 
guessing [2] (see also our remark on page 23 of the Supplementary Information document), which 
implies that the NPI method cannot always control the Type I error. Therefore, it does not make 
sense to compare the statistical power difference between the COEL and NPI methods, considering 
the fact that only the CPEL method always controls the Type I error, as we have shown in the new 
version of our paper.   

[1]  G. Jenkinson, E. Pujadas, J. Goutsias, and A. P. Feinberg, “Potential energy landscapes identify 
the information-theoretic nature of the epigenome.” Nature Genetics 49(5), 719-729 (2017).  

[2]  G. Jenkinson, J. Abante, A. P. Feinberg, and J. Goutsias. “An information-theoretic approach to 
the modeling and analysis of whole-genome bisulfite sequencing data.” BMC Bioinformatics 19, 
87 (2018).  

7. CPEL is effectively a simplified version of their previous method (introduced in ref #10). The 
simplifications include (a) removing the dependence of alpha on CpG density; (b) remove the 
dependence of beta on distance between pairs of CpG sites. These simplifications seem counter-
intuitive, given that both features (a) and (b) are rather desirable for real data applications. 
Therefore, it would be important to compare CPEL with their previous method in all real data 
applications to demonstrate the benefits of removing features (a) and (b).  

To address this comment, we have added a detailed explanation in the Supplementary Information 
document (see new Section 2). Briefly, we cannot apply our previous method in ref #10 for 
haplotype-dependent ASM analysis, since we need in this case to use probability distributions over 
the actual space of methylation patterns within relatively large alleles. This leads to a 
computationally expensive approach whose implementation takes an unrealistic amount of time, 
even on a high performance computer cluster. Note that, in order to address this issue in ref #10, 
we performed methylation analysis using probability distributions of methylation levels (and not 
methylation patterns) within small genomic units of 150 bp each, an approach that is not useful for 
haplotype-dependent ASM analysis.   

As we explain in the Supplementary Information document, due to limitations in read-based phasing 
(often constrained by the length of WGS reads) and the low coverage of WGBS, current sequencing 
technologies allow analysis only of relatively small haplotypes (for example, the size of more than 
99% of the haplotypes analyzed in our data is no more than 1-kb). Given the small amount of 
available WGBS data, it is reasonable to assume that we can accurately observe only the average of 
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the methylation means at individual CpG sites within small subregions of a given allele. Moreover, 
and since pair-wise correlations are second-order moments requiring more data than means for 
reliable estimation, we can also assume that we can accurately observe only the average of these 
correlations at individual CpG sites within the entire allele. For these reasons, we subdivide in the 
current work each allele into a minimum number 𝐾𝐾 of equally sized non-overlapping subregions of 
size no more than 𝐺𝐺. Given the previous constraints, and by invoking the maximum-entropy 
principle, we can then show that the probability distribution of methylation patterns within an allele 
is associated with the potential energy function given by Eq. (2) in the Main Text. This energy 
function allows us to perform haplotype-dependent ASM analysis by a computationally feasible 
method based on probability distributions of methylation patterns instead of probability 
distributions of methylation levels, as it was the case in ref #10. As we explain in the Supplementary 
Information document, computations in this case can be performed efficiently by multiplying 2 × 2 
matrices, which are evaluated by spectral decompositions that require eigenvalues and eigenvectors 
given by analytical formulas, as well as by employing standard derivative approximations and a 
limited number of Monte Carlo estimations. Consequently, we can perform haplotype-dependent 
ASM analysis in the original space of individual methylation patterns, which allows the CPEL method 
to identify types of significant allele-specific methylation imbalances completely inaccessible to 
currently available methods. 

8. A critical parameter in the CPEL method is the subregion size, denoted by G. G was set to be 
500bp. How stable are the real data results with respect to the choice of G? Would these real data 
results change if you use a smaller G or a larger G? 
 
Results would slightly change, since the value of 𝐺𝐺 determines the scale at which the ASM analysis is 
performed and, in turn, the complexity of the models used. However, a compromise must be 
reached in order to balance model complexity and data availability, as it is often the case is model 
estimation.  
 
Note that 𝐺𝐺 directly affects the granularity of modeling. This is due to the fact that the methylation 
state within an allele of interest is associated with a potential energy function that is characterized 
by the 𝐾𝐾 + 1 parameters 𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝐾𝐾 and 𝛽𝛽, where 𝐾𝐾 increases with decreasing 𝐺𝐺. Consequently, 
a smaller value of 𝐺𝐺 results in a finer description of the methylation state in terms of an increased 
number of model parameters. This however leads to the CPEL method being able to analyze a 
decreased number of haplotypes for a given WGBS coverage, since successfully estimating the 
values of an increasing number of parameters in each homologous allele requires higher coverage.  
 
To determine an appropriate value for 𝐺𝐺 that strikes a balance between a finer model description 
and the number of haplotypes that the CPEL method can analyze, we recommend using the scheme 
described on page 6 in the (new) Supplementary Information document. This scheme determines 
the smallest possible value of 𝐺𝐺 (i.e., it provides the finest model description of the methylation 
state) that leads to no more than a 5% loss in the number of haplotypes that the CPEL method can 
analyze in given data when comparing to the case of maximum granularity. By using this strategy, 
we consistently found that  𝐺𝐺 = 500 bp in all tissues in our data.  
 

9. Is there a way to quantify whether these detected allelic specific methylation events are due to cis 
genetic differences? For example, do you tend to detect haplotypes with a high number of SNPs, a 
high density of SNPs, or a long region length?  
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We are currently working on a follow-up paper in which we are using all data available from the 
Roadmap Epigenetics Project to study allele-specific methylation in detail and from a biological 
perspective. The sample size of this data set (48 samples) gives a significantly larger statistical power 
to detect interesting associations, such as the ones suggested by the reviewer. However, we 
refrained from including further biological results in the present paper since the main purpose of 
this paper is to present our novel method and study some of its properties and potential by using 
simulations and some real data analysis. In addition, our objective has been to demonstrate that our 
method is superior to the state-of-the-art and is capable of detecting phenomena inaccessible to the 
other methods. We view the present paper as a Methodology paper.  
 

10. In the real data applications, do detected regions of either MML, NME, or PDM correlated with 
TAD boundaries? 

Although the reviewer raises a very interesting point here, we will refrain from including more 
biological results in this paper as noted in our response to the previous question. We plan to 
investigate the reviewer’s suggestion in a follow-up paper. 

11. It would be useful to report the computation time of CPEL in real data applications.  

We have added a comment on page 28 in the new version of the Main Text about this issue. It took 
the CPEL method about 48 hours using 20 CPUs to process one WGBS sample in our real data, which 
necessitates the use of a computer cluster when employing the CPEL method for hap-ASM. This 
computational effort is much less than the one required by informME, our previous method for 
methylation analysis [1]. Given that DNA sequencing is expensive and time consuming and taking 
into account the scale of ASM analysis, the complexity of the data required to perform such analysis, 
and the advantages that the CPEL method offers over existing methods (e.g., ASM analysis at the 
haplotype level, entropy computations, detection of statistically significant imbalances using 
rigorous hypothesis testing, and reliable and reproducible statistical analysis), we believe that the 
added computational cost should not be an issue. This is on par with other bioinformatics tools used 
in the particular problem at hand for WGS/WGBS data preprocessing and alignment, should not be 
an issue. 

[1]  G. Jenkinson, E. Pujadas, J. Goutsias, and A. P. Feinberg, “Potential energy landscapes identify 
the information-theoretic nature of the epigenome.” Nature Genetics 49(5), 719-729 (2017).  

12. The bootstrap procedure in CPEL only keeps bootstrapped sites where CPEL estimation is 
successful. What’s the success rates of this step in the bootstrap in real data applications? 
 
The success rate varies substantially depending on the number 𝑁𝑁 of CpG sites for which the null 
statistics are being generated, the specific number 𝐾𝐾 of subregions used, as well as the available 
coverage. However, this does not matter in our method, because CPEL performs hypothesis testing 
within a given haplotype only when a minimum number of required null statistic values are available 
(which we take it to be 1,000). We have discussed this in Section 10 of the Supplementary 
Information document (see Step 7 of the algorithm). 



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The manuscript by Abente et al. entitled "Detection of haplotype-dependent allele-specific DNA 

methylation in WGBS data" explores how to convery both WGS and WGBS to detect allele specific 

DNA methylation. 

The authors have addressed all the comments. I have a minor comment for the package as I was 

not able to install it, and this could be important for the release for the general public. 

Minor comment: 

The provided zip file (both as supplementary material and in your website) opens in this new 

version. I can see the contents and the files required for the test to run. However, when doing the 

local installation using Julia, the process crashed and I decided not to troubleshoot it more after 

several tries and errors. Due to this I can not provide any input. The README file is designed 

based on the github installation, so again I cannot tell whether this is a language dependent 

problem that I am unfamiliar or not. Please add options for a local installation in your README file 

for your users in case they do not have internet access. This is important during package 

development, in particular when you are using languages that are not as widely known for all your 

potential users. This is something that you could try to address for your release version. 

A different option is to use a Docker function to embed your Julia version and package pre-

compiled for the user. Again this is just a minor suggestion for the authors, beyond the quality of 

the manuscript. 

Reviewer #3 (Remarks to the Author): 

All my previous comments have been properly addressed, and I have no other issues. 

Reviewer #4 (Remarks to the Author): 

Most of my comments are well addressed. However, two of my major comments, #9 and #10, 

questioning the potential biological insights one can get by using the new method, are not 

addressed. Showing that a method is capable of discovering new biology is critical for 

demonstrating the practical utility of the method and thus is an essential component of a 

Methodological paper, especially for a high-quality biology journal. 
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The provided zip file (both as supplementary material and in your website) opens in this new version. I 
can see the contents and the files required for the test to run. However, when doing the local 
installation using Julia, the process crashed and I decided not to troubleshoot it more after several tries 
and errors. Due to this I can not provide any input. The README file is designed based on the github 
installation, so again I cannot tell whether this is a language dependent problem that I am unfamiliar or 
not. Please add options for a local installation in your README file for your users in case they do not 
have internet access. This is important during package development, in particular when you are using 
languages that are not as widely known for all your potential users. This is something that you could try 
to address for your release version. 
 
A different option is to use a Docker function to embed your Julia version and package pre-compiled for 
the user. Again, this is just a minor suggestion for the authors, beyond the quality of the manuscript. 

We did extensive testing in multiple computers with various operating systems to ensure that 
both the local installation and the toy example run flawlessly. In addition, we included a 

README file describing the required steps for the entire process. Although we are very sorry to 
hear that the reviewer could not install the package and try it, we believe that this could be 
related to external factors unrelated to the package itself. 

Following the reviewer’s suggestion, we added the steps for the local installation of the 
package, as well as the steps for the toy example, to the Github README file. Nevertheless, 
the published release (v0.0.1) can be flawlessly installed by using a single command in Julia, 
which significantly simplifies the entire installation process. At this point, this is the main way 
in which users will be installing the package. In addition, the repository is setup such that the 
code is automatically tested in the three major operating systems (Windows, macOS, Unix) 
after each update, ensuring that the latest available version works in all cases. 

https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fplatformsupport.nature.com%2F&data=02%7C01%7Cgoutsias%40jhu.edu%7Cbec6683211874d3ce1ad08d83f7264e4%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C637329108699309086&sdata=6jnXIYQAeQe8sHKfrk9zXf70m%2FgFl5foop8MdHJbhwQ%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=http%3A%2F%2Fplatformsupport.nature.com%2F&data=02%7C01%7Cgoutsias%40jhu.edu%7Cbec6683211874d3ce1ad08d83f7264e4%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C637329108699309086&sdata=6jnXIYQAeQe8sHKfrk9zXf70m%2FgFl5foop8MdHJbhwQ%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmts-ncomms.nature.com%2Fcgi-bin%2Fmain.plex%3Fel%3DA3S5BjOs2B4JBQr6I1A9ftdHwMyfMY8MZ3BDFm58JccHAZ&data=02%7C01%7Cgoutsias%40jhu.edu%7Cbec6683211874d3ce1ad08d83f7264e4%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C637329108699319082&sdata=S8Ae0RCuQ6emAaQCsq3wmvRe%2BLYG67nqbKBL4fsqdH4%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmts-ncomms.nature.com%2Fcgi-bin%2Fmain.plex%3Fel%3DA3S5BjOs2B4JBQr6I1A9ftdHwMyfMY8MZ3BDFm58JccHAZ&data=02%7C01%7Cgoutsias%40jhu.edu%7Cbec6683211874d3ce1ad08d83f7264e4%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C637329108699319082&sdata=S8Ae0RCuQ6emAaQCsq3wmvRe%2BLYG67nqbKBL4fsqdH4%3D&reserved=0


 
Reviewer #3 (Remarks to the Author): 
 
All my previous comments have been properly addressed, and I have no other issues. 
 
Reviewer #4 (Remarks to the Author): 
 
Most of my comments are well addressed. However, two of my major comments, #9 and #10, 
questioning the potential biological insights one can get by using the new method, are not addressed. 
Showing that a method is capable of discovering new biology is critical for demonstrating the practical 
utility of the method and thus is an essential component of a Methodological paper, especially for a 
high-quality biology journal. 

We agree with the reviewer that showing new biology is important for demonstrating the 
practical utility of the method. However, we also think that it is important to show that the 
results produced by the method are consistent with previous results when available. For 
instance, we show how our method produces results that are remarkably consistent with 
previously reported imprinted genes. Furthermore, we provide several new results, such as the 
fact that observed co-occurrence of NME-haps across different tissues is higher than that of 
MML-haps. This difference in prevalence between the two types of haps suggests that 
methylation entropy differences could be more sequence driven than mean methylation level 
differences. Another example is the depletion of NME-haps observed in CG rich regions and the 
enrichment of such haps in CG poor regions. This result is consistent with the common 
understanding that DNA methylation is more regulated in high CpG density regions since these 
regions often coincide with promoter regions. These are just two of many ‘biological’ insights 
that we obtained using our method on a subset of the dataset generated in Onuchic et al. 
2018.  

Nevertheless, although the reviewer is asking two interesting biological questions, we want to 
stress that this paper's focus is the method itself and the release of user-friendly software for 
the community. However, as we have shown in our current paper, our method allows for the 
study of allele-specific methylation differences in a much more comprehensive manner 
compared to the previous work. Thus, in addition to the results reported in our current paper, 
we believe our method will provide valuable biological insights in future studies. 

Lastly, as we pointed out in our previous response, we are currently performing an extensive 
biological analysis using the entire dataset from Onuchic et al. 2018. The two biological 
questions suggested by the reviewer are among the many biological questions that we are 
addressing in this new analysis. Adding these results and all associated explanations and 
discussions to the current paper will result in a complex paper whose size could be twice the 
size of the current paper.  


