
Supplementary Information:
Quantum chemical accuracy from density functional

approximations via machine learning

Bogojeski, et al.

1



1 Supplementary Notes

1.1 Water dataset

The water molecule has three internal degrees of freedom, two O-H bonds and the H-O-H angle, with
bond lengths of 0.97 Å and a bond angle of 104.0◦ (1.82 radians) for the geometry optimized with
the PBE functional. A preliminary dataset composed of 1000 molecular geometries was generated by
uniformly sampling O-H bond lengths and H-O-H angles. The 102 geometries for the training set
were selected based on the minimum energy conformer of the 1000 structures (1.6 kcal·mol−1 above
the optimized geometry), with bond lengths in the range 0.97 ± 0.25 Å and the bond angle in the
range of 115 ± 26◦ (2.00 ± 0.45 radians). In order to simplify the learning problem, the molecules
were aligned in the xy-plane with the bisector of the H-O-H angle along the y-axis and the longer O-H
bond in the same quadrant. The resulting geometries are shown in Supplementary Fig. 1.
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Supplementary Figure 1: Distribution of 102 water molecule geometries included in the dataset, with bond lengths in
the range of 0.72 to 1.22 Å and bond angles in the range of 93.4 to 140.7◦ (1.63 to 2.46 radians). a) Darker circles
indicate the minimum energy conformer of the training set (black) and the geometries after optimization with PBE
(orange) or CCSD(T) (blue), b) The extent of the symmetric water test set is shown in green with bond lengths in the
range of 0.90 to 1.05 Å and bond angles in the range of 88.5 to 119.5◦ (1.54 to 2.08 radians).

The conventional coupled cluster calculations were run in Molpro Quantum Chemistry Software [1]
or Orca v.3.0.3 [2] using CCSD(T)/aug-cc-pVTZ [3]. For all water geometries in this work, using a
single reference wave function is appropriate (T1 diagnostic < 0.02).

The model is trained on total calculated energies, but there is a shift in the energy range due
to the differing bonding energy between electronic structure methods. Therefore, we report relative
energies in Fig. 1b based on the lowest energy in the grand training set. These relative energy errors
are also shown in Supplementary Fig. 2 and are used to calculate the MAE reported in Fig. 1c. The
potential energy surfaces in Fig. 1d are shown relative to the lowest energy conformer for each energy
method.
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Supplementary Figure 2: Relative energy errors (CC-DFT) for the 102 water geometries in the grand training set
plotted against the relative energy as calculated using CC.

The symmetric water dataset was constructed for the range of bond lengths and angles sampled
during a DFT-MD simulation at 300 K using deviations of 3σ from the average value. The resulting
bond range is 0.97 ± 0.075 Å and the angle range is 104.0 ± 15.5◦ (1.81 ± 0.27 radians). For the
symmetric water conformers, the errors for predicted relative energies are qualitatively and quantitatively
different for the direct ML energy functionals and the ∆-DFT approach, as shown in Supplementary
Fig. 3. The errors in the direct methods reflect the overlap between the training set geometries and
the out-of-sample test set, with the largest errors for small angles on the edge of the training set
(coordinate range shown in Supplementary Fig. 1). The ∆-DFT errors are significantly smaller and
qualitatively different, as they depend much more strongly on the bond length than the bond angle.
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Supplementary Figure 3: The relative energy errors for symmetric water geometries compared to the values calculated
using traditional electronic structure methods using EDFT

ML [nDFT
ML ] (top, PBE), ECC

ML[nDFT
ML ] (middle, CCSD(T)), and

ECC
∆-DFT[nDFT

ML ] (bottom, CCSD(T)). The optimized geometries are indicated by open diamonds for each method.
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1.2 Ethanol dataset

Training and test set data for ethanol is from the MD17 dataset [4,5]. The 1000 unique geometries in
the training set are aligned with the three heavy atoms defining a reflection plane for the symmetry-
augmented dataset. Supplementary Fig. 4 shows the atomic distributions of the ethanol datasets after
alignment and inclusion of symmetry-generated training points.

(a) (b) (c)

Supplementary Figure 4: Distribution of ethanol geometries included in the dataset, including geometries of a) the
original 1000 training set, b) the effective 2000 point training set generated using mirror symmetry, and c) the 1000
point test set.

The specific data generation methods are reported in Refs. [4, 5]; Briefly, the conformers were
generated using DFT-MD at 500 K (PBE+TS) and the coupled cluster energies use CCSD(T)/cc-
pVTZ. For all ethanol coupled cluster calculations, the T1 diagnostic is below 0.02. In addition
to DFT- and CC-optimized structures, we also optimize each local minima using MP2/6-31g∗ in
Gaussian09 [6]. All geometries are similar, with the largest difference seen for the C-O bond length
(DFT > MP2 > CC), as shown in Fig. 2. We report relative energies for ethanol based on the lowest
energy minima for each electronic structure method (anti for CC by 0.08 kcal·mol−1 and gauche
for DFT by 0.10 kcal·mol−1). These relative energy errors are shown in Supplementary Fig. 5, with
maximum relative energy errors of 5.6 kcal·mol−1 and 5.9 kcal·mol−1 for geometries included in the
training and test sets, respectively.

(a) (b)

Supplementary Figure 5: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for a) the 1000 unique ethanol geometries in the training set and b) the 1000 ethanol geometries in the test
set.

The local minima of ethanol differ most clearly in the dihedral angle of the alcohol OH, but the
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optimized geometries also differ in the C-C-O angle. The training set shown in Fig. 2a is also shown
in Supplementary Fig. 6 sorted by OH dihedral angle.
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Supplementary Figure 6: Ethanol training geometries sorted by conformer so that all structures with the alcohol OH
in the anti (gauche) basin are shown in green (purple). The open diamonds show the location of the corresponding
DFT-optimized geometries.

Using ∆-DFT with force-based methods. ∆-learning is a universal approach that can be
applied with any machine learning model to improve the accuracy, however, some models stand to
benefit more from ∆-learning than others. To explore this we took sGDML [5], one of the state-
of-the-art force-field based ML models, and trained it on the differences between the CC and DFT
forces of 1000 ethanol geometries. Table 1 compares the accuracies of our density-based model and
sGDML when predicting DFT, CC and ∆-DFT energies. We notice that ∆-learning with sGDML
shows essentially no difference from the originally reported sGDML results for directly learning CC
energies, while our model improves by a factor of 10 using the ∆-DFT approach.

Supplementary Table 1: Comparison of the MAEs (kcal·mol−1) of density-based models and sGDML for ethanol
trained on 1000 samples for different energy targets, showing the minimal improvement for sGDML using ∆-DFT
compared to the models proposed in this work.

ML Model EsML[nDFT
ML ] sGDML [5]

DFT 0.99 0.072
CC 1.10 0.052
∆-DFT 0.09 0.049

A likely reason for this is that sGDML uses forces for training, which contain more information
than just the energy. This means that the prediction accuracy for sGDML converges more quickly, so
it cannot benefit from ∆-learning as much.

Using ∆-DFT with molecular symmetry.

Supplementary Table 2: MAEs (kcal·mol−1) of the ML maps for ethanol trained on 1000 samples, with and without
augmenting the dataset using symmetry operations.

Dataset/Model EDFT
ML [nDFT

ML ] ECC
ML[nDFT

ML ] ECC
∆-DFT[nDFT

ML ]

With symmetries 0.99 1.10 0.09
No symmetries 1.73 1.92 0.15
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1.3 Benzene dataset

Training and test set data for benzene is from the MD17 dataset [4, 5], with the addition of the
geometry optimized using MP2/6-31g∗ in Gaussian09 [6]. The specific data generation methods are
reported in Refs. [4, 5]. Briefly, the conformers were generated using DFT-MD at 500 K (PBE+TS)
and the coupled cluster energies use CCSD(T)/cc-pVDZ. To normalize the molecular positions, the
optimized geometry is aligned with all C atoms in the xy-plane, and two atoms on the y-axis. The 1000
unique geometries in the MD17 training set are aligned by minimizing the root mean squared deviation
of C atoms (RMSDC) from the optimized structure, with an RMSDC of 0.045 Å for the training data
and 0.046 Å for the test data. Benzene is a highly symmetric molecule, and using our symmetrization
approach increases the effective dataset size by a factor of 24. Supplementary Fig. 7 shows the atomic
distributions of the benzene datasets after alignment and inclusion of symmetry-generated training
points.

(a) (b) (c)

Supplementary Figure 7: Distribution of benzene geometries included in the MD17 dataset, including geometries of a)
the original 1001 point training set, b) the 24,001 point effective training set generated using symmetry operations, and
c) the 500 point test set.

For each dataset and electronic structure method (including the ML models), we report energies
relative to the optimized MP2/6-31g∗ geometry (included in the training set). The relative energy
errors using the conventional DFT method are shown in Supplementary Fig. 8, with maximum relative
energy errors of 3.2 kcal·mol−1 and 3.0 kcal·mol−1 for geometries included in the training and test
sets, respectively. We note that for all benzene coupled cluster calculations, the T1 diagnostic is below
0.02, so a single reference method is appropriate.

(a) (b)

Supplementary Figure 8: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for a) the 1000 unique benzene geometries in the training set and b) the 500 benzene geometries in the test
set.
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Supplementary Table 3: MAEs (kcal·mol−1) of the sML maps for benzene trained on 1000 MD17 samples, compared
to other published state-of-the-art ML models that use forces in addition to energies.

ML method EsML[nDFT
sML ] Es∆-DFT[nDFT

sML ] ESchNet [7] EsGDML [5]
DFT 0.02 n/a 0.08 (1.19a) 0.10
CC 0.03 0.01 n/d 0.004
a EDFT

SchNet trained on energies alone; n/a = not applicable, n/d = not determined.

In addition to the self-consistent densities from fully converged DFT calculations, we also
generate input electron densities from a standard initial guess in electronic structure calculations: the
superposition of atomic densities (SAD). The energy returned by the DFT functional prior to any
density optimization steps is EDFT[nSAD]. Supplementary Fig. 9 shows the relative energy errors
compared to the CC values for each conformer, using ESAD of the MP2/6-31g∗ optimized geometry
as the reference. The ESAD range is considerably larger than for the converged calculations, with a
variance that is seven times larger and a qualitatively different distribution of energy errors.

Supplementary Figure 9: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for the MD17 training data evaluated using superpositions of atomic densities (open circles) and converged
densities (filled circles, same data as in Supplementary Fig. 8a).

Relevant dimensionality estimation of different density types. To further analyze the
effect of using different types of densities as input descriptors, we used relevant dimensionality
estimation (RDE) [8]. With kernel based methods, the relevant information for a supervised learning
problem is contained up to a negligible error in the feature subspace defined by a leading number of
components given by kernel principal component analysis (PCA) [9]. RDE allows us to estimate the
dimensionality of the subspace containing the label-relevant information, thereby giving us a way to
quantify the effective complexity that each of the ML models requires to predict the energy labels
using different types of density descriptors.

To obtain the RDE of a kernel ridge regression model, we perform kernel PCA [9] in the feature
space of the kernel, where we obtain the kernel PCA components c1, . . . , cM as the eigenvectors of
the kernel matrix. Subsequently, we determine the number of label relevant dimensions d in the feature
space, which is the number of leading kernel PCA components needed to accurately reconstruct the
labels. The labels are reconstructed by projecting them on the leading d kernel PCA components:
Ŷ(d) =

∑d
i=1 cic

T
i Y. In our case labels denote the respective energies (CC or PBE).

Finally, number of relevant dimensions d is estimated by minimizing the following objective
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function [8]:

L(d) =
d

M
log(σ2

1) +
M − d
M

log(σ2
2)

where si = cTi Y, σ2
1 =

1

d

d∑
i=1

s2
i and

1

M − d

M∑
i=d+1

s2
i .

(1)

Given an optimized number of relevant dimensions d, we can estimate the noise level of the labels
as the error of the reconstructed labels Ŷ(d) with respect to the true labels Y. Additionally, we can
estimate the signal-to-noise ratio as:

SNR(d) =
Var(Ŷ(d))

Var(Ŷ(d)−Y)
. (2)

The resulting estimates for the relevant dimensions, noise level, and signal-to-noise ratio obtained by
applying RDE to the different ML models are shown in Supplementary Tables 4, 5, 6.

Supplementary Table 4: Estimated relevant dimensions for the different density and energy types used for the benzene.

Density/Energy EDFT
sML ECC

sML ECC
s∆-DFT ESAD

sML ECC
s∆-SAD

nDFT 3432 3475 2632 n/d n/d

nDFT
sML 3413 3452 2061 n/d n/d

nSAD 3436 3436 3251 2647 2021
n/d = not determined

Supplementary Table 5: Estimated label noise level based on the estimated relevant dimensions for the different
density and energy types used for the benzene.

Density/Energy EDFT
sML ECC

sML ECC
s∆-DFT ESAD

sML ECC
s∆-SAD

nDFT 0.05 0.05 0.01 n/d n/d

nDFT
sML 0.05 0.06 0.01 n/d n/d

nSAD 0.07 0.08 0.01 0.15 0.16
n/d = not determined

Supplementary Table 6: Estimated label signal-to-noise ratio based on the estimated relevant dimensions for the
different density and energy types used for the benzene.

Density/Energy EDFT
sML ECC

sML ECC
s∆-DFT ESAD

sML ECC
s∆-SAD

nDFT 1196.56 1208.05 4335.93 n/d n/d

nDFT
sML 1162.68 1161.95 4010.18 n/d n/d

nSAD 661.39 623.38 3639.97 677.66 374.98
n/d = not determined
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1.4 Resorcinol dataset

In order to construct the ML functionals, the resorcinol datasets were generated using standard
classical MD simulations. To sample more extreme geometries, training set points were selected from
a 500 K trajectory, while the test set was taken from a 300 K simulation. After aligning the molecules
to have all C atoms in one plane, RMSDC is 0.045 Å for the 300 K dataset and 0.053 Å for the
500 K dataset. Supplementary Fig. 10 shows the geometries and C-C-O-H dihedral angles in the
original training set, the training set with symmetry operations applied, and the test set. The finite
temperature classical MD simulations primarily sample geometries around the minimum energies, but
all conformers are more than 7 kcal·mol−1 higher in energy than the global minimum. The all-electron
CCSD(T)/cc-pVDZ [3] calculations were run using Orca v.3.0.3 [2], and the single reference wave
functions have a maximum T1 diagnostic of 0.012 for all conformers.

(a) (b) (c)

Supplementary Figure 10: Sampled geometries for resorcinol showing atom distribution (top) and distribution of the
dihedral angle of the two -OH groups (bottom) for the 1004 point training set (a), 4004 point training set generated
with molecular symmetry operations (b), and 1000 point test set (c). The minimum energy conformers are shown as
sticks and open black diamonds.
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(a) (b)

Supplementary Figure 11: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for a) the 1000 unique resorcinol geometries in the training set (additional four minima not shown) and b) the
1000 resorcinol geometries in the test set.

Resorcinol rotational barrier. The sparse sampling of geometries away from the minima is due
to an energy barrier for each OH group rotation. For an optimized geometry, rotation of a single
OH requires crossing an energy barrier of almost 4 kcal·mol−1 based on CC calculations, as shown in
Supplementary Fig. 12. The barrier height based on PBE energies is even larger, but can successfully
be corrected using the ∆-DFT approach.

Supplementary Figure 12: Relative energies for DFT and CC showing the difference in the OH rotational barrier
between the two methods, along with the energy predicted by the ECC

s∆-DFT[nDFT
sML ] energy map.

Resorcinol model performance. Supplementary Fig. 13 shows the MAE of the different ML
models for different training set sizes of the resorcinol dataset. Each training set is chosen from the
original 1000 points using k-means and then expanded using the four symmetry operations prior to
training. The ∆-DFT model has an error below 1 kcal·mol−1 when using only 25 data points. In this
manuscript, model performance results and MD simulations are run using the full 1004 point training
set to facilitate comparison between the best direct energy models and the ECC

s∆-DFT approach.
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Supplementary Figure 13: Comparison of the out-of-sample prediction performance for the DFT, CC, and ∆-DFT
energy prediction models for different training set sizes.

For resorcinol, using true densities rather than ML-HK densities as input improves the performance
for the direct ML models more than in the case of benzene (see Supplementary Table 7). In contrast,
the ∆-DFT model error is considerably smaller than either direct model and is unaffected by the
accuracy of the electron density, indicating again that the ∆-DFT approach is robust and the energy
difference landscape is smoother and easier to learn than the total energy itself.

Supplementary Table 7: MAEs (kcal·mol−1) of the ML models trained on different electronic structure energies for
densities learned by the ML-HK map and true densities as inputs.

Density/Energy EDFT
sML ECC

sML ECC
s∆-DFT

nDFT 0.94 0.99 0.11

nDFT
sML 1.26 1.37 0.11

Resorcinol DFT-based MD. For a DFT-based MD simulation, resorcinol samples two different
conformational basins during a 10 ps NVT simulation at 350 K. The aligned atomic positions and
C-C-O-H dihedral angles are shown in Supplementary Fig. 14.
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(a)

(b)

Supplementary Figure 14: DFT-based MD for resorcinol at 350 K samples two conformational basins with a) atomic
coordinates after alignment for the 10 ps trajectory, and b) the C-C-O-H dihedral angles during the trajectory, with the
portion of the trajectory that crosses the rotational energy barrier highlighted with open circles and local minima shown
as open diamonds.

Starting from an initial condition close to the barrier crossing event, a DFT-based MD simulation
was run using NVE for 1.5 ps. The relative CC energy for snapshots along this trajectory are shown
in Supplementary Fig. 15 along with the relative energy errors of the DFT calculations themselves
(relative to CC).

Supplementary Figure 15: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for an NVE DFT-based MD trajectory for resorcinol starting from an initial condition near the barrier crossing.

Resorcinol ML-MD. The ECC
s∆-DFT[nDFT

sML ] model can be used to generate a self-consistent MD
trajectory, as seen in Supplementary Fig. 16. Starting from a random training point, the 150 fs
trajectory has a MAE of only 0.2 kcal·mol−1 relative to the true CC energies. There is no drift in
energy error as the trajectory proceeds, indicating that the ∆-DFT approach is stable for a range of
conformers.
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Supplementary Figure 16: ECC
s∆-DFT[nDFT

sML ] energy along the self-generated trajectory is shown in the top panel. The
MAE relative to CC is 0.2 kcal·mol−1, which is smaller than the linewidth, so the energy error is shown separately in
the bottom panel.

Resorcinol multiple time-step MD. The ECC
sML[nDFT

sML ] model can also be used to generate a
self-consistent MD trajectory. Starting from an initial condition (atomic positions and velocities) from
the DFT-based NVT simulation, the ECC

sML[nDFT
sML ] trajectory explores a region of phase space outside

of the training set, as seen in the error relative to CC shown in Supplementary Fig. 17a. The sparsity
of training data near this initial position leads to uncertainty in the model. This issue can be mitigated
by correcting the forces every few steps using the ECC

s∆-DFT[nDFT
sML ] model (see Supplementary Methods

3.4) to prevent excursions into high energy regions. Correcting the forces every fifth time step (m = 5)
using the ECC

s∆-DFT[nDFT
sML ] model already improves the conformer sampling (Supplementary Fig. 17b),

with a similar performance seen for a m = 3 trajectory (Supplementary Fig. 17c). The trajectories
shown in Supplementary Fig. 17c and d are the same as in Fig. 3b.
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Supplementary Figure 17: For NVE trajectories starting from the same initial condition, ECC
sML trajectory energies are

shown in the top panels (with errors relative to the true CC energies shown as shaded regions) and conserved quantities
in the bottom panels for a) a simulation run with ECC

sML[nDFT
sML ] energies and forces, b) a ECC

sML[nDFT
sML ] simulation

where the ECC
s∆-DFT[nDFT

sML ] is used to correct the forces every fifth time step, c) a ECC
sML[nDFT

sML ] simulation where the
ECC

s∆-DFT[nDFT
sML ] is used to correct the forces every third time step, and d) a ECC

s∆-DFT[nDFT
sML ] simulation.
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1.5 Phenol dataset

Phenol datasets were generated using standard classical MD simulations. As for resorcinol, training
set points were selected from a 500 K trajectory, while the test set was taken from a 300 K simulation.
After aligning the molecules based on C atom RMSD to the equilibrium geometry, RMSDC is 0.043 Å
for the 300 K dataset and 0.052 Å for the 500 K dataset. In the finite temperature classical MD
simulations, all sampled conformers are higher in energy than the global minimum by more than
5 kcal·mol−1 for the 500 K training trajectory and more than 2 kcal·mol−1 for the 300 K test trajectory.
The all-electron CCSD(T)/cc-pVDZ [3] calculations were run using Orca v.3.0.3 [2], and the single
reference wave functions have a maximum T1 diagnostic of 0.010 for all conformers.

(a) (b)

Supplementary Figure 18: Relative energy errors (CC-DFT) plotted against the relative conformer energy calculated
using CC for a) the 1000 unique phenol geometries in the training set (minimum geometry not shown) and b) the 1000
phenol geometries in the test set.
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1.6 Combining densities for improved sampling

Electron density datasets can include data from multiple molecules since the Fourier basis representation
does not depend on the type, number, or order of atoms in a molecule of interest. As an example, we
combine the previously discussed training data for benzene (from MD17 dataset [4, 5]) and resorcinol
(from classical MD) with phenol (sampled from classical MD, see Methods section). The models are
evaluated on the resorcinol test set.

When adding the phenol molecules to the resorcinol dataset, the molecule is aligned so that the
OH group is in the same orientation as one of the OH groups of resorcinol. When symmetrizing the
1000 sampled geometries, we obtain an effective dataset of 4000 points. Supplementary Table 8 shows
the performance for the combined model of resorcinol and phenol aligned with one OH group. Since
resorcinol has more than one alcohol, we also generated an 8000 point training set by reflecting each
symmetrized phenol molecule to align the OH with each of the two OH groups of resorcinol. Despite
both models using the same 1000 energy labels, the doubled model shows improved performance and
these results are reported in Tables 4, 5, and Supplementary Table 10.

Supplementary Table 8: MAEs (kcal·mol−1) for the combined dataset of resorcinol and phenol (with one OH aligned)
evaluated on the resorcinol test set.

Density/Energy EPBE
sML ECC

sML ECC
s∆-DFT

nDFT 0.74 0.79 0.07

nDFT
sML 1.10 1.15 0.09

nDFT
sML−c 0.89 0.94 0.08

Supplementary Table 9: MAEs (kcal·mol−1) for the combined dataset of resorcinol and benzene evaluated on the
resorcinol test set.

Density/Energy EPBE
sML ECC

sML ECC
s∆-DFT

nDFT 1.04 1.12 0.09

nDFT
sML 1.10 1.17 0.11

nDFT
sML−c 1.19 1.29 0.14

Supplementary Table 10: Comparison of the EDFT
sML MAEs (kcal·mol−1) for the DFT energy models trained on different

combinations of the resorcinol, phenol, and benzene datasets evaluated on the resorcinol test set.

resorcinol resorcinol
phenol

resorcinol
phenol
benzene

nDFT 0.94 0.49 0.45

nDFT
sML 1.26 0.98 0.66

nDFT
sML−c n/a 0.65 0.68
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2 Supplementary Discussion

2.1 Using non-self-consistent densities

Our model appears to violate one of the basic results of density functional theory, as it produces
CCSD(T) energies from PBE densities. Hohenberg and Kohn [10] showed that, for any given
approximate energy functional, one can minimize the energy functional to find a self-consistent
formula for the density. The Kohn-Sham scheme is defined [11] to find that density when only the
exchange-correlation contribution to the energy is approximated. The purpose of this section is show
how the self-consistent density could be found, at least in principle, and also to argue that the energetic
consequences of using the PBE density would be negligible here.

There is an exact formula for extracting the energy from any approximation for the ground-state
energy for a given external potential [12]:

n(r) =
δE[v]

δv(r)
(3)

where E[v] is the ground-state energy associated with one-body potential v(r). This could be used to
extract a density pointwise from any such approximation: Add a small narrow Gaussian centered at r0

to v(r), and note the corresponding change in energy. In the limit of infinitely narrow, infinitely weak
perturbations, this yields the density at r0. Of course, such a procedure is highly impractical in a
standard basis set of atom-centered Gaussians, but could be easily employed to find specific moments
of the density. If the perturbation is a weak static electric field, the prescription yields the dipole
moment, as can be seen by multiplying both sides by r and integrating over all space.

Almost all electronic structure calculations in chemistry and materials science are aimed at finding
accurate ground-state energies and the many properties that can be derived from them, such as
geometries and barriers. The error in any DFT calculation can be split into two contributions, the
functional error and a density-driven error (the energy error due to an incorrect density) [13]. In most
DFT calculations (including all those given here), the self-consistent density is so accurate that the
energy error is dominated by the functional error [14]: using the exact density in the approximate
functional has negligible effect on the energy error. Recent arguments that attempt to distinguish the
quality of functionals by constructing metrics of density errors [15] have not held up when analyzed in
terms of energies [14].

We can use Supplementary Eq. (3) to analyze the present situation. We know it must be satisfied
by the PBE density and energy functional. Thus the difference between the PBE and CCSD(T)
densities is simply

∆n(r) =
δ∆EPBE[v]

δv(r)
. (4)

This will be a very small energy for normal systems. The fact that the energy difference is easier
to learn than the PBE energy itself suggests a smoothness of energy difference with respect to the
potential, making density differences tiny.

We also note an additional twist on this question in the context of machine learning. Long ago,
Görling and Levy [16] and others pointed out that one could define an exact energy functional on an
approximate density, such as the HF density. In fact, as was noted by Li et al. [17], to learn accurate
energies, a very crude representation of the density suffices, so long as it forms a sufficiently useful
feature for the energy. In a prototype problem (particle in a box with potential well), with even a very
small grid (far too coarse to find accurate solutions to the Schrödinger equation) and essentially exact
energies, one could still use kernel ridge regression to find a highly accurate ML functional.

Thus use of PBE densities to find CCSD(T) energies is both practical and theoretically allowed
and well understood. On the practical side, it completely avoids the need to extract CCSD(T)
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densities to train upon. Because the density is not needed to perform a CCSD(T) calculation, it is
not available from many CCSD(T) codes. On the theoretical side, we know (a) the errors in energies
will be very small, (b) how to correct them if need be, and (c) that the kernel ridge regression has
no difficulty learning on the PBE density. We note that the models using the SAD approximation
perform reasonably well when assigned energy labels corresponding to the self-consistent PBE density.
When using the PBE energies evaluated on the SAD density, the model errors are considerably worse,
indicating that using a density that reflects the bonding environment is an important consideration if
accurate energies are required.

On the other hand, use of non-self-consistent densities breaks the standard relation between
energies and forces from the Hellmann-Feynman theorem, and small errors in energies do not
automatically imply small errors in forces. Since we use numerical derivatives of energies throughout
this paper, we extract the correct forces, but there will be corrections if analytical derivatives are
attempted. Whether or not these are significant is beyond the scope of the present work.

2.2 Challenges when comparing combined models

The combined density model is a step towards a more universal machine learned density functional that
can be used for CC level simulations across a wider range of molecules. Other published ML models
aim to provide energies for many molecules, and it appears tempting to compare their performance to
our density-based approach. For example, ANI-CC is a general neural network potential that has been
trained on approximate CCSD(T) energies of a wide range of molecules [18]. However, a number of
differences in model construction mean that a direct comparison of these energies with the current
model is not one-to-one. As the ML methods are trained for different energy targets, we instead are
required to use relative energies, with the global minimum geometry of resorcinol as the zero point.

When evaluated on our resorcinol test set, the ANI-CC model has a mean absolute difference
(MAD) of 1.78 kcal·mol−1. Comparing this error to the results in Table ??, we see that our combined
model of resorcinol, phenol and benzene differs from ANI-CC by more than a factor of two when
directly predicting the ECC, and by more than a factor of 20 for the ∆-DFT variant.

This result was to be expected, since ANI-CC and our model differ in many respects, including
the very energy targets to be returned and the training data selection. The density-based ML models
have been trained specifically to reproduce the geometry fluctuations of a few related molecules, rather
than including many functional groups. In the general, while the relative energies of both model types
are strongly correlated, they still represent different training goals. Users of the ∆-DFT approach need
to fully understand that the energy correction is trained to link a specific DFT calculation (functional
and basis set) to a specific CC energy (type of excitations and basis set).
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3 Supplementary Methods

3.1 Kernel ridge regression

Kernel ridge regression (KRR) [19] is a powerful machine learning method for non-linear regression.
Non-linearity is achieved by incorporating the kernel trick into Kernel ridge regression, extending
linear ridge regression, which finds the optimal linear mapping from the inputs to the labels under
`2 regularization, by exploiting the kernel trick to map the inputs to a high-dimensional non-linear
feature space. Let x1, . . . ,xM ∈ Rd be the training data points and let Y = [y1, . . . ,yM ]

T be their
respective labels. The KRR model for a new input sample x∗ is then given by:

y∗ =

M∑
i=1

αjk(x∗,xi), (5)

where k is a kernel function and α = [α1, . . . , αM ]T are the model weights. The model weights are
obtained by solving the following optimization problem:

min
α


m∑
i=1

∣∣∣∣∣∣yi −
m∑
j=1

αjk(xi,xj)

∣∣∣∣∣∣
2

+ λαKα

 (6)

where λ is a regularization parameter and K is the kernel matrix with Kij = k(xi,xj). The analytical
solution to the minimization problem is then given by

α = (K + λI)
−1

Y. (7)

In this paper we use the Gaussian (radial basis function) kernel

k(x,x′) = exp

(
−||x− x′||2

2σ2

)
, (8)

where the kernel width σ is a model parameter that needs to be tuned using cross-validation.

3.2 Decomposability of the ML-HK map

When using the ML-HK map to predict electron density, the contributions of the prediction error to
the cost function are given by

err(β) =

M∑
i=1

‖ni − nML[vi]‖2L2

=

M∑
i=1

∥∥∥∥∥ni −
L∑
l=1

u
(l)
ML[vi]φl

∥∥∥∥∥
2

L2

.

(9)
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By writing the density in terms of its basis representation and assuming orthogonality of the basis
functions we obtain

err(β) =

M∑
i=1

∥∥∥∥∥
L∑
l=1

u
(l)
i φl −

L∑
l=1

u
(l)
ML[vi]φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∥∥∥∥∥
L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)
φl

∥∥∥∥∥
2

L2

=

M∑
i=1

∫ L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)
φl(r)

L∑
l′=1

(
u

(l′)
i − u(l′)

ML[vi]
)
φ∗l′(r)dr

=

M∑
i=1

L∑
l,l′=1

(
u

(l)
i − u

(l)
ML[vi]

)(
u

(l′)
i − u(l′)

ML[vi]
)∫

φl(r)φ∗l′(r)dr

=

M∑
i=1

L∑
l=1

(
u

(l)
i − u

(l)
ML[vi]

)2

=
M∑
i=1

L∑
l=1

u(l)
i −

M∑
j=1

β
(l)
j k(vi,vj)

2

.

(10)

The resulting equation shows that the error can be decomposed into the independent error
contributions for each of the basis coefficients. By viewing the errors independently we obtain L
separate KRR minimization problems, and analogously to equations 6 and 7 we obtain the analytical
solutions

β(l) =
(
Kσ(l) + λ(l)I

)−1

u(l), l = 1, . . . , L, (11)

where for each basis function φl, λ(l) is a regularization parameter, u(l) is a vector containing the
training set coefficients for the l-th basis function and Kσ(l) is a Gaussian kernel matrix with width
σ(l).

3.3 Cross-validation

All hyperparameters used in the model are estimated solely on the training set. The width γ and
spacing ∆ hyperparameters for the artificial Gaussians potential as well as the kernel width σ and
the regularization parameter λ were optimized individually for each molecule. In both cases the
hyperparameter optimization was performed using cross-validation [20] on the training set. After
training and cross-validation, the model is fixed and is applied unchanged on the out-of-sample test
set. The optimal hyperparameters for the artificial potentials grid selected using the cross-validation
procedure are given in Supplementary Table 11. In order to speed up the search for hyperparameters
for the KRR models, we use a fixed regularization hyperparameter value of λ = 2.22 ∗ 10−16, while
only optimizing the kernel width σ. While this may not yield optimal results, in our experience it does
not affect the performance significantly, while greatly speeding up the computation time required for
cross-validation. Supplementary Tables 12, 13, 14, and 15 show the resulting optimized values for the
kernel width σ across the different models and molecules.
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Supplementary Table 11: Hyperparameter values for the artificial Gaussians potential selected by cross-validation for
every molecule.

Parameters/Molecule Water Ethanol Benzene Resorcinol

Grid spacing 0.33 0.19 0.20 0.20

Gaussian width γ 0.60 0.36 0.42 0.42

Supplementary Table 12: Kernel width parameters selected by cross-validation for the different KRR models for the
water dataset.

Water
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 7.98 20982 30738 49397629

Supplementary Table 13: Kernel width parameters selected by cross-validation for the different KRR models for the
ethanol dataset.

Ethanol
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 423.9 126976.19 126976.19 409446.22

Supplementary Table 14: Kernel width parameters selected by cross-validation for the different KRR models for the
benzene dataset.

Benzene
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 462.7 36308.7 81415.9 165160.4

Supplementary Table 15: Kernel width parameters selected by cross-validation for the different KRR models for the
resorcinol dataset.

Resorcinol
Parameter/Model nDFT

ML EDFT
ML ECC

ML ECC
∆-DFT

Kernel width σ 302.74 160793.66 345085.9 955296.68

21



3.4 Multiple time-step molecular dynamics in the ML framework

The generation of a molecular dynamics (MD) trajectory via numerical solution of the equations of
motion Ṙα = Pα/Mα, Ṗα = Fα, possibly also coupled to a thermostat, where α = 1, ..., N indexes
the N atoms, Mα is the mass of the αth atom, Pα is its momentum, Rα is its position, and Fα is
the force on this atom. In DFT, if the true external potential is vext(r,R), where R denotes the full
set of atomic coordinates, then the force is given by

Fα = −
∫

dr n(r)∇αvext(r,R) + Fα,NN

≡ F(elec)
α + Fα,NN (12)

where Fα,NN is the force due to the nuclear-nuclear electronic repulsion. The first term refers to the
force originating from the electron-nuclear interaction. In the machine-learning framework, the nesting
of functional dependencies, leading to the progression R → v → n → E, such that the electronic
force is given by

F(elec)
α = −

∫
dr dr′

δEML

δnML(r)

δnML(r)

δv(r′,R)
∇αv(r′,R) (13)

In a standard MD calculation, the numerical integration algorithm for generating P steps of MD
using a time step ∆t, is structured according to the pseudocode shown below:

for i in range(P )

for α in range(N)

Pα ← Pα + ∆t ∗ Fα/2
Rα ← Rα + ∆t ∗Pα/Mα

Update Forces

Pα ← Pα + ∆t ∗ Fα/2 (14)

The obvious bottleneck in an MD calculation, which often restricts the value of P , i.e., the time
scale that can be accessed, is the computational overhead associated with the force calculation, as
each step requires a full calculation of Fα. The computational time required to generate an MD
trajectory can be reduced if the force can be subdivided into a component that has a low computational
overhead and a correction that varies on a slower time scale and carries most of the computational
overhead of the full force calculation. Denoting the former of these as a reference for F(ref)

α and
the correction as δFα, the full force is then Fα = F

(ref)
α + δFα. With this force decomposition, a

reversible, symplectic multiple time-step integration algorithm can be constructed [21] based on the
assumption that the correction δFα only needs to be updated every m steps, where typically m ∼ 5,
which, if the computational overhead of the reference force calculation is negligible compared to the
correction, will reduce the computational cost of the calculation by a factor of m. The algorithm,
called the reversible reference system propagator algorithm (reversible RESPA), has the same structure
as that shown in Supplementary Eq. (14) with the following provision: In each step, the default is to
use F

(ref)
α in place of Fα in each step, and the force update is only an update of the reference force;

every m steps, however, one uses the force F
(ref)
α +mδFα, and the force update requires calculation

of both the reference force and the correction.
In our ∆-machine learning approach, a natural force decomposition arises from the expression for

the energy

ECC[n] = EDFT[n] + ∆EML[n]

= ECC
ML[n] +

(
EDFT[n] + ∆EML[n]− ECC

ML[n]
)

≡ ECC
ML[n] + δEML[n] (15)
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where the density n(r) is either the explicit PBE density or the density from the Hohenberg-Kohn map.
Note that, in the second line, we have added and subtracted the direct CCSD(T) ML model. We,
thus, associated the force obtained from EML[n] with the reference force F

(ref)
α , the computational

overhead of which is quite low. We then associate the correction δFα with the energy correction
δEML[n]. As this term requires a full DFT calculation, its computational overhead is significantly
higher, and the overall reduction in computational time is very nearly equal to the value of m.
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