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Fig. S1 Framework of the integrated assessment in this study.  
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Fig. S2 China's annual actual emissions (i.e., with controls) from on-road vehicles (blue) 

and the impacts of vehicle control programs on emissions (orange) from 1998 to 2015. 

a) NMVOCs, b) CO, c) NOX, and d) PM2.5. 
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Fig. S3 Decomposition of the changes in vehicular emissions of CO, NMVOCs and PM2.5 

during the periods of 2005-2010 and 2010-2015, respectively. a) CO, b) NMVOCs, and 

c) PM2.5. The gray bars represent the annual actual vehicle emissions (i.e., with controls). 

The dark colored bars on the left of dashed line represent the impacts of vehicle 

kilometers traveled (VKT) by various vehicle fleets on driving the emissions growth 

during each period. And the light colored bars on the right of dashed line represent the 

impacts of vehicle control programs on driving the emissions decline. Vehicle fleets 

include heavy-duty trucks (HDTs), light-duty truck (LDT), medium-duty passenger vehicle 

(MDPV), heavy-duty passenger vehicle (HDPV), light-duty passenger vehicle (LDPV), 

motorcycle, taxi and bus.  
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Fig. S4 The proportions of vehicular emissions of NMVOCs, CO, PM2.5 and NOX lower 

than they would have been without controls in 2005, 2010 and 2015. 
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Fig. S5 Impacts of vehicle control programs since 1998 on ambient a) PM2.5 and b) O3 

concentrations across China in 2005, 2010 and 2015. Black and red columns represent 

the population weighted and spatial average of annual concentrations, respectively. The 

data of impacts represent the projected difference between with and without control 

scenarios. Positive values imply the actual (i.e., with controls) annual average PM2.5 (or 

O3) concentrations in that year are lower than it would have been without controls, and 

vice versa.  
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Fig. S6 Geographic distribution of the impacts of vehicle control programs since 1998 

on annual average PM2.5 concentrations (left column) and related deaths (right column) 

in 2005, 2010 and 2015. The data of impacts represent the projected difference between 

with and without control scenarios. Positive values imply the actual (i.e., with controls) 

annual average PM2.5 concentrations and deaths in that year are lower than they would 

have been without controls, and vice versa.  
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Fig. S7 The actual (i.e., with controls) vehicular emissions (orange columns), the 

projected impacts of vehicle control programs on mitigating emissions (i.e., difference 

in emissions between with and without controls) of NMVOCs, PM2.5, NOX and CO (blue 

columns), and the corresponding reduction proportion (points) for various provinces 

of China in 2015. 
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Fig. S8 Geographic distribution of the impacts of vehicle control programs since 1998 

on seasonal (April-September) average 8h maximum O3 concentrations (left) and 

related deaths (right) in 2005, 2010 and 2015. The data of impacts represent the 

projected difference between with and without control scenarios. Positive values imply 

the actual (i.e., with controls) O3 concentrations and deaths in that year are lower than 

they would have been without controls, and vice versa.  
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Table S1 Impacts of vehicle control programs since 1998 on annual average PM2.5 

concentrations of various provinces in 2005, 2010 and 2015.  

Province 

Spatial average 

(μg/m3) 

Population weighted average 

(μg/m3) 

2005 2010 2015 2005 2010 2015 

Jilin 0.98 2.99 6.82 1.27 3.96 8.81 

Heilongjiang 0.54 1.73 3.53 1.21 3.79 8.05 

Hebei 1.57 5.12 10.22 2.17 7.27 12.52 

Liaoning 1.28 3.85 10.44 1.63 4.53 12.45 

Tianjin 2.72 8.05 18.31 3.51 9.33 23.26 

Beijing 1.73 6.06 14.19 3.17 11.13 33.44 

Shanghai 3.00 8.57 27.14 3.64 10.15 28.17 

Zhejiang 1.42 4.25 14.51 1.73 5.40 17.36 

Jiangsu 2.16 7.52 22.05 2.33 8.12 23.88 

Shandong 1.93 6.29 15.22 1.97 6.59 15.80 

Hainan 0.53 0.85 2.83 1.11 1.57 5.09 

Fujian 0.92 2.44 7.14 1.03 2.81 7.78 

Guangdong 1.72 3.78 10.24 2.58 4.98 14.11 

Jiangxi 1.65 3.99 11.04 1.88 4.69 11.52 

Hunan 1.59 3.70 8.12 1.73 4.09 7.93 

Anhui 1.99 5.85 17.44 2.12 6.31 17.17 

Hubei 1.51 3.95 9.36 2.03 4.89 11.40 

Shanxi 1.07 2.65 5.13 1.36 3.23 5.26 

Henan 1.77 5.60 11.22 2.03 6.54 11.84 

Qinghai 0.18 0.37 0.43 0.93 2.36 2.18 

Ningxia 0.81 1.80 3.08 0.84 2.09 3.65 

Gansu 0.57 1.14 1.89 1.11 2.20 3.51 

Xinjiang 0.72 0.37 0.64 4.12 1.16 1.78 

Shaanxi 0.94 2.29 4.94 1.46 3.47 7.46 

Inner Mongolia 0.27 0.76 1.46 0.62 1.72 3.33 

Chongqing 1.08 3.09 6.79 1.27 3.51 7.21 

Guangxi 1.28 3.11 7.36 1.44 3.56 8.47 

Guizhou 1.00 2.28 4.64 0.95 2.19 4.01 

Yunnan 0.44 0.96 1.74 0.61 1.31 2.46 

Sichuan 0.57 1.56 2.65 1.54 4.19 6.21 

Tibet 0.02 -0.05 0.00 0.03 0.02 0.30 

Total 0.73 1.69 3.86 1.82 4.97 11.75 
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Table S2 Impacts of vehicle control programs since 1998 on mortality attributable to 

ambient PM2.5 of various provinces in 2005, 2010 and 2015. 

Province 2005 2010 2015 

Jilin 921 2,978 6,867 

Heilongjiang 1,257 4,077 8,843 

Hebei 3,548 12,471 23,952 

Liaoning 1,851 5,477 15,365 

Tianjin 833 2,694 8,189 

Beijing 1,178 5,197 17,129 

Shanghai 1,678 5,930 18,423 

Zhejiang 2,305 8,433 31,466 

Jiangsu 4,218 15,588 47,858 

Shandong 4,342 14,869 40,673 

Hainan 259 435 1,608 

Fujian 1,119 3,367 10,843 

Guangdong 6,264 14,542 51,479 

Jiangxi 2,097 5,706 17,287 

Hunan 2,764 7,152 16,627 

Anhui 3,148 9,322 27,183 

Hubei 2,798 7,059 18,871 

Shanxi 1,312 3,512 7,077 

Henan 4,599 15,224 31,337 

Qinghai 152 413 505 

Ningxia 139 383 793 

Gansu 780 1,669 3,053 

Xinjiang 2,878 979 1,878 

Shaanxi 1,420 3,633 8,399 

Inner Mongolia 523 1,423 3,206 

Chongqing 955 2,800 6,602 

Guangxi 1,755 4,529 12,695 

Guizhou 933 2,144 4,353 

Yunnan 817 1,915 4,378 

Sichuan 3,187 8,987 15,604 

Tibet 5 24 136 

Total 60,035 172,932 462,679 
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Table S3 Impacts of vehicle control programs since 1998 on seasonal (April–September) 

8h maximum O3 concentrations (spatial average) and related mortality of various 

provinces in 2005, 2010 and 2015. 

Province 
Impact on O3 concentration (ppb) Impact on mortality (COPD) 

2005 2010 2015 2005 2010 2015 

Jilin 1.48  3.87  6.11  211 438 743 

Heilongjiang 0.75  1.99  3.02  201 414 645 

Hebei 2.30  7.00  11.57  762 2,123 3,741 

Liaoning 1.70  4.66  7.56  296 686 955 

Tianjin 2.13  8.38  12.30  90 449 594 

Beijing 2.58  10.07  14.15  -270 -101 -955 

Shanghai 0.88  3.64  10.15  -55 -11 853 

Zhejiang 1.83  7.04  11.45  402 1,624 3,009 

Jiangsu 1.97  6.12  11.57  621 1,611 3,454 

Shandong 2.10  6.17  11.13  973 2,499 4,697 

Hainan 0.34  0.55  1.11  29 -2 90 

Fujian 1.59  5.11  7.05  215 596 850 

Guangdong 1.49  4.74  7.01  225 1,218 2,171 

Jiangxi 2.18  6.64  9.75  458 1,287 1,922 

Hunan 2.01  6.23  9.70  631 1,747 2,738 

Anhui 2.41  7.24  12.03  696 1,800 2,918 

Hubei 2.16  6.52  10.21  602 1,591 2,412 

Shanxi 1.97  5.37  8.95  313 753 1,397 

Henan 2.20  6.39  10.99  997 2,567 4,395 

Qinghai 0.50  1.21  1.36  32 71 107 

Ningxia 1.44  4.06  5.86  39 92 141 

Gansu 1.22  3.23  4.48  215 530 725 

Xinjiang 0.56  0.94  1.19  81 102 160 

Shaanxi 1.86  5.47  8.03  305 780 1,239 

Inner 

Mongolia 

0.76  2.05  3.06  133 286 476 

Chongqing 2.21  6.52  9.23  322 806 1,102 

Guangxi 1.46  4.30  6.48  346 896 1,306 

Guizhou 1.72  5.29  7.64  297 789 1,091 

Yunnan 1.12  3.01  4.05  316 746 1,038 

Sichuan 1.65  4.76  6.36  972 2,348 3,290 

Tibet 0.56  0.94  1.19  6 12 8 

Total 1.05  2.92 4.32  10,461 28,747 47,312 
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Table S4 Impacts of vehicle control programs since 1998 on mortality attributable to 

ambient PM2.5 and O3 of various provinces in 2005, 2010 and 2015. 

Province 2005 2010 2015 

Jilin 1132 3416 7610 

Heilongjiang 1458 4491 9488 

Hebei 4310 14594 27693 

Liaoning 2147 6163 16320 

Tianjin 923 3143 8783 

Beijing 908 5096 16174 

Shanghai 1623 5919 19276 

Zhejiang 2707 10057 34475 

Jiangsu 4839 17199 51312 

Shandong 5315 17368 45370 

Hainan 288 433 1698 

Fujian 1334 3963 11693 

Guangdong 6489 15760 53650 

Jiangxi 2555 6993 19209 

Hunan 3395 8899 19365 

Anhui 3844 11122 30101 

Hubei 3400 8650 21283 

Shanxi 1625 4265 8474 

Henan 5596 17791 35732 

Qinghai 184 484 612 

Ningxia 178 475 934 

Gansu 995 2199 3778 

Xinjiang 2959 1081 2038 

Shaanxi 1725 4413 9638 

Inner Mongolia 656 1709 3682 

Chongqing 1277 3606 7704 

Guangxi 2101 5425 14001 

Guizhou 1230 2933 5444 

Yunnan 1133 2661 5416 

Sichuan 4159 11335 18894 

Tibet 11 36 144 

Total 70496 201679 509991 
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Table S5 Parameters used to describe the overall shape of the concentration-response 

relationship in the GEMM LRI+NCD (Burnett et al., 2018). 

Age Group (years) θj Standard Error θj αj μj j 

Adults (>25) 0.143 0.01807 1.6 15.5 36.8 

25-29 0.1585 0.01477 1.6 15.5 36.8 

30-34 0.1577 0.01470 1.6 15.5 36.8 

35-39 0.157 0.01463 1.6 15.5 36.8 

40-44 0.1558 0.01450 1.6 15.5 36.8 

45-49 0.1532 0.01425 1.6 15.5 36.8 

50-54 0.1499 0.01394 1.6 15.5 36.8 

55-59 0.1462 0.01361 1.6 15.5 36.8 

60-64 0.1421 0.01325 1.6 15.5 36.8 

65-69 0.1374 0.01284 1.6 15.5 36.8 

70-74 0.1319 0.01234 1.6 15.5 36.8 

75-79 0.1253 0.01174 1.6 15.5 36.8 

80+ 0.1141 0.01071 1.6 15.5 36.8 
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Table S6 The cessation lag of impacts of vehicle control programs since 1998 on 

mortality attributable to 2005, 2010 and 2015 ambient PM2.5 pollution, respectively. 

We applied the lag structure recommended by the US EPA Science Advisory Board and 

used in its periodic analysis of Section 812 of the Clean Air Act (Walton, 2010).   

Lag/Year 
The first Year 

2005 2010 2015 

1 18,011 51,879 138,803 

2 7,505 21,616 57,835 

3 7,505 21,616 57,835 

4 7,505 21,616 57,835 

5 7,505 21,616 57,835 

6 800 2,306 6,169 

7 800 2,306 6,169 

8 800 2,306 6,169 

9 800 2,306 6,169 

10 800 2,306 6,169 

11 800 2,306 6,169 

12 800 2,306 6,169 

13 800 2,306 6,169 

14 800 2,306 6,169 

15 800 2,306 6,169 

16 800 2,306 6,169 

17 800 2,306 6,169 

18 800 2,306 6,169 

19 800 2,306 6,169 

20 800 2,306 6,169 

Total 60,035 172,932 462,679 
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Note S1. Scenario vehicular emissions 

We developed detailed emission factors based on vehicle type, emission standards, 

vehicle age, fuel type, and calendar year, to analyze on-road vehicle emissions in China 

(Wu et al., 2016). We developed survival rate functions based on millions of vehicle 

registration and scrappage records from both Tier-1 (e.g., Beijing, Shanghai) and internal 

cities in China, which could facilitate a continuous estimation of vehicle age distribution.  

For light-duty gasoline vehicles (LDPVs; i.e., passenger cars), the emission factors were 

measured based on dynamometer tests of more than one thousand vehicles (Zhang et 

al., 2014), and on a few recent updates based on the measurements of China 5 emission 

standard vehicles. A series of corrections of real-world fuel use conditions, such as 

driving speed, sulfur content of gasoline fuels, travel distance that affect evaporative and 

cold start emissions, have been included. For heavy-duty diesel vehicles, the basic 

emission factors and major correction factors (e.g., vehicle weight, driving speed, and 

auxiliary load) were developed based on portable emission measurement systems 

(Zhang et al., 2014; Wu et al., 2012). As for vehicle mileage, we consulted with the 

environmental authority and obtained the fleet-average annual vehicle kilometers 

traveled (VKT) data from official inspection records. We observed a decline in the fleet-

average annual VKT values of LDPVs, since a large fraction of LDPVs were used for 

commercial purposes around 2000 but since 2010 private use has been predominant. 

For heavy-duty diesel trucks (HDDTs), the fleet-average annual VKT values increased in 

this period due to the enhanced regional and cross-regional freight connectivity that 

required more long-distance travels. See details in Dataset S1A and B for the key 

parameters used to estimate vehicular emissions in this study.  

As shown in Table 1 of the main-text, we designed a “without (w/o) control” scenario to 

represent the emission trends without vehicular emission control programs in China, 

which was developed in our previous study (Wu et al., 2016). Of note, we assumed that 

no vehicle emission controls would be implemented under the w/o scenario except for 

the natural fleet turnover. For example, under the w/o control scenario, in 2015 all new 

vehicles comply with pre-China 1 standards and the fuel quality is set according to the 
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actual level in 1998. Furthermore, subsidized scrappage, promotion of alternative fuel 

vehicles, and enhanced inspection/maintenance (I/M) program, would all be absent 

under the w/o control scenario. We estimate the impacts of vehicle control programs on 

annual emissions as the gap between estimates under with and w/o control scenarios 

from 1998 to 2015. 

The vehicle emissions model is a statistical model based on measurement data. 

Therefore, the uncertainty in emission factors and total emissions could be estimated 

based on the probability distribution functions of all key sensitive parameters. In Zhang 

et al. (2014) and Wu et al. (2016), we have built probability-based distribution functions 

to address the uncertainties of key parameters of the emissions model based on detailed 

experimental data and investigation results. Uncertainties in vehicle emission factors and 

in the total emissions were analyzed with the Monte Carlo simulations by taking account 

of the probability distributions of these key model parameters or input variables. 

Uncertainty ranges of vehicular emissions at a 95% confidence level (CI 95) were 

estimated for each year by running 100 thousand trials of Monte Carlo simulations. The 

uncertainty information of China’s vehicular emissions under the with-control scenarios 

has been updated to 2015 in this study and is shown in the Dataset S1C. For the 

emissions under the w/o control scenario, we referred to the uncertainty ranges (Cl 95) 

estimate for the year of 1998 (i.e., before the implementation of vehicle emission 

controls) under the with control scenario.  
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Note S2. Air pollution exposures modelling 

CMAQ simulating. A one-way, triple-nesting method in the Weather Research and 

Forecasting (WRF) model and Community Multiscale Air Quality (CMAQ) v 5.0.1 model 

was used to simulate the air pollutant concentrations for scenarios with and w/o policy 

intervention. Domain 1 at a grid resolution of 36 km × 36 km covers the Greater China 

region, including Mainland China and part of East Asia and Southeast Asia regions; 

Domain 2 covers the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions 

as a finer-scale case study at a resolution of 4 km × 4 km. 

Consistent with our previous studies (Wang et al., 2011; Zhao et al., 2016; Liang et al., 

2019), we selected WRF simulations for four representative months (January, May, 

August and November) as the meteorological input for the CMAQ simulations. We 

incorporated a two-dimensional volatility basis set (2D-VBS) technique in the CMAQ 

model to improve the secondary organic aerosol (SOA) simulation, because the default 

SOA chemistry used in the CMAQ v 5.0.1 significantly underestimated SOA 

concentrations in China (Zhao et al., 2016).  

Different from the vehicle emissions model, the CMAQ model is an atmospheric physics 

and chemistry-based tool (not a statistical model), and the simulation performance is 

influenced by a series of factors, primarily including the physics and chemistry 

mechanisms applied in the CMAQ model, the accuracy of emission inventory data, and 

the representativeness of meteorological simulations. Previous papers have illustrated 

the detailed model setup (Liang et al., 2019) and validation against field observation 

results (Zhao et al., 2013; 2016). For example, Zhao et al. (2013) verified the good 

agreements of simulated hourly PM2.5 concentrations in Beijing and Shanghai against the 

concurrent observations with the normalized mean bias (NMBs) of -8.5% and -13%, 

respectively, based on cross-season comparisons in May, August and November. We 

recently evaluated the national-scale simulation performance of PM2.5 in 2015 by 

comparing against the ground-level observation data. The monthly NMBs are estimated 

to range from -2% to -34%, with an annual NMB of approximately -10%. Slight 

underpredictions tend to be found in wintertime pollution episodes with rapid growth 
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of PM2.5 mass concentrations, and the photochemistry in the wintertime production of 

secondary aerosol is considered to be one important cause of the underrated PM2.5 

concentrations (Fu et al., 2020). 

For O3, both the air quality simulation and the health impact assessment focus on the 

high-concentration period (e.g., warm season). Ding et al. (2019) evaluated the CMAQ 

simulation results of warm-season O3 concentrations (from April to September) against 

the observation results released by the Ministry of Ecological Environment. The 

comparison metric was daily maximum 8-h averages (MDA) across China (grid resolution 

of 27 km × 36 km). In general, the daily-specific validations suggest most of the 

comparison dates were within the range of 1:2 line to 2:1 line. The validation results for 

2015 following the same method show that the monthly NMBs range from +2% to +19% 

with an average of +9.8%.   

Calibrating of simulated concentrations. Different from many other studies simply 

relying on air quality simulation results (e.g., Liang et al., 2019), we further utilized 

satellite retrieved and other observation data to correct the potential simulation bias 

(see SI Appendix, Fig. S9) caused by the imperfect meteorological data and/or 

incomplete atmospheric chemical reaction schemes (US EPA, 2007; Wang et al., 2017; 

Zhang et al., 2017). This approach can well address the spatial heterogeneity of the bias 

between air quality simulations and observed results across a vast country.  

We used the modeled relative changes in PM2.5 concentrations between with and 

without control scenarios (as defined in Table 1 in the main-text), and multiplied them 

to surface concentrations derived from satellite observations (van Donkelaar et al., 2015; 

2016) (see Equation 2 and 3 in the main-text) to estimate the impact of vehicle control 

programs since 1998 on ambient PM2.5 concentrations. According to Boys et al. (2014) 

and van Donkelaar et al. (2015), the uncertainty in satellite-derived PM2.5 decreases with 

an increase in sampling days, and annual mean PM2.5 satellite retrievals are estimated 

using a 3-year moving average. This satellite-derived PM2.5 concentrations dataset has 

already been calibrated by surface observations, with a small uncertainty of 

approximately ±5% on average (Brauer et al., 2016). It has been applied broadly in the 

literature, including notably in the Global Burden of Disease (GBD) assessments, to 
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represent the spatiotemporal distribution of PM2.5 exposures. Following a similar 

procedure to PM2.5, we applied GBD’s O3 concentrations data (Stanaway et al., 2018) to 

calibrate the CMAQ simulated impacts on ambient O3 pollution.  

Fig. S9 Comparisons of CMAQ simulated results with satellite-derived PM2.5 

concentrations (left) and O3 concentrations used in GBD 2017 (right) for 2005, 2010 

and 2015. 
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Note S3. Heath effects attributed to air pollution  

S3.1. Chronic and acute health effect 

Particulate matter can cause, in addition to mortality, exacerbation of cardiovascular and 

respiratory disease, such as asthma, and decrease in lung function (Bell and Samet, 

2010). Previous air pollution research has shown that the absolute frequency of non-

fatal outcomes is much larger than that of fatal outcomes, but the latter represents the 

vast majority of monetized impacts. A study of the 2013 severe haze event in the Beijing 

area estimated that 74% of the monetized impacts of PM2.5 were due to 690 attributable 

deaths, despite the tens of thousands of asthma and acute bronchitis cases and clinic 

visits, as well as thousands of hospitalizations (Gao et al., 2015). Similarly, in the United 

States the EPA estimates that 230,000 annual attributable deaths avoided comprise in 

excess of 95% of the estimated monetized benefits of the Clean Air Act in the 1990-2020 

period, despite the millions of annual cases of asthma and upper and lower respiratory 

symptoms, among others (EPA, 2011). The EPA study covers both fine particles and 

ozone. 

Previous research has also shown that despite the severe haze episodes in China, the 

vast majority of deaths attributable to PM2.5 are a consequence of chronic exposure 

(Wang et al., 2020). Wang and colleagues estimate 1.21 million yearly deaths 

attributable to chronic PM2.5 in China in the 2013-2017 period, a number 10 times larger 

than the estimated 116 thousand attributable to acute PM2.5 exposures, showing that 

chronic exposure is a much larger public health issue in the country. Therefore, as 

mortality is responsible for the majority of the public health burden and the mortality 

due to chronic exposure is much higher than that due to acute exposure, we focus our 

study on mortality attributable to chronic exposure in this study. 

S3.2. Comparisons between IER, GEMM and Chinese male cohort 

In this study, we applied the E-R function developed by Burnett et al. (2018), known as 

the Global Exposure Mortality Model (GEMM). GEMM is a recent synthesis of evidence 

that includes data from 41 of the largest cohorts worldwide; more importantly, it is a 

collaboration among the investigators responsible for 15 of them, for which they had 
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access to subject-level data. We use GEMM because it includes recent epidemiological 

evidence – including especially the only available national level cohort study on outdoor 

PM2.5 pollution in China (i.e., Yin et al., 2017) – that extends the range of PM2.5 exposures 

to concentrations of up to 84 μg m-3 in China, crucial to the present study.  

Burnett et al. (2018) developed two versions of GEMM: (i) the non-accidental GEMM 

(GEMM NCD+LRI), which assesses the relationship between PM2.5 and non-accidental 

deaths and which we use; and (ii) the five cause of death GEMM (GEMM 5-COD), which 

assesses the relationship between PM2.5 and five causes of death (ischemic heart disease 

(IHD), chronic obstructive pulmonary disease (COPD), stroke, acute lower respiratory 

infection (ALRI) and lung cancer). We primarily use GEMM NCD+LRI because it captures 

a larger share of deaths attributable to PM2.5, when compared to the 5-COD model.  

We, however, assess how our results would change if GEMM 5-COD were used instead; 

as well as if we used another model focusing on the same five causes of deaths: an 

integrated exposure-response (IER) model (Stanaway et al., 2018) developed by GBD to 

estimate the health effects attributable to ambient PM2.5 exposure. Unlike GEMM, 

whose epidemiological evidence comes exclusively from studies concerning outdoor 

PM2.5 pollution, the IER incorporated risk information from multiple PM2.5 sources (i.e., 

outdoor air pollution, secondhand smoke, household air pollution from the use of solid 

fuels, and active smoking). The IER model assumes equivalent exposure and toxicity of 

PM2.5 from multiple sources, and the risk information in the current model comes only 

from cohort studies conducted in low-polluted Europe and North America. The IER 

model could be expressed as Eq. (s1): 

 

     𝑅𝑅𝑗(𝐶𝑖) = {
1 + 𝛼[1 − 𝑒𝑥𝑝 (−𝛾(𝐶𝑖 − 𝐶𝑜)𝛿],      𝑓𝑜𝑟 𝐶𝑖 > 𝐶0

1 ,                             𝑓𝑜𝑟 𝐶𝑖 ≤ 𝐶0

        (s1) 

where 𝑅𝑅𝑗(𝐶𝑖) is the relative risk of the annual average PM2.5 concentration in grid cell 

i for health endpoint j; 𝐶𝑜  is a theoretical minimum-risk concentration (i.e., 2.4-5.9 

µg/m3) for each health endpoint above which there is evidence indicating health 

benefits of PM2.5 exposure reductions; α, γ and δ are parameters used to describe the 

overall shape of the concentration-response relationship, which are estimated by GBD 
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2017 through a stochastic fitting process based on multiple cohort studies worldwide 

(Stanaway et al., 2018); 𝐶𝑖 is the PM2.5 concentration in grid cell i. 

Using GEMM NCD+LRI, GEMM 5-COD, and IER, the impacts of vehicle emissions control 

programs since 1998 on ambient PM2.5 concentrations are estimated to have led to 463 

thousand (CI 95: 310 thousand to 680 thousand), 415 thousand (280 thousand to 610 

thousand) and 98 thousand (60 thousand to 150 thousand) fewer deaths, respectively, 

attributable to 2015 ambient PM2.5 levels in China (SI Appendix, Fig. S10). Using GEMM 

NCD+LRI leads to relatively higher estimated health benefits than GEMM 5-COD due to 

its enhanced statistical power to characterize the shape of the PM2.5 mortality 

associations (Burnett et al., 2018). The difference between the mortality results of 

GEMM NCD+LRI and IER are much larger, with GEMM NCD+LRI predicting nearly fivefold 

the health benefits as IER.  

Fig. S10 Comparison of the impacts of vehicle control programs on mortality 

attributable to 2015 ambient PM2.5 pollution based on GEMM NCD+LRI, GEMM 5-COD 

and IER model.  

 

As pointed out by Burnett et al. (2018), GBD might underestimate RR values because the 

IER used by GBD2017 involved additional sources (not only on outdoor air pollution) of 
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exposure. GEMM estimates health impacts attributed to outdoor air pollution that are 

larger than those estimated by the IER model, especially the impacts associated with 

potential changes in exposures in countries with elevated PM2.5 concentrations (e.g., 

India and China). A recent analysis performed by Xue et al. (2019) also indicates that the 

census-based results in China were in better consistent with that of GEMM-based than 

IER-based. 

The effect sizes reported by Chinese male cohort study (Yin et al., 2017) are substantially 

larger than IER’s for the range of exposures of interest in our study, and are also larger 

than GEMM’s. For non-accidental deaths, Yin et al. (2017) reports a Hazard Ratio (HR) of 

1.09 (1.08-1.09) per 10 g/m3 for their fully adjusted model, that includes both 

individual- and area-level covariates, and of 1.04 (1.03-1.04) per 10 g/m3 in their model 

with individual-level covariates only. Applying those to our study1 and assuming a log-

linear form (constant slope), we would have 940,000 (much larger than 510,000 

estimated with GEMM) and 410,000 deaths/year in 2015, respectively. GEMM’s 

approach to the results reported by Yin et al. (2017) was to give equal weights to the two 

models, reporting a HR of 1.064 (1.017-1.115) [Table S1 in Burnett et al. (2018)] for a log-

linear form of the E-R function. In our study, that translates to 660,000 (180,000-

1,200,000) deaths/year in 2015.  

These large mortality estimates, however, might simply reflect the implausibility of a log-

linear model for high exposures. As Burnett and Cohen (2020) point out, extending a log-

linear form to very high exposures results in biologically implausible estimates of HRs. 

The PM2.5 concentrations in our study exceed the point where the authors indicate log-

linear models start to diverge from GEMM (~50 g/m3) as well as the maximum levels in 

GEMM’s epidemiological basis of evidence (84 g/m3). GEMM had access to individual-

level data for the Chinese cohort in question (Yin et al., 2017) and could fit their model 

with a more flexible E-R function, instead of imposing a log-linear form.  

                                                 
1 Since our counterfactual scenario results in a population-weighted average exposure that is 11.7 

g/m3 higher than the actual scenario, this results in [assuming a log-linear form/constant slope] an 11% 

increase in the 8.8 million NCD+LRI deaths using a HR of 1.09 per 10 g/m3 and a 5% increase with a HR 

of 1.04 per 10 g/m3. 
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Finally, the addition of the cohort by Yin et al. (2017) to GEMM’s basis of epidemiological 

evidence has little effect in GEMM’s E-R function (Burnett et al., 2018). In view of this 

and of the lack of knowledge about true heterogeneity, we choose to use a synthesis of 

evidence which includes that cohort and many others, as opposed to relying on the 

results of a single study that are subject to considerable uncertainty. The wide 95% CI 

that ensues from using the combination of models by Yin et al. (2017) (as done by 

Burnett et al. (2018)) strengthens our argument that the E-R function is the main 

contributor to the true uncertainty to our results. This is supported by a recent analysis 

by Burnett and Cohen (2020), who showed the stark differences observed in mortality 

estimates using IER, GEMM and log-linear models at the high exposures, highlighting the 

key role of the uncertainty surrounding the E-R function and the critical need for more 

studies of populations exposed to very high PM2.5 concentrations. 
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