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Supplementary information: 

Comparing human statistical learning performance in active and passive conditions 

Task Test type Mean SD N z-value p 

Passive Conditional test 0.56 0.19 37 2.04 0.04* 

Joint test 0.71 0.20 35 5.59 0.001* 

Single test 0.80 0.22 35 5.48 0.001* 

Equal Single test 0.50 0.17 35 0.0 1 

Active Conditional test 0.60 0.20 35 3.06 0.002* 

Joint test 0.61 0.22 35 2.8 0.005* 

Single test 0.74 0.14 35 7.55 0.001* 

Equal Single test 0.51 0.20 35 0.37 0.71 

 

Table S1.  Tests results and GLM significance levels of the human control experiments shown 

in Figure 1C. See Methods for details of computing significance. 

Within the Active condition, human participants acquired the statistical structure of the shape 

occurrences according to the same pattern on the TARGET and DISTRACTOR stimuli sets 

leading to very similar albeit slightly reduced performance with the DISTRACTOR stimuli 

during the test session (Figure S1; Table S1). This result supports the idea that favoring only 

one subset of the stimuli by feedback/reward does not significantly influence the distribution 

of implicit learning across the entire set. Interestingly, while participants’ performance was very 

similar in the Passive and Active conditions, there was nevertheless one exception: the average 

familiarity judgment in the Passive condition was significantly higher than in the Active 

condition in the Joint Test, where always co-occurring base pairs had to be compared with 

random pairing of two shapes (Joint Test; GLM: N = 70, z = 2.27, p = 0.023, Figure 1C; Table 

S2). This finding suggests that while compared to an undirected passive exploration of the input, 

an explicit categorization task with feedback does not have a general negative effect on human 

unsupervised learning across all categories (joint, conditional, single) in terms of coding 

statistical structure of the stimuli, it does have some noticeable negative influence selectively 

affecting the learning of joint statistics. Such a negative effect of a specific task on noticing 

correlation among elements is in agreement with earlier reports finding that sensitivity to co-

www.pnas.org/cgi/doi/10.1073/pnas.1919387117



Different statistical learning in bees and humans 

2 
 

occurrence probabilities is reduced in age groups where top-down effects are more widespread 

due to increased prefrontal influence (1). 

 

 

Figure S1. The test results obtained with Target vs. Distractor stimuli in the Active condition 

of the Human Baseline experiment. As attested by Table S1, there was no significant difference 

between the two conditions in any of the tests. 

 

 

Test type N z-value p 

Conditional test 35 .62 .53 

Joint test 35 .89 .37 

Single test 35 -.27 .79 

 

Table S2. Comparing human performance statistically in three tests performed with Target vs. 

Distractor stimuli in the Active condition of the Human Baseline experiment. There was no 

significant difference between the two conditions in any of the tests. 
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Test type N z-value p 

Conditional test 72 -.88 .38 

Joint test 70 2.27 .023 * 

Single test 70 1.62 .11 

 

Table S3. Comparing human performance in three statistical tasks performed in the Active and 

Passive Task conditions of the Human Baseline experiment. In the Joint Test condition, 

performing an active discrimination task during the familiarization significantly reduced the 

performance of human participants. Nevertheless, performance in the Active condition 

remained significantly above chance. 

Reference: 

1. K. Janacsek, J. Fiser, & D. Nemeth,  The best time to acquire new skills: Age‐related 
differences in implicit sequence learning across the human lifespan. Dev Sci 15(4):496‐505 
(2012). 10.1111/j.1467‐7687.2012.01150.x 

 

Counterbalancing in the human experiments 

We confirmed in a pilot run that there was a carry-over effect between the three tests of the 

human experiments (Joint, Conditional and Single) due to altered appearance frequencies in the 

conditional test. In order to control for this effect, we run both the Active and Passive tasks with 

two different groups of participants. One group from each of the task conditions completed the 

conditional test, while another group only completed the singles and joint tests without the 

conditional test. Since the familiarization session was exactly the same in the two versions, we 

used all familiarization data combined (N=70) for measuring task learning. 

 

Computational modeling: 

The Counting-based model: In the counting-based model (CB), we stored the single shape 

occurrence frequencies (single-counting model 𝑀𝑀1) and the co-occurrence frequencies of the 

shapes (pair-counting model 𝑀𝑀2) during training with an additional assumption regarding a 

baseline probability of any shape to occur.  
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𝑃𝑃(𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡 | 𝑀𝑀𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚) = 𝑃𝑃(shape(s) in 𝑇𝑇 occur | 𝑀𝑀𝑖𝑖)  

= 1 − (1 − 𝜖𝜖)𝑛𝑛(1 − 𝑃𝑃(𝑇𝑇|𝑀𝑀𝑖𝑖)) 

where 

𝜖𝜖 is the baseline probability of a shape being spontaneously presented, independently of 

the training period’s statistics, defined by model fitting 

𝑠𝑠 is the number of shapes in the scene 

𝑃𝑃(𝑇𝑇|𝑀𝑀𝑖𝑖) is the 𝑇𝑇 test scene’s shape(s) occurrence/co-occurrence frequency calculated 

during the training period based on the single-counting or the pair-counting model 𝑀𝑀𝑖𝑖. 

Such a model is a typical example of treating learning as a process that accumulates the 

averaged sum of memory traces.  

Computing Choice probability: For each test trial, the choice probability was calculated for the 

two models in the same manner. For calculating the choice probabilities during the test trials, 

the obtained probabilities of shapes and pairs of the CB model and the scene probabilities 

calculated by the PC model were treated similarly. The only difference was adding a training-

length-dependent “capacity” parameter to the CB model (see below), which represented the 

model’s weighting of summary traces obtained from the single-counting and pair-counting 

modules. In a test trial with T1 and T2 test stimuli, the choice was computed as: 

𝑃𝑃(prefer test scene T1over test scene T2)

= (1 − 𝜅𝜅) ⋅ �
𝑃𝑃(𝑇𝑇1|𝑀𝑀1)

𝑃𝑃(𝑇𝑇1|𝑀𝑀1) + 𝑃𝑃(𝑇𝑇2|𝑀𝑀1)𝑤𝑤1 +
𝑃𝑃(𝑇𝑇1|𝑀𝑀2)

𝑃𝑃(𝑇𝑇1|𝑀𝑀2) + 𝑃𝑃(𝑇𝑇2|𝑀𝑀2)𝑤𝑤2� +
𝜅𝜅
2

 

where 

 𝜅𝜅 is the lapse parameter, subject of model fitting 

𝑤𝑤1 is the weight of the model for element-representation/single-counting and it is given 

by the posteriors and an lapse parameter defined for the weights, 𝜅𝜅𝑤𝑤. As discussed 

above, there is an additional capacity parameter in case of the CB model – more 

precisely, 𝑤𝑤1 is calculated as below in case of the PC and CB models. 

In case of the PC model: 

𝑤𝑤1 = (1 − 𝜅𝜅𝑤𝑤) ⋅ � 𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀1�𝑃𝑃(𝑀𝑀1)
𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀1�𝑃𝑃(𝑀𝑀1)+𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀2�𝑃𝑃(𝑀𝑀2)� + 𝜅𝜅𝑤𝑤

2
. 
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In case of the CB model there is an additional capacity parameter, depending on the training 

time 𝑡𝑡: 

𝑤𝑤1 = (1 − 𝜅𝜅𝑤𝑤) ⋅ � 𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀1�𝑃𝑃(𝑀𝑀1)𝑐𝑐1
𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀1�𝑃𝑃(𝑀𝑀1)𝑐𝑐1+𝑃𝑃�𝑇𝑇1,𝑇𝑇2|𝑀𝑀2�𝑃𝑃(𝑀𝑀2)𝑐𝑐2

� + 𝜅𝜅𝑤𝑤
2

, 

𝑠𝑠1 = 𝑀𝑀𝑀𝑀𝑠𝑠 �1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐1

⋅ 𝑟𝑟𝑐𝑐�,  

𝑠𝑠2 = 𝑀𝑀𝑀𝑀𝑠𝑠 �1, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑐𝑐2

⋅ (1 − 𝑟𝑟𝑐𝑐)�.  

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑀𝑀𝑡𝑡𝑦𝑦𝑠𝑠𝑦𝑦𝑠𝑠𝑐𝑐𝑟𝑟𝑟𝑟 and 𝑟𝑟𝑐𝑐-s are subjects of model fitting (𝑡𝑡 = 100, 200, 300), while 

𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑀𝑀𝑟𝑟𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝑡𝑡1 = 6, 𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑀𝑀𝑟𝑟𝑡𝑡𝑚𝑚𝑡𝑡𝑠𝑠𝑡𝑡2 = 60 based on the number of parameters the given 

counting model needs to store (6 elements in case of the single-counting and �62� ⋅ 4 =

60 in case of the pair-counting model), 

𝑃𝑃(𝑀𝑀1) = 𝑃𝑃(𝑀𝑀2) = 0.5, representing a uniform prior on the two models, 

𝜅𝜅𝑤𝑤 is the lapse parameter for the model weights, subject of model fitting. 

All the parameters were fitted separately for the human data and for the honeybee data. For 

each experiment, the same parameters were fitted for all the test scenarios (conditional, joint, 

singles) used in the Test session. 

 


