
 

 

1 

 

 
 

 

 

 

 

Supplementary Information for 

 

Functional Plasticity and Evolutionary Adaptation of Allosteric Regulation 

 

Megan Leander, Yuchen Yuan, Anthony Meger, Qiang Cui and Srivatsan Raman 

Srivatsan Raman 

Email: sraman4@wisc.edu 

 

 

This PDF file includes: 

 

Supplementary Text 

Figures S1 to S21 

Tables S1 to S3 

Scheme S1 

Legends for Movies S1 to S2 

Legends for Dataset S1 

SI References 

  

 

Other supplementary materials for this manuscript include the following:  

 

Movies S1 to S2 

Dataset S1 – All_Mutations_Summary.xlsx   

www.pnas.org/cgi/doi/10.1073/pnas.2002613117

mailto:sraman4@wisc.edu


 

 

2 

 

Supplementary Information Text 

Comparison between the computed and experimental SAXS profiles. In a previous study (1), 

Davison and colleagues performed urea-induced protein unfolding experiments on wild-type TetR 

and mutants. They found that the DNA-binding domain (DBD) of TetR unfolded independently 

of the ligand-binding domain (LBD). In the ligand-bound state, the unfolding of DBD is coupled 

to the unfolding of LBD. Therefore, in their unfolding-coupled model, DBD in the apo state is 

flexible enough to adopt the conformation required for DNA binding. The ligand binding rigidifies 

DBD to the conformation unfavorable for DNA binding without significantly altering the average 

structure. Motlagh et al. further assumed that the DBD of TetR is disordered in solution and 

transitions to a well-folded structure upon ligand or DNA binding (2). A recent study, however, 

contradicts the above model. Hinrichs et. al. performed small angle scattering (SAXS) experiments 

on the apo and ligand bound TetR. The SAXS profiles showed that both the apo and ligand bound 

proteins are well-folded in solution and lack major disordered regions (3). Therefore, Palm et. al. 

concluded that no disorder-to-order transition is involved in the induction process.  

 To evaluate the conformational ensembles sampled in our molecular dynamics simulations, 

we computed the SAXS profiles based on our MD trajectories and compared the results to the 

experimental SAXS data. Specifically, we adopted the FOXS method to compute the SAXS 

profiles for the ligand-bound and apo TetR(B) systems. The profiles of cluster centroids were 

computed and then reweighted by minimal ensemble search (MES) to best fit the experimental 

SAXS profiles.  The minimized discrepancy 𝜒2
2 values of the ligand-bound and apo WT TetR(B) 

systems are 1.13 and 1.10, respectively. As shown in Fig. S10, the computed and experimental 

profiles match well both in the log(I) plots (Fig. S10 A-B) and in the Kratky plots (Fig. S10 C-D). 

The MES procedure led to clusters 0 and 7 as the dominant structures for the ligand-bound 

TetR(B), with a population of 5.5% and 94.5%, respectively. Clusters 6 and 9 are the dominant 

structures for the apo TetR(B), with a population of 43.0% and 47.0%, respectively. For both the 

ligand-bound and apo states, the Kratky plots do not decrease to zero for q>0.2 Å-1, suggesting 

considerable structural flexibility in both cases. In short, the good agreement between computed 

and measured SAXS profiles suggests that the MD simulations adequately capture the solution 

ensembles; this further confirms that the apo state does not involve any significant unfolding of 

the DNA binding domain although it features a notable degree of structural flexibility.  

 

Convergence of different properties in MD simulations. As shown in Figs. S11 and S12, the 

average structure converges rather quickly, reflecting the general structural rigidity of the system. 

For example, the average structures after 100 ns and 1 µs do not exhibit any major difference at 

the backbone level (Fig. S12) even for the loop regions, which exhibit higher thermal fluctuations 

compared to the helices (Fig. S11). The DNA binding domains, despite considerable thermal 

fluctuations, overlap well for the averaged structures over 100 ns and 1 µs timescales. The general 

patterns for RMS fluctuations also do not show any major variation beyond 100 ns of sampling, 

except for several loop regions. These trends apply to all the three TetR variants studied here.  

 By contrast, properties that reflect correlated motions converge much more slowly. For 

example, the covariance matrices among the three TetR variants appear rather different after 100 

ns (Fig. S13 D-F). Following 1 µs of sampling, however, the differences become substantially 

smaller (Fig. S13 A-C). The convergence of configurational entropy, which depends on the 

covariance matrix, is even more difficult, as illustrated by Fig. S13. The overall trend in the 

computed configurational entropy, which does not clearly distinguish the dead (G102D) and 

rescuing (G102D/C195F/Q200P) mutants, is similar when only Cα or all heavy (non-hydrogen) 
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atoms are included in the covariance and entropy calculations. These observations highlight the 

importance of sampling for probing correlated motions in even relatively rigid systems such as 

TetR.   

 

Community analysis. In the analysis of protein allostery, it is common to decompose the protein 

structure into communities, which feature strong intra-community correlations (4, 5). In Fig. S15, 

we show the results of community analysis for the three TetR variants following 100 ns and 1 ms 

of sampling. Evidently, the results of community analysis with different amounts of sampling can 

change considerably, again highlighting the slow convergence of properties that depend on the 

covariance matrix. Following 1 µs of sampling, the protein structure is divided into several 

communities and the general pattern does not differ considerably among the three TetR variants 

studied here, as expected based on the overall similar covariance matrices (Fig. S13). The DNA 

binding domain is classified as a single community, and it does not contain a significant number 

of residues in the ligand binding domain. Therefore, the degree of direct coupling between the 

DNA binding and ligand binding domains is relatively weak, which suggests that allosteric 

coupling between them occurs through indirect correlations.  

 Accordingly, we also performed suboptimal path analysis and identified “hub residues” that 

mediate the “information flow” between these two functional domains. The “hub residues” are 

sorted in a descending order by the occurrence of each residue in suboptimal paths. The top 50 

most-occurred “hub residues” were selected to compare with the “hotspot” residues found 

experimentally. As shown in Fig. S16, the common set between the two sets of residues contains 

only a handful of residues, which constitute about 10% percentage of either set. Evidently, the 

functional significance of “hub residues”, at least in TetR based on microsecond simulations, is 

limited.   

 

 

Materials and Methods 

Centrality scoring. Centrality scores of each residue were calculated using the Network Analysis 

of Protein Structures (NAPS) server (http://bioinf.iiit.ac.in/NAPS/) (6). The unweighted atom pair 

contact network of the wildtype TetR(B) dimer (PDB ID: 4ac0) was generated using a 0-5 Å 

threshold. Node centrality was then measured by closeness, or the shortest distance of one position 

to all others in the network. A two-sample t-test was used to compare the average centrality score 

of dead hotspots to all other residues in the protein (p=3.2E-06). 

 

Modeling of anhydrotetracycline ligand. The ligand anhydrotetracycline (aTC) was built in 

Avogadro. To ensure the strong interaction with Mg2+, the hydrogen atom on the O2 atom was 

removed; this was also consistent with findings from previous electrostatics calculations by 

Simonson and co-workers. A structure with a total charge of -1 was obtained. The molecule was 

then optimized in Gaussian using B3LYP/6-31G(d). The optimized structure was uploaded to 

CHARMM-GUI. Atom types and partial charges were assigned based on the CHARMM General 

Force Field (CGenFF). The obtained structure and force field parameters were used in all 

simulations; key protein-ligand/Mg2+ contacts observed in the crystal structure were closely 

monitored during simulations for validating the force field parameters. The chemical structure of 

the ligand is shown in Scheme S1, and the atom types and partial charges for the ligand are 

summarized in Table S3.  

 

http://bioinf.iiit.ac.in/NAPS/
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Molecular dynamics data analysis. CHARMM v41.0 was used to remove the overall translation 

and rotation and to orient all frames against the crystal structure before any analysis was 

performed. VMD and Pymol were used to visualize the trajectories. MDAnalysis, numpy, and 

scikit-learn packages were used for post-processing such as data analysis and plotting.  

 Correlated motions of protein residues are characterized with the covariance matrix of Cα 

carbons, which can be represented by either an N x N or 3N x 3N covariance matrix: 

𝐂 = < (𝒒 − < 𝒒 >)(𝒒 − < 𝒒 >)𝑇 > 

In the N x N matrix, 𝒒 =  (𝒓1; 𝒓2; … ; 𝒓𝑁) in which 𝒓𝑖  =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) is the three-dimensional 

atomic position of the ith atom. In the 3N x 3N matrix, 𝒒 =  (𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2, … , 𝑥𝑁 , 𝑦𝑁 , 𝑧𝑁)𝑇 .  
After normalization, the covariance Cij ranges from -1 to 1. The N x N matrix is plotted in Fig. 

S13 for illustration, and to help highlight long-range correlated motions, the covariance of contact 

pairs is set to be 0; the contact probability of Cα pairs is defined as the fraction of frames in which 

the distance between the pair is less than 10 Å, and only pairs with a probability larger than 0.65 

are recognized as contacts. 

 The 3N x 3N covariance matrix, which reveals more complex correlations, was used in the 

principal component analysis (PCA) without any filtering. The diagonalization of the 3N x 3N 

covariance matrix resulted in 3N eigenvalues, which are sorted in the descending order, as are the 

corresponding 3N eigenvectors.  

 To compare the difference in free energy landscapes and ensure the consistency in the direction 

of principal components among the different TetR variants, we merged the three sets of trajectories 

together and aligned all frames against the crystal structure of the wild type protein. PCA was 

carried out over the combined trajectory. The projection of each frame onto the eigenvectors 

resulted in ‘Principal Components’ (PCs), 𝑉𝑖. The first two PCs, 𝑉1 and 𝑉2, can be used to construct 

the two-dimensional free energy landscape: 

ΔG(𝑉1, 𝑉2) =  −𝑘𝐵𝑇[𝑙𝑛𝜌(𝑉1, 𝑉2) −  𝑙𝑛𝜌𝑚𝑎𝑥] , 
where 𝜌(𝑉1, 𝑉2) is an estimate of the joint probability density function obtained from the 2D 

histogram of the data. 𝜌𝑚𝑎𝑥 is the maximum density, which is subtracted to ensure ΔG =  0 for 

the free energy minimum. The 1D free energy landscape can also be constructed as follows: 

ΔG(𝑉𝑖)  =  −𝑘𝐵𝑇[𝑙𝑛𝜌(𝑉𝑖)  −  𝑙𝑛𝜌𝑚𝑎𝑥]. 
 

The community analysis was carried out by the NetworkView plugin (7) in VMD with default 

setting. The definition of network is the same as that in the paper of Sethi et al (8). Each amino 

acid residue is represented by a node which is connected by edges. The edge weight is w =

 −log|𝐶𝑖𝑗|, where 𝐶𝑖𝑗 is the correlation between node i and node j. Here, the N x N covariance 

matrix was used in which both self-correlations and correlations with the nearest neighboring 

residues were set to be 0. The path distances between node i and node j are the sum of edge weights 

along the paths. The shortest distance between node i and node j is found by using the Floyd-

Warshall algorithm. The Girvan-Newman algorithm (9) was used to partition the communities. 

Optimal communities can be found by maximizing the modularity value, Q, a measure of the 

difference in the probability of intra- and inter- community edge (10). Suboptimal path analysis 

was also done in NetworkView with a LengthOffset of 5. The sources are residues interacting with 

the ligand or Mg2+ (residue id 64, 82, 100, 103, 116, 147) and the targets are residues directly 

involved in DNA-binding (residue id 26, 27, 28, 37, 38, 39, 40, 42, 43, 44, 48). For a given system, 

the occurrence of a residue is the number of times that the particular residue occurred in suboptimal 

paths below a threshold (i.e. the shortest distance + LengthOffset).  
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 The quasi-harmonic approximation is commonly assumed in the calculation of configurational 

entropy of macromolecules. In our case, however, this approximation is unlikely to hold for at 

least the first two PCs, which exhibit very anharmonic landscape as illustrated in Fig. 4 in the main 

text. Therefore, the PC1&2 and other PCs were treated differently in the calculation of 

configurational entropies. In short, we followed the same procedure as in the paper of Andricioaei 

et al (11). except that the PC1&2 were excluded. Then, the contribution of PC1&2 were calculated 

separately as follows: 

S = kln
√2𝜋𝑘𝐵𝑇

ℎ
∑ 𝑒−𝛽𝑈𝑖

𝑖 +  
𝑘

2
+  

∑ 𝑈𝑖𝑒−𝛽𝑈𝑖𝑖

𝑇 ∑ 𝑒−𝛽𝑈𝑖𝑖
 , 

in which kB is the Boltzmann constant, T is the absolute temperature, h is the Planck constant, β =
1/𝑘𝐵𝑇, and U is the effective potential along PC1 or PC2. The summation index i runs over the 

number of bins in the corresponding 1D histogram. Since the number of alpha carbons in the wild 

type and mutants are the same, we can directly compare the difference in configurational entropy 

between the wild type and each mutant: 

T∆S = T𝑆𝑚𝑢𝑡𝑛𝑎𝑡 − 𝑇𝑆𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 

We plot the time evolution of T∆S along the simulated trajectories in Fig. S14A; each point in the 

curves represents results that include all frames up to that time. 

 To demonstrate the robustness of the landscape comparison between different TetR variants, 

the free energy landscapes were also analyzed using the locally scaled diffusion map (LSDmap) 

(12, 13). LSDmap uses a Gaussian kernel to describe the transition probability between two 

conformations, 

𝐾𝑖𝑗 = exp (−
||𝒙𝑖 − 𝒙𝑗||2

2𝜀𝑖𝜀𝑗
), 

where Kij is the transition probability, ||xi - xj||
2 is the RMSD between two conformations, εi and εj 

are the local scales of the corresponding conformations. We used the procedure proposed in 

literature (12) to determine the local scales. Kij represents the ability of the diffusion of one 

conformation to the other. This matrix can be easily converted to a Markov matrix, whose 

eigenvectors represent the diffuse coordinates (DCs). We projected the conformations onto the 

first two DCs to obtain the corresponding free energy landscapes. 

 

Molecular dynamics simulations for the apo system 

To model the apo state of TetR(B), instead of removing the ligand from the ligand-bound 

structure (PDB ID: 4ac0), we build a model for the apo state with MODELLER (14) using the 

crystal structure of apo TetR(D) (PDB ID: 1bjz) as the structural template. Otherwise, the 

simulation details are identical to those for the ligand-bound system. The apo simulations are 

referred to as 4ac0_apo below. 

 

Computed small angle X-ray scattering (SAXS) profiles 

The MD trajectories were analyzed with the K-means clustering method implemented in the scikit 

learn package (15). Ten clusters were found for each system and the SAXS profile for each cluster 

centroid was calculated using FoXS (16). The scoring function used by FoXS to evaluate the fitting 

is defined as,  

𝜒1 = √
1

𝑀
∑(

𝐼𝑒𝑥𝑝(𝑞𝑖)  −  𝑐𝐼𝑐𝑎𝑙(𝑞𝑖)

𝜎(𝑞𝑖)
)2

𝑀

1

, 
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in which M is the number of points in the profile, c is a scaling parameter, and σ is the experimental 

standard deviation. The χ1 was minimized with respect to c by the linear least square minimization. 

A low χ1 value corresponds to a good fit of computed profile to the experimental profile.  

 

Minimal Ensemble Search (MES) was applied to compute the best fit of the ensemble-averaged 

SAXS profile to the experimental data (17). The scoring function used in MES is as follows: 

χ2
2 =

1

𝐾−1
∑ [

μ𝐼𝑐𝑎𝑙(𝑞𝑗)−𝐼𝑒𝑥𝑝(𝑞𝑗)

σ(𝑞𝑗)
]

2
𝐾
𝑗=1 , 

μ =

∑
𝐼𝑐𝑎𝑙(𝑞𝑗)𝐼𝑒𝑥𝑝(𝑞𝑗)

σ2(𝑞𝑗)
𝐾
𝑗=1

∑
𝐼𝑐𝑎𝑙

2 (𝑞𝑗)

σ2(𝑞𝑗)
𝐾
𝑗=1

. 

Here, K is the number of points in the profiles and σ(𝑞) is the experimental standard deviation. 

With the minimized χ2
2 value, the optimal weights for different cluster centroids are obtained. 
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Fig. S1. TetR(B) structure. 

Crystal structure of TetR(B) with bound [Minocycline:Mg]+ (PDB ID: 4ac0). Dead variants are 

labeled as colored spheres on both monomers of the TetR dimer. The ligand and DNA binding 

domains of the dimer are indicated with alpha helices numbered on one monomer. 
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Fig. S2. Comparison of detailed schematic free energy levels and landscapes for the wild 

type and a dead mutant (Mut) of TetR. 

In this simple model, each protein is assumed to have two conformational states (C1/C2), which 

preferably bind to the DNA and the inducer ligand, respectively; for simplicity, we do not 

separately consider the two ligand/DNA binding domains in each dimeric TetR. Since each protein 

can adopt four chemical states: apo, the protein-DNA binary complex, the protein-ligand binary 

complex and the protein-DNA-ligand ternary complex, there are eight stereochemical states for 

each protein. The effective free energy levels (which in general depend also on the bulk 

concentrations of ligand and DNA) of these states are indicated with horizontal bars, with the 

stereochemical states expected to have very low populations shown in dashed bars. The free energy 

landscape is well defined for systems of the same molecular composition and only two examples 

for each protein are shown for clarity.  In the wildtype protein, the binding affinity of the ligand to 

apo-C2 is larger in magnitude than that of the DNA to apo-C1; assuming that apo-C1 and apo-C2 

are similar in free energy, this model predicts C2·ligand as the predominant species (i.e., inducer 

binding leads to dissociation from the DNA). In a dead mutant, with a simple model, the intrinsic 

binding affinities of 𝐶1
𝑀𝑢𝑡 to DNA and 𝐶2

𝑀𝑢𝑡 to ligand are not perturbed relative to wildtype, but 

apo-𝐶2
𝑀𝑢𝑡 is destabilized relative to apo-𝐶1

𝑀𝑢𝑡 by an amount of ∆G12
𝑀𝑢𝑡; if ∆G12

𝑀𝑢𝑡 is larger in 

magnitude than the differential DNA/ligand binding affinity, ∆𝐺𝐿𝑖𝑔
𝑀𝑢𝑡 − ∆𝐺𝐷𝑁𝐴

𝑀𝑢𝑡 , the model predicts 

that 𝐶1
𝑀𝑢𝑡·DNA is the predominant population even in the presence of the inducer ligand. In other 

words, ∆G12
𝑀𝑢𝑡 is the energetic difference that abolishes ligand inducibility by destabilizing the 

active (𝐶2
𝑀𝑢𝑡) state (or, equivalently, stabilizing the inactive state, 𝐶1

𝑀𝑢𝑡). On the other hand, if 

∆G12
𝑀𝑢𝑡 is smaller in magnitude than ∆𝐺𝐿𝑖𝑔

𝑀𝑢𝑡 − ∆𝐺𝐷𝑁𝐴
𝑀𝑢𝑡 , 𝐶2

𝑀𝑢𝑡·ligand is still the predominant species; 

i.e., reduction of ∆G12
𝑀𝑢𝑡 is likely the mechanism for rescued mutant. 
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Fig. S3. Sorting schemes for rescuing dead variants and quantifying rescuability. 

(A) To rescue dead variants (Fig. 1) double mutant libraries were induced with 1µM aTC and 

fluorescent cells sorted (grey bar) and subsequently clonally screened. The distribution of 

wildtype TetR with induced with aTC was used to select for rescued variants. Libraries are 

colored as R49A red, D53V orange, G102D blue, N129D purple, and G196D green. (B) To 

quantify rescuability (Fig. 2), non-fluorescent cells in double mutant libraries were sorted (grey 

bar) in the absence of aTC to select for DNA-bound variants and subsequently clonally screened. 

The distribution of wildtype TetR without aTC was used to select for DNA-bound variants. (C) 

Nonfluorescent cells in the TetR single-mutant library were sorted (grey bar) in the presence 

(light red) and absence (dark red) of 1µM aTC and sequenced to identify dead variants. 
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Fig. S4. Mean fluorescence of dead and rescue variants. 

Fluorescence of individual TetR variants (mean ± SEM) in the absence (dark bar) and presence 

(light bar) of 1µM aTC of three biological replicates. Dead variants are shown in bold, and 

rescued variants are denoted with ‘+’ sign. 
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Fig. S5. Ranking of rescuability of each dead variant based on mean fold induction all 

rescuing variants. 

(A) Average fold induction of all screened clones in the presence of 1µM aTC for each dead 

variant (mean ± SEM). (B) Significant differences in fold induction of (A) between dead variants 

are indicated with p-values (***p<0.001). 
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Fig. S6. Dead and broken mutations in TetR. 

Dead and broken variants are shown in red and blue, respectively, with the wildtype residue 

indicated in black and missing data in the library in grey. 
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Fig. S7. Threshold for defining of a hotspot does not alter overall regions of importance. 

Dead (red) and broken (blue) hotspots defined as (A) 10%, (B) 25%, or (C) 50% of all mutations 

present at that position in the library that inactivate or break the protein are mapped to the structure. 
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Fig. S8. Significant differences in conservation and centrality of allosteric hotspots. 

(A) Average conservation score of all broken and dead hotspots. (B) Average centrality score of 

dead hotspots compared to all other positions. Data show as mean ± SEM and significant 

differences indicated (***p<0.001).  
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Fig. S9. Hotspots are more likely to occur in positions of high centrality score. 

(A) Distribution of centrality scores for all structured TetR positions. Red lines are scores 1σ 

above and below the mean. Centrality scores are grouped as low, medium, or high based on red 

lines. The number of hotspots within each group are indicated. (B) Positions of low (pale 

orange), medium (light orange), and high (orange) centrality scores are mapped to TetR. 
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Fig. S10. Comparison of the computed (blue lines) and experimental (red dots) SAXS profiles 

for ligand-bound and apo TetR systems. For centroid structures obtained from a clustering 

analysis, SAXS profiles are calculated via FOXS and the populations of the centroids are adjusted 

through MES to find the best-fit. (A-B) The log(I) versus q plots for the ligand-bound and apo 

wild type TetR are shown. The structures with dominant populations found by MES are also shown 

in each panel. (C-D) Kratky plots for the ligand-bound and apo wild type TetR.  
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Fig. S11. Structural stability and residue flexibility of TetR in MD simulations. 

(A) Average structure of the wild type protein with the thickness and color indicating the 

magnitude of RMSF (root mean square fluctuation). (B-D) RMSF of the three systems averaged 

over 100 ns (orange) and 1 μs (blue). 
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Fig. S12. Convergence and comparison of average structures. 

(A-C) Overlaid average structure of 100 ns (red) and 1 μs (cyan). 
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Fig. S13. Covariance of C⍺ atoms and the convergence of the covariance matrix for 

wildtype, G102D, and G102D/C195F/Q200P. 

(A-C) The covariance matrix averaged over the 1 μs trajectories; the upper triangles in (B) and 

(C) show the difference in covariance between mutant and wild type proteins. (D-F) The 

covariance matrix averaged over 100 ns trajectories; the upper triangles in (E) and (F) show the 

difference in covariance between mutant and wild type proteins.
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Fig. S14. Conformational entropy converges slowly. 

Alpha carbon atoms (A-C) in protein were used to calculate the configurational entropy using the 

modified quasi-harmonic analysis (see text). The temperature, T, is 303.15 K. (A) ∆S =
 𝑆𝑚𝑢𝑡𝑎𝑛𝑡 −  𝑆𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 as a function of simulation time for the two mutants relative to the wild 

type protein; (B) entropic contribution of each mode relative to wild type using the complete 

(1µs) trajectories; (C) entropic contribution of each mode using the complete (1µs) trajectories; 

(D) all heavy (non-hydrogen) atoms were also used to calculate configurational entropy using the 

same method as above.
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Fig. S15. The partition of structure into communities and convergence of the analysis. 

(A-C) The communities of each system obtained from the 1 μs trajectories. (D-F) The 

communities of each system obtained from the first 100 ns trajectories. Each color represents one 

community and the choice of color is arbitrary. The solid spheres (nodes) represent alpha 

carbons and the thickness of lines connecting two nodes represent the magnitude of correlation 

between two nodes. 
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Fig. S16. Overlap between ‘hotspot’ residues identified in experiments and ‘hub’ residues 

found in suboptimal path analysis using MD trajectories. 

(A-C) The protein structures are represented by ribbons and colored by residue types (white for 

non-polar residues, green for polar residues, blue for negatively-charged residues, and red for 

positively-charged residues). Residues in ligand-binding domain and residues directly bound to 

DNA are represented by tubes. The overlapped residues were highlighted as van der Waals 

spheres in the structures. (D) Hub residues are compared with the dead variants in experiments. 

Hub residues are defined as the top 50 most occurred residues in suboptimal paths for a given 

TetR variant. Percentages in the second and third columns are the fractions of common residues 

among the hub residues and the deads in experiments, respectively. 
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Fig. S17. One-dimensional free energy landscapes along the first three principal 

components. 

Along PC1 and PC2, the landscapes show convergence of the wildtype and rescued variant, but 

not the dead variant. Beyond PC1 and PC2, the landscapes of all three systems show little 

difference, indicating that the first two principal components capture the most difference in the 

free energy landscape. 
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Fig. S18. Directionality and relative magnitude of motions along the first two principal 

components (also see Movies S1 and S2). 

(A) First principal component (PC1) mainly represents the motion of loops. (B) Second principal 

component (PC2) represents motions of both loops and DNA-binding domains. The red arrows 

show the direction of alpha carbons in protein and the length of arrows show the relative 

magnitude of motion. The pendulum type of motions of the DNA binding domains were 

proposed to affect the DNA binding affinity and thus activity of TetR. (C) As an example, for 

the evolution of key structural features involved in the first two principal components, the 

distance between the two α3 helices as a function of displacement along PC1/PC2 is plotted. The 

plot highlights that both principal components involve relative displacement of the DNA binding 

domains, a structural transition that has been proposed to modulate the DNA binding activity 

(23, 24) 
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Fig. S19. The first two principal components represent a significant fraction of the motions. 

The eigenvalues were obtained after performing PCA on the combined trajectories of wild type, 

G102D, and G102D/C195F/Q200P. Normalization of eigenvalues resulted in the ratios. 

Although TetR is structurally rather rigid, the first sets of principal components capture a 

significant fraction of the overall motion; this justifies the use of the first few leading principal 

components in the free energy landscape analysis discussed in the main text. 
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Fig. S20. Strong correlation between replicates in raw and normalized sequencing reads. 

Sequencing reads from the (A) raw and (B) normalized data correlate well between replicates for 

all single mutant libraries: Presorted, uninduced sorted (-Ligand), and induced sorted (+Ligand). 
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Fig. S21. Dead hotspots change minimally when the read count threshold is altered. 

The percent of dead (red) and broken (blue) mutations at each position in the protein. Changing 

the sequencing threshold to 10, 25, or 50 read counts to define a mutation as dead reduces the 

overall number of dead variants and hotspots, however regions of importance in the protein 

remain the same.  
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Table S1. All single-mutant compensatory mutations identified for each dead variant. 

  

Dead Variant Compensatory Mutations 

R49A D5AL, K6HW, G24A, K29IS, E37Y, R87K, H93W, T112P, P184K 

D53V R3V, L4Y, D5A, K6N, K8H, I22C, G24A, L25I, G35DN, R94W, L113C, P184T 

G102D L146A 

N129D 

L4TY, D5V, K6R, S7P, K8DNW, V9G, A13C, L14N, E19D, I22V, K29Q, L34F, G35F, V36I, 

E37FH, Q38F, W43K, V45C, K46Y, N47H, L52T, A54FN, A56Q, I57L, E58Y, L60E, H63S, 

H66Y, F67Y, C68M, P69H, E71L, N81AG, A83GN, T84IT, S85CW, F86CEM, R87Q, C88EHM, 

A89KY, L91HM, S92M, A97M, K98E, V99F, H100AT, L101H, G102H, R104CSVY, T106V, 

E107RW, K108S, Q109I, Y110L, E111AIY, T112HNP,  L113S, T163L, D164Y, A173E, Q180I, 

P184V, F188G, I193AC, I184K, C195KTV, G196DIMNPQ, L197AFHPV, E198R, 

K199CFLQTWY, Q200GHKV, L201GIK, K202ENV, C203DIQSTY, E204ILQST, 

S205GMVWY, G206CHLMT, S207PQ 

G196D 

S2CD, D5T, T27M, V36F, E37G, P39S, W43HY, V45FY, A50E, D53V, I57HQ, H63Y, 

F67CDKLQRSV, C68L, C88R, E107Q, T112IMQRV, F119G, C121P, L131AIVY, S135M, 

G138HNQ, H139S, L146T, V153R 
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Table S2. Next-generation sequencing statistics of the single-mutant TetR library. 

  

TetR Library 
Total 

reads 

Good 

reads 

Translated 

reads 

Single 

mutant reads 

Number of 

variants 

Number of 

variants over 

10x threshold 

Coverage 
Percent 

wildtype 

Replicate 1 

Presorted 542436 440570 389212 272093 3759 3442 88% 5.4% 

aTC- 624025 509408 477335 349355 3603 2981   

aTC+ 651400 579330 484690 320675 1912 1213   

Replicate 2 

Presorted 654463 525320 468679 336478 3774 3456 88% 5.5% 

aTC- 642040 562346 520758 380410 3611 3005   

aTC+ 682668 597205 496071 336546 2027 1249   
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Table S3. The atom name, atom type, and partial charge for the ligand 

  

Atom name Atom type Partial charge Atom name Atom type Partial charge 

O1 OG2D3 -0.48 O6 OG311 -0.39 

C1 CG2O5 0.442 C21 CG2DC1 0.18 

C2 CG2R61 -0.331 C22 CG2O1 0.567 

C3 CG2R61 0.407 O7 OG2D1 -0.514 

O2 OG312 -0.762 N2 NG2S2 -0.714 

C4 CG2R61 -0.32 H1 HGP1 0.42 

C5 CG2R61 0.107 H2 HGR61 0.115 

O3 OG311 -0.53 H3 HGR61 0.115 

C6 CG2R61 -0.116 H4 HGR61 0.115 

C7 CG2R61 -0.113 H5 HGA3 0.09 

C8 CG2R61 -0.117 H6 HGA3 0.09 

C9 CG2R61 0.008 H7 HGA3 0.09 

C10 CG2R61 -0.002 H8 HGA2 0.09 

C11 CG331 -0.266 H9 HGA2 0.09 

C12 CG2R61 -0.012 H10 HGA1 0.09 

C13 CG321 -0.183 H11 HGP1 0.42 

C14 CG301 0.405 H12 HGA1 0.09 

C15 CG2O5 0.323 H13 HGA3 0.09 

O4 OG2D3 -0.471 H14 HGA3 0.09 

O5 OG311 -0.714 H15 HGA3 0.09 

C16 CG311 -0.071 H16 HGA3 0.09 

C17 CG311 0.091 H17 HGA3 0.09 

N1 NG301 -0.616 H18 HGA3 0.09 

C18 CG331 -0.099 H19 HGP1 0.42 

C19 CG331 -0.099 H20 HGP1 0.29 

C20 CG2D1O 0.035 H21 HGP1 0.29 
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Scheme S1. Chemical structure of anhydrotetracycline 
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Movie S1. The motion of protein along the first principal component 

The motion with the largest amplitude occurred in the loop region, which is consistent 

with previous analysis. The DNA-binding domain (DBD) resembled the ‘pendulum-like’ 

motion, while the patterns of motion are different in two PCs (also see Movie. S2). In 

PC1, the DBD in two monomers moved toward the same direction. 

 

Movie S2. The motion of protein along the second principal component 

The motion with the largest amplitude occurred in the loop region, which is consistent 

with previous analysis. The DNA-binding domain (DBD) resembled the ‘pendulum-like’ 

motion, while the patterns of motion are different in two PCs (also see Movie. S1). In 

PC2, the DBD in two monomers moved toward the opposite direction. 

 

Dataset S1. Phenotypic summary of all TetR mutations (separate file) 

A matrix of all mutations found to be dead (D) or broken (B) indicated at each position in 

the protein along with the wildtype residue (WT). Blank cells could not be definitively 

classified as either dead or broken and mutations missing in the library are indicated (-). 

Positions with 25% or more mutations that inactivate or break the protein were labeled 

with a Dead or Broken phenotype. The calculated conservation and centrality scores for 

each position are present. 
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