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Supporting Information Text

This file provides further information on the spatiotemporal transmission model and Bayesian inference framework described in
the Materials and Methods section in the main text, including a full description of the model, the formula for the likelihood of
the data given the model, details of, and additional output from, the Markov Chain Monte Carlo (MCMC) algorithm and
model simulations, and validation of the MCMC algorithm.

1. Model Description

The model used in this paper (Fig. S1) is an extension of our previously published individual-level spatiotemporal SEIR
model of visceral leishmaniasis (VL) transmission (1) to explicitly include asymptomatic infection and post-kala-azar dermal
leishmaniasis (PKDL), and account for unobserved initial infection statuses and migration of individuals. We measure time
in units of months, with t = 1 corresponding to the start of the study (January 2002) and t = T = 108 the end of the
study (December 2010), and label individuals who developed VL symptoms between January 2002 and December 2010 by
i = 1, 2, . . . , nI (nI = 1018) and the remainder of the population by i = nI + 1, nI + 2, . . . , n (n = 25506). Between January
2002 and December 2010, 725 individuals relocated between different households within the study area, which we account for
by including a second observation for these individuals in their second household. These internal migrators are essentially
treated as extra individuals for the purpose of calculating pairwise distances and transmission rates. However, their infection
status is updated in such a way that it is consistent across the two observations (e.g. if they are asymptomatically infected in
the period of the first observation and do not recover before relocating, their asymptomatic infection status is carried over to
the second observation). We denote the vectors of event times for individuals i = 1, . . . , n as follows:

• birth: B = (Bi),
• immigration and emigration (either within, or from/to outside, the study area): IM = (IM i) and EM = (EM i),
• asymptomatic infection: A = (Ai),
• pre-symptomatic infection: E = (Ei),
• VL onset: I = (Ii),
• recovery, from VL through treatment or naturally from asymptomatic infection: R = (Ri),
• VL relapse: IR = (IRi),
• VL relapse treatment: RR = (RRi),
• temporary recovery to dormant infection prior to PKDL or VL relapse: D = (Di),
• PKDL onset: P = (Pi),
• PKDL resolution: RP = (RPi),
• death: M = (Mi).

In any particular month t individuals can be in one of the 7 states shown in Fig. S1A:

• susceptible: S(t) := {i : max(Bi, IM i) ≤ t < min(EM i, Ai, Ei,Mi)}
• asymptomatically infected (and potentially infectious): A(t) := {i : Ai ≤ t < min(EM i, Ri, Di,Mi)}
• pre-symptomatically infected (and potentially infectious): E(t) := {i : Ei ≤ t < Ii}
• symptomatic VL: I(t) := {i : (max(Ii, IM i) ≤ t < min(EM i, Ri, Di,Mi)) or (IRi ≤ t < min(RRi, Di,Mi))}
• dormantly infected (i.e. treated for VL or recovered from asymptomatic infection but with subsequent VL relapse or

PKDL): D(t) := {i : Di ≤ t < min(IRi, Pi)}
• symptomatic PKDL (i.e. visible skin lesions): P(t) := {i : max(Pi, IM i) ≤ t < min(EM i, R

P
i ,Mi)}

• recovered (i.e. treated for primary VL, VL relapse or PKDL, or self-resolved from PKDL, or recovered from asymptomatic
infection): R(t) = {i : (Ri ≤ t < min(EM i,Mi)) or (RRi ≤ t < min(EM i,Mi)) or (RPi ≤ t < min(EM i,Mi))}.

Upon infection, individuals either develop pre-symptomatic infection with probability pI or asymptomatic infection with
probability 1 − pI (see Table S2 for values of fixed parameters used in the model). Pre-symptomatic individuals progress
to symptomatic VL following a variable incubation period, and then upon treatment to recovery, or dormant infection if
they later relapse or develop PKDL. VL cases that relapse either return to dormant infection or progress to recovery once
re-treated. Asymptomatically infected individuals either recover naturally or very occasionally progress to dormant infection
and subsequent PKDL. PKDL cases can either resolve following treatment or naturally, whereupon they enter the recovered
class. We assume that recovered individuals do not return to being susceptible, i.e. cannot be reinfected, irrespective of whether
they have recovered from VL, PKDL or asymptomatic infection. It is still uncertain whether individuals can become reinfected
with L. donovani parasites, particularly asymptomatically infected individuals. Most previous modelling studies have assumed
or concluded that individuals can be reinfected (2–4), but have not accounted for spatial variation in transmission and available
evidence suggests that repeat episodes of VL are relatively rare and are due to relapse not reinfection (5–7), and that in
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Fig. S1. Individual-level spatiotemporal transmission model. (A) States in the model (S = susceptible,A = asymptomatically infected, E = pre-symptomatically infected, I =
symptomatic VL,D = dormantly infected, P = PKDL andR = recovered). Squares represent fully observed states, rounded-edge squares partially observed states, and circles
unobserved states. Dashed arrow shows VL relapse from dormant infection. pI = probability of symptomatic infection, λi(t) = total infection pressure on susceptible individual
i at time t. (B) Relative infectiousness over time of individual passing through top pathway (symptomatic infection) in (A). Diagram not to scale and shown assuming that
pre-symptomatic individuals are infectious and VL case developed macular PKDL. (C) The total infection pressure λi(t) on a susceptible individual i at time t is the sum of the
individual infection pressures on them from infectious individuals around them (here j1, j2 and j3), which are a function of how far away they are (depicted by the curves), the
time since their infections and whether their infection is symptomatic or asymptomatic. di1 = distance between i and j1.

highly endemic settings a high proportion of asymptomatically infected individuals develop long-term protective cell-mediated
immunity following infection (8, 9).

For each individual i in the study population, we define Vi = max(0, Bi, IM i) and Wi = min(T + 1,EM i,Mi) as their times
of entry into and exit from the study area respectively. All non-symptomatic individuals (individuals without any VL or PKDL
symptoms before or during the study) who were born or entered the study area after January 2002 are assumed to have been
susceptible upon entry.

A. Pairwise infection pressures. Susceptible individuals become infected either from pre-symptomatically infected individuals,
from symptomatic VL cases, PKDL cases, asymptomatic individuals, or ‘background’ (unexplained) transmission. The ‘infection
pressure’ exerted by an infected individual j on a susceptible individual i at time t is given by:

λij(t) = (βK(dij) + δ1ij)hj(t), i ∈ S(t), j ∈ E(t) ∪ A(t) ∪ I(t) ∪ P(t), [S1]
where β is the rate constant for spatial transmission between infected and susceptible individuals; K(dij) is the spatial kernel
function that scales the infection pressure by the distance dij between individuals i and j; δ (≥ 0) is a rate constant for
additional within-household transmission; 1ij is an indicator function for individuals living in the same household, i.e.

1ij =
{

1, if i and j are in the same household,
0, otherwise;

and hj(t) is the infectiousness of j at time t. Individuals are assumed to be stationary in their households when transmission
to and from sandflies occurs (since the vast majority of sandfly biting occurs at night when individuals are asleep in, or directly
outside, their homes (10–14)), so that the distances between them dij are fixed when transmission takes place. However, the
changes in the distances between individuals that occur when individuals migrate within the study area is incorporated into
the model (by calculating the distances between migrators and all other individuals both when they are in their first household
and when they are in their second household).

Since we found little difference in the goodness of fit of the model (based on the Deviance Information Criterion (DIC))
between an exponentially decaying spatial kernel and a Cauchy-type kernel in our previous study (1) (the exponential kernel
gave a marginally better fit), we use the exponential kernel here:

K(dij) = K0e
−dij/α, for i, j = 1, . . . , n. [S2]

where 1/α is the distance decay rate (per m) in transmission risk (so smaller values of α correspond to a faster decrease in risk
with distance), and K0 is a normalisation constant, defined such that

n∑
i=1

n∑
j=1

K(dij) = n,
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which reduces correlation between α and β and thus improves the mixing of the MCMC algorithm (§2B.4). However, unlike in
our previous study, we allow the possibility of transmission between individuals in different paras (hamlets). The reason for
this is that surveying of neighbouring paras was more complete in the two clusters of paras in the present study, and thus some
minimum inter-para household distances were less than intra-para household distances and within the estimated short-term
flight range of P. argentipes sandflies (a few hundred metres (15–17)), so transmission between neighbouring surveyed paras
may have occurred.

B. Infectiousness over time. There is relatively little data available on the infectiousness of individuals in different L. donovani
infection states over time. We therefore assume that the infectiousness of individuals remains constant within each state and
individuals in the same state have the same probability of passing on infection, such that an individual’s infectiousness over
time takes the form of a step function (Fig. S1B). The relative infectiousness of asymptomatic individuals compared to VL
cases, h4, is assumed to take a fixed value between 0 and 0.02 based on results from xenodiagnosis studies in which 0 of 183
asymptomatically infected individuals infected sandflies (95% confidence interval for transmission probability: 0–0.023) (18),
and estimates from previous modelling studies (3, 4, 19) (Table S1). We test different values of h4 to assess the sensitivity of the
other parameter estimates to the assumed asymptomatic infectiousness. In the absence of data on the relative infectiousness of
pre-symptomatic individuals and asymptomatic individuals, we take the relative infectiousness of pre-symptomatic individuals,
h0, to be the same as that of asymptomatic individuals (i.e. h0 = h4).

One-hundred and thirty-eight of the 190 PKDL cases underwent one or more examinations by a trained physician to
determine the type and extent of their lesions (Table S1). Data from a recent xenodiagnosis study in Bangladesh (20) on
47 PKDL patients (21 nodular and 26 macular/papular) and 15 VL patients is used to assign infectiousness to these cases
according to their lesion type (macular/papular, plaque, or nodular) (Table S1). The results of the xenodiagnosis study suggest
that infectiousness of PKDL increases with lesion severity and macular/papular PKDL cases are less infectious towards sandflies
than VL cases but nodular PKDL cases more so. As plaques were not treated as a separate lesion type in the study, but are
intermediate in severity between macular/papular lesions and nodular lesions (21), a value halfway between the infectiousness
of macular/papular PKDL cases and nodular PKDL cases is assigned to these individuals. The 52 PKDL cases that were not
physically examined during the study are assigned an average of the infectiousnesses of the different lesion types (weighted by
frequency amongst the examined cases). Although it is not known for certain whether treated VL cases who subsequently
relapse or develop PKDL are uninfectious following treatment, we assume dormantly infected individuals are uninfectious,
based on rapid decreases in parasitaemia observed in VL cases following the start of treatment (22, 23)). We assume that
relapse cases are as infectious upon relapse as in their first clinical episode, as relapse appears to be associated with resurgence
in parasitaemia to high parasite loads (23, 24). Over half (100/190=53%) of the PKDL cases did not receive treatment, and of
these 49 self-resolved in a median time of 20 months (interquartile range (IQR) 14–32 months). These cases are assumed to
have remained infectious until their lesions resolved, while treated PKDL cases are assumed to have stopped being infectious
once their treatment commenced (25).

Table S1. Infectiousnesses of different infection states relative to visceral leishmaniasis (VL)

Infection state Proportion in
physical exami-
nations

Proportion positive
in xenodiagnosis
experiments∗

Relative infectiousness Source

Pre-symptomatic - - h0 = 0–0.02 Assumed (h0 = h4)
VL (primary/relapse) - 10/15 (67%) 1 Reference value
PKDL
-macular/papular 101/138 (73%) 9/26 (35%) h1 = (9/26)/(10/15) = 0.52 (20, 21)
-plaque 31/138 (22%) - h2 = ((9/26 + 18/21)/2)/(10/15) = 0.90 (21)
-nodular 6/138 (4%) 18/21 (86%) h3 = (18/21)/(10/15) = 1.29 (20, 21)
-unexamined - - hu = (101/138×0.52)+(31/138×0.90)+(6/138×1.29) =

0.64
Assumed

Asymptomatic - - h4 = 0–0.02 (4, 18, 19)

∗Proportion who infected flies based on positive microscopy and/or qPCR on fed flies.

Thus, individual j’s infectiousness at time t is given by

hj(t) =



h0, if j ∈ E(t),
1, if j ∈ I(t),
h1, if j ∈ P(t) & j has macular/papular lesions,
h2, if j ∈ P(t) & j has plaques,
h3, if j ∈ P(t) & j has nodular lesions,
hu, if j ∈ P(t) & j has unknown PKDL type,
h4, if j ∈ A(t)
0, if j ∈ S(t) ∪ D(t) ∪R(t).

[S3]
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C. Incubation period. Following previous work (1), we model the incubation period as negative binomially distributed NB(r, p)
with fixed shape parameter r = 3 and ‘success’ probability parameter p, and support starting at 1 (such that the minimum
incubation period is 1 month), i.e. via the following probability mass function (PMF):

fE(x) = P(IPj = x) = Γ(r + x− 1)
(x− 1)!Γ(r) p

r(1− p)x−1, x ∈ {1, 2, 3, . . . } [S4]

We estimate p in the MCMC algorithm for inferring the model parameters and missing data (see §2).

D. VL onset-to-treatment time distribution. Several VL cases with onset before 2002 have missing symptom onset and/or
treatment times (only their onset year is recorded), and may therefore have been infectious at the start of the study period. In
order to be able to infer the onset-to-treatment times of these cases, OT ′j = min(R′j , D′j) − I ′j (where primed variables are
the missing counterparts of the observed variables), in the MCMC algorithm (see §2) we model the onset-to-treatment time
distribution as a negative binomial distribution NB(r1, p1) (Table S2) and fit to the onset-to-treatment times of all VL cases
for whom both onset and treatment times were recorded (Fig. S2A):

fI(x) = P(OT ′j = x) = Γ(r1 + x− 1)
(x− 1)!Γ(r1) p

r1
1 (1− p1)x−1, x ∈ {1, 2, 3, . . . }, [S5]

to obtain r1 = 1.34 and p1 = 0.38 (corresponding to a mean onset-to-treatment time of 3.2 months).

E. Asymptomatic infection duration. Neither the infection or recovery time of asymptomatically infected individuals is observed,
so we need to specify a distribution for the asymptomatic infection duration in order to infer their recovery times. Based
on a previous multi-state Markov model of the natural history of VL (26), in which it was assumed that the duration of
asymptomatic infection is exponentially distributed and its mean was estimated as approximately 5 months, we assume the
asymptomatic infection duration, AIPj = Rj − Aj , follows a geometric distribution (the discrete analog of the exponential
distribution) Geom(p2), with a minimum duration of 1 month and a mean of 5 months (p2 = 1

5 ):

fA(x) = P(AIPj = x) = (1− p2)x−1p2, x ∈ {1, 2, 3, . . . } [S6]

The choice of the geometric distribution is partly motivated by the fact that it is a memoryless distribution, i.e. P(AIPj >
s + t|AIPj > s) = P(AIPj > t). This simplifies the estimation of recovery times for initially asymptomatically infected
individuals (see §1I) in the MCMC algorithm as it means that the probability that an initially asymptomatically infected
individual remains infected for a further t months is the same as if they were infected in month 0 regardless of when they were
infected.

F. Dormant infection duration. Sixteen (8.4%) of the 190 PKDL cases reported no prior history of VL, and are assumed to
have been previously asymptomatically infected. We assume that their duration of dormant infection prior to PKDL and that
of VL cases who develop PKDL follow the same negative binomial distribution, NB(r3, p3), and estimate r3 and p3 by fitting
to the observed VL-treatment-to-PKDL-onset times by maximum likelihood estimation (Fig. S2B). Unlike for the incubation
period, we take 0 months to be the minimum duration of dormant infection, since two VL cases developed PKDL in the same
month as they were treated for VL, and one had simultaneous VL and PKDL. Thus the PMF is:

fD(x) = Γ(r3 + x)
x!Γ(r3) pr3

3 (1− p3)x, x ∈ {0, 1, 2, 3, . . . }, [S7]

where r3 = 1.73 and p3 = 0.064 (corresponding to a mean duration of dormant infection of 25 months).

G. Time to relapse and relapse duration. Forty-five VL cases suffered treatment failure or relapse during the study. Of these,
16 were treated with miltefosine and 29 with sodium stibogluconate (SSG). Of those treated with miltefosine, 15 were treated
with counterfeit drug in 2008 (27) and all but one of these cases reported no gap between the start of treatment and recurrence
of symptoms (the other case reported a gap of 30 days). We assume that individuals without any gap between treatment
and symptom recurrence suffered treatment failures, and that their infectiousness continued for 1 month following the start
of treatment until they were treated with SSG. The gap between the start of treatment and new symptoms occurring was
recorded for 7 of the cases originally treated with SSG or miltefosine from a clinical trial, and was non-zero in all cases. We
assume that all cases not recorded as having immediate recurrence of symptoms suffered VL relapse and that the time to
relapse follows a geometric distribution Geom(p4) with PMF:

fR(x) = (1− p4)x−1p4, x ∈ {1, 2, 3, . . . }, [S8]

where fitting to the recorded gaps gives p4 = 0.13 (corresponding to a mean time to relapse of 7.9 months). Relapse cases are
assumed to be uninfectious from their treatment month to their relapse time and their duration of symptoms upon relapse
is assumed to follow the same distribution as the onset-to-treatment time for a first VL episode (Eq. (S5)). We assume all
relapse cases were treated for relapse before the end of the study, since the latest treatment time for primary VL in a case that
subsequently relapsed was April 2009.
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Fig. S2. Observed and fitted negative binomial distributions of (A) VL onset-to-treatment time and (B) VL-treatment-to-PKDL-onset time.

H. Infection pressure. The total infection pressure on susceptible individual i at time t is given by the sum of the infection
pressures on them from all infectious individuals (VL cases, PKDL cases, pre-symptomatic individuals and asymptomatic
individuals) at time t in Eq. (S1) (see Fig. S1C) plus a constant background transmission rate ε to account for unexplained
infections due to non-explicitly modelled factors (e.g. due to short-term movement of individuals):

λi(t) =
∑

j∈Inf (t)

λij(t) + ε =
∑

j∈Inf (t)

(
(βK(dij) + δ1ij)hj(t)

)
+ ε. [S9]

where Inf (t) = E(t) ∪ A(t) ∪ I(t) ∪ P(t) is the set of all individuals infectious at time t. The transmission process is thus
described by a discrete-time approximation to an inhomogeneous Poisson process with rate λ(t) =

∑
i∈S(t) λi(t) (28). The

probability of susceptible individual i remaining susceptible in any particular month t is:

qi(t) = e−λi(t−1), i ∈ S(t), [S10]

while the probabilities of pre-symptomatic or asymptomatic infection in month t given susceptibility up to month t− 1 are,
respectively:

pIi (t) = 1− e−pIλi(t−1), i ∈ S(t− 1), [S11]

pAi (t) = 1− e−(1−pI )λi(t−1), i ∈ S(t− 1). [S12]

I. Model for initial status of non-symptomatic individuals. As there was transmission and VL in the population before the start
of the study, individuals with no record of VL prior to 2002 may have been asymptomatically infected before the start of the
study. Thus, the initial statuses of non-symptomatic individuals are censored and need to be estimated. Although the data on
VL pre-2002 is likely incomplete, we adopt the simplifying assumption that any individual that had VL prior to 2002 is at least
recorded as having had previous VL (even if their onset and treatment times are missing, imprecise or inaccurate), such that
anyone in the rest of the population who was infected prior to 2002 could only have had asymptomatic infection. We also
average over historical and spatial variation in the transmission rate, by assuming that the asymptomatic infection rate prior
to 2002, λ0, was constant. We assume that all 16 individuals who developed PKDL during the study period without prior
VL were asymptomatically infected during the study rather than before (i.e. we ignore the possibility that such individuals
were initially dormantly infected). The latter assumption is not unreasonable despite the estimated long duration of dormant
infection, as the earliest PKDL onset amongst these individuals was in November 2005 (47 months into the study), and it
is unlikely to significantly affect the results given the small number of such cases. With these assumptions we arrive at the
simplified model for the initial status of non-symptomatic individuals shown in Fig. S3.

S A R
𝜆"

Fig. S3. Model for the initial statuses of non-symptomatic individuals, with a constant asymptomatic infection rate, λ0.

The probabilities of each non-symptomatic individual initially present (i.e. with Vj = 0) being susceptible, asymptomatically
infected, or recovered from asymptomatic infection at time t = 0 (pS0 , pA0 , pR0) can then be found by calculating the
probability of avoiding asymptomatic infection in every month from their birth to the start of the study (Eq. (S13)), summing
over the probabilities of being asymptomatically infected in one of the months between their birth and the start of the study
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and recovering after the start of the study (Eq. (S14)), and summing over the probabilities of being asymptomatically infected
in a month before the start of the study and recovering before the start of the study (Eq. (S15)), respectively:

pS0 (aj) := P(Aj > 0, Rj > 0) =
0∏

t=−aj+1

e−λ0 = e−λ0aj [S13]

pA0 (aj) := P(Aj ≤ 0, Rj > 0) =
0∑

t=−aj+1

e−λ0(t+aj−1) (1− e−λ0
)
P(Rj −Aj > −t)

=
aj∑
s=1

e−λ0(s−1) (1− e−λ0
)

(1− p2)aj−s =
(
1− e−λ0

) (
(1− p2)aj − e−λ0aj

)
1− p2 − e−λ0

[S14]

pR0 (aj) := P(Aj < 0, Rj ≤ 0) = 1− pS0 (aj)− pA0 (aj) = 1− e−λ0aj −
(
1− e−λ0

) (
(1− p2)aj − e−λ0aj

)
1− p2 − e−λ0

[S15]

where aj is the age of individual j in months at t = 0. Since we assume that non-symptomatic individuals who are born, or
who immigrate into the study area, after the start of the study (with Vj > 0) are susceptible, for notational convenience we
define the probabilities for these individuals as pS0 (aj) = 1, pA0 (aj) = pR0 (aj) = 0.

We estimate the historical asymptomatic infection rate, λ0, by fitting the model to age-prevalence data on leishmanin skin
test (LST) positivity amongst non-symptomatic individuals from a cross-sectional survey of three of the study paras conducted
in 2002 (8) (see Fig. S4). We assume that entering state R corresponds to becoming LST-positive, as LST positivity is a marker
for durable, protective cell-mediated immunity against VL (8, 9), and estimate λ0 by maximising the binomial likelihood:

LLST(λ0) =
nL∏
j=1

pR0 (aj)
nNS∏

j=nL+1

(1− pR0 (aj)),

where nL = 479 is the number of non-symptomatic individuals that were LST-positive out of nNS = 1399 individuals tested.
This gives λ0 = 0.0019month−1 (95% confidence interval 0.0017–0.0021month−1).
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Fig. S4. Age-prevalence distribution of LST positivity among non-symptomatic individuals in three of the study paras in 2002 and fit of initial status model in Fig. S3.

J. Complete data likelihood. We assume that the end of the epidemic was observed from the point of view of VL and PKDL
cases, i.e. every individual in the study population who eventually developed VL or PKDL did so within the observation
period. Whilst it is likely that there was ongoing transmission beyond the end of the study in December 2010, this simplifying
assumption should not introduce significant error based on the epidemic curves in Fig. 1 in the main text and the very low
numbers of VL and PKDL cases with onset in the final months of the study.

As noted in the main text, there is a considerable amount of missing data, including the infection times of VL cases (E) and
the infection and recovery times of asymptomatic individuals (A and RA). So that we can specify the complete data likelihood
— the likelihood of all events if all variables had been observed — and perform likelihood-based inference, we define the sets
of all observed data and missing data as Y = (B, IM,EM, Ĩ, R̃I , ĨR,DI ,P,RP ,M) and X = (A,E,RA, I′,R′I ,DA, I′R,RR)
respectively, where Ĩ, R̃I and ĨR are the observed onset and recovery times of VL cases and relapse times of VL relapse cases;
I′, R′I and I′R are their missing counterparts; and DI and DA are the start times of dormant infection for VL cases and
asymptomatic individuals.
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Table S2. Values of fixed parameters used in the model

Parameter Description Value Source

pI Proportion of infected individuals who develop VL 0.15 (26)
r Shape parameter of negative binomial incubation pe-

riod distribution
3 (1)

r1 Shape parameter of negative binomial onset-to-
treatment time distribution

1.34 Fitting to observed data

p1 ‘Success’ probability parameter of negative binomial
onset-to-treatment time distribution

0.38 Fitting to observed data

p2 Asymptomatic infection duration distribution parameter 0.2 (26)
r3 Shape parameter for negative binomial dormant infec-

tion duration distribution
1.73 Fitting to observed data

p3 ‘Success’ probability parameter of negative binomial
dormant infection duration distribution

0.064 Fitting to observed data

p4 Treatment-to-relapse distribution parameter 0.13 Fitting to observed data
λ0 Historical asymptomatic infection rate (month−1) 0.0019 Fitting to data on LST-positive prevalence

in study area (8)
r5 Shape parameter of negative binomial PKDL-onset-to-

recovery time distribution∗
1.18 Fitting to observed data

p5 ‘Success’ probability parameter of negative binomial
PKDL-onset-to-recovery time distribution∗

0.066 Fitting to observed data

pP Proportion of VL cases who develop PKDL∗ 0.17 Survival analysis in (21)
pD Proportion of asymptomatic individuals who develop

PKDL∗
0.0028 Estimated from observed incidence of

PKDL amongst asymptomatic individuals

∗Parameters only used in the simulations in §6 as they do not appear in the likelihood in Eq. (S16).

With these definitions, the complete data likelihood for the augmented data Z = (Y,X) given the model parameters
θ = (β, α, ε, δ, p) is composed of the products of the probabilities of all the different individual-level events over all months:

L(θ; Z) ∝
T∏
t=1

∏
j∈S(t)

qj(t)︸ ︷︷ ︸
L1

T∏
t=1

∏
j∈{Ej=t,Ij>12}

pIj (t)︸ ︷︷ ︸
L2

nI∏
j=1

fE(Ij − Ej)︸ ︷︷ ︸
L3

T∏
t=1

∏
j∈{Aj=t}

pAj (t)

︸ ︷︷ ︸
L4

×
∏

j∈{Bj≤0,Ej>12}

pS0 (aj)
∏

j∈{Bj≤0,Aj>0,Rj>0}

pS0 (aj)
∏

j∈{Aj=0,Rj>0}

pA0 (aj)
∏

j∈{Aj=Rj=0}

pR0 (aj)︸ ︷︷ ︸
L5

×
∏

j∈{0≤Aj≤T,Rj≤T}

fA(Rj −Aj)
∏

j∈{0≤Aj≤T,Rj>T}

(
1− FA(T −Aj)

) ∏
j∈{1≤Aj≤T,Pj≤T}

fA(Dj −Aj)fD(Pj −Dj)

×
∏

j∈{Ij<T,R
′
j
≤T}

fI(R′j − Ij)
∏

j∈{I′
j
<T,R′

j
≤T}

fI(R′j − I ′j)
∏

j∈{1≤I′
Rj
≤T}

fR(I ′Rj −Rj)fI(RRj − I ′Rj). [S16]

Here, L1 is the overall probability of individuals avoiding infection (from Eq. (S10)) while subject to infection pressure from
infectious individuals around them (Eq. (S9)), L2 is the probability of all pre-symptomatic infections which occur (from
Eq. (S11)), L3 is the probability of the unobserved incubation periods of VL cases (from Eq. (S4)), L4 is the probability of
all unobserved asymptomatic infections which occur (from Eq. (S12)), L5 is the probability of individuals’ unobserved initial
infection statuses according to the historical transmission rate (from Eqs (S13)–(S15)), and FA(x) = 1− (1− p2)x (x ≥ 1) is
the cumulative distribution function of the asymptomatic infection period distribution (Eq. (S6)).

Given the length and variability of the incubation period, some VL cases with onset early in the study (i.e. in 2002) may
have been infected before 2002. However, unlike in our previous work (1), we cannot assume that these cases arose due to
background transmission, as there was not an extended period without VL cases directly before 2002. In fact, 413 individuals
in the study area were recorded as having VL with onset prior to 2002, 141 of these in 2000 or 2001. Since the data on VL
occurrence, and onset and treatment times before 2002 is less complete and probably less reliable than from 2002 onwards,
there may be missing information on potential sources of infection of cases with onset during 2002. We therefore exclude these
cases from the infection probability part of the likelihood (L2 in Eq. (S16)), but still impute their infection times in the MCMC
algorithm (§2B.4) by drawing new infection times for them using the incubation period distribution, and accepting/rejecting
these based on the effect they have on the likelihood of the infection times of other individuals.
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2. Parameter Estimation

A. Bayesian inference. Since the infection times of VL cases (E) and infection and recovery times of asymptomatic individuals
(A and RA) were unobserved, and some recovery, relapse and relapse treatment times of VL cases (R′I , I′R, RR) were not
recorded, and it is not computationally feasible to sum over all possible configurations of this missing data to calculate the
complete data likelihood (Eq. (S16)), we treat the missing times as extra parameters and use a data augmentation approach
to sample from the joint posterior distribution of the model parameters θ = (β, α, ε, δ, p) and the missing data X given the
observed data Y

P(θ,X|Y) = P(Y,X|θ)P(θ)
P(Y) ∝ L(Z; θ)P(θ). [S17]

We do this using a Metropolis-within-Gibbs MCMC data augmentation algorithm in which we iterate between sampling from
the conditional posterior distribution of the parameters given the observed data and the current value of the missing data,
P(θ|Y,X), and the conditional posterior distribution of the missing data given the current parameter values and the observed
data, P(X|θ,Y) (1, 29).

B. MCMC data augmentation scheme.

B.1. Asymptomatic infection times. To account for the uncertainty in the parameter estimates due to the missing asymptomatic
infection and recovery times we need to estimate which individuals were asymptomatically infected during the study and
when they were infected, as part of the MCMC algorithm. To do this, we assign every non-symptomatic individual j in
the population an asymptomatic infection time and recovery time pair, (Aj , Rj) ∈ {Vj , Vj + 1, . . . ,Wj − 1, T + 1} × {Aj +
1, Aj + 2, . . . ,Wj − 1, T + 1}, where asymptomatic infection and recovery before the study is labelled as (Aj , Rj) = (0, 0),
asymptomatic infection before and recovery during/after the study is labelled as (Aj , Rj) = (0, s), (s ∈ {1, . . . , T + 1}), and
no asymptomatic infection before or during the study is labelled as (Aj , Rj) = (T + 1, T + 1). Posterior distributions for the
asymptomatic infection and recovery time pairs are then estimated in the MCMC algorithm by proposing moves for these pairs
and accepting/rejecting them based on the Metropolis-Hastings acceptance probability. The posterior distribution for which
non-symptomatic individuals were asymptomatically infected during the study can be estimated from the proportion of time in
the MCMC chain each individual spends in states other than (0, 0), (0, s) and (T + 1, T + 1).

Since every non-symptomatic individual has an infection and recovery time pair, with a finite set of possible values, the
dimension of the model remains fixed and reversible jump MCMC (RJMCMC) is not required. We note, however, that the
algorithm described below for updating the asymptomatic infection and recovery time pairs is equivalent to a classical RJMCMC
algorithm in which only individuals that are asymptomatically infected before or during the study have asymptomatic infection
and recovery times and the number of asymptomatic infections varies as asymptomatic infection times are added or removed in
the steps of the algorithm (30–33). As in the RJMCMC algorithm, the likelihood can be higher in the initial iterations of the
chain than the value it ultimately converges to in our approach since the number of asymptomatic infections in the likelihood
changes as the number of pairs corresponding to asymptomatic infection before or during the study changes, despite the fixed
dimension of the parameter space.

In order to sample effectively from the posterior distribution of the asymptomatic infection and recovery times, we need
to use a proposal distribution that allows us to efficiently navigate the very large space of possible asymptomatic infection
and recovery time pairs. We therefore use the running estimate of the total infection pressure on each individual, averaged
over the history of the MCMC chain, to propose new asymptomatic infection times for non-symptomatic individuals. The
proposal distribution for individual j at the kth iteration of the MCMC chain thus consists of the probabilities of them being
asymptomatically infected at each time point according to the mean infection pressure on them at time t from the previous
samples in the chain, λ(k)

j (t) = 1
k

∑k−1
m=0 λ

(m)
j (t):

q
(k)
j (Aj) =


(1− pS0 (aj))/C(k)

j for Aj = Vj ,

pS0 (aj)e
−
∑Aj−1

s=Vj +1
λ

(k)
j (s−1) (

1− e−(1−pI )λ(k)
j (Aj−1)

)
/C

(k)
j for Vj < Aj ≤Wj − 1,

pS0 (aj)e
−
∑Wj−1

s=Vj +1
λ

(k)
j (s−1)

/C
(k)
j for Aj = T + 1,

[S18]

where Cj =
∑Wj−1

t=Vj
qj(t) + qj(T + 1) is a normalising constant to account for the fact that we know that j was not pre-

symptomatically infected during the study. Although the infection pressure with a newly proposed asymptomatic infection and
recovery time pair (A′j , R′j) will be different from that with the current pair (Aj , Rj), and the probability of the reverse move
(A′j , R′j)→ (Aj , Rj) will therefore not be equal to the probability of the forward move (Aj , Rj)→ (A′j , R′j), the difference in
the infection pressure between consecutive iterations will be O( 1

k
). Hence, as the number of iterations becomes large, the

adaptation will diminish (34) and λkj (t) will tend towards a constant, such that the proposal probabilities for the forward and
backward moves may be treated as equal.

B.2. Prior distributions. We use relatively weak gamma distributions (Gamma(k, θ) with shape parameter k and scale parameter
θ, i.e. probability density function f(x) = 1

Γ(k)θk x
k−1e−x/θ), for the prior distributions for the transmission parameters β, α, ε

and δ (which are non-negative), since there is little information available with which to construct informative priors (Table S3).

9 of 39



The mean of the prior distribution for α is chosen as 100m based on previous findings (1). A beta distribution, Beta(a, b), is
chosen as a conjugate prior for the incubation period parameter p, since it is a probability (p ∈ (0, 1]). The parameters of the
beta distribution are chosen to match the mean of the prior distribution for the incubation period (NB(r, p), p ∼ Beta(a, b))
with the estimated mean incubation period (∼5 months) taken from previous analysis of diagnostic data from a subset of the
study population (26). With this choice of prior, the conditional posterior distribution of p is a beta distribution:

(p|β,Y,X) ∼ Beta

(
a+ rnI , b+

nI∑
j=1

IPj − nI

)
, [S19]

where β = (β, α, ε, δ), so p can be updated efficiently in the MCMC by drawing from this full conditional distribution rather
than using a random walk Metropolis-Hastings update.

Table S3. Definitions and prior distributions of estimated parameters.

Parameter (units) Definition Prior distribution

β (month−1) Rate constant for spatial transmission Gamma(1, 1)
α (m) Inverse distance decay rate of spatial transmission kernel Gamma(1, 100)
ε (month−1) Background transmission rate Gamma(1, 1)
δ Additional within-household transmission rate Gamma(1, 1)
p Incubation period distribution parameter Beta(22, 28)

B.3. Initial parameter values and missing data values. Informed guesses based on previous results (1) and preliminary runs of the
MCMC are used for the starting values for the model parameters to reduce the burn-in time, θ0 = (β0, α0, ε0, δ0, p0) =
(3, 100, 0.001, 0.001, 3/7). The initialisation of the missing data, X, is more involved as it requires picking starting values for
the asymptomatic infection and recovery times of all non-symptomatic individuals in the population (which determine their
initial statuses and whether they were infected or not by the end of the study), along with the infection times of all VL cases,
and proceeds as follows:

• For each VL case j missing a treatment time, draw a treatment time using Eq. (S5), i.e.

R′j,0 = Ij,0 + OT ′j,0, OT ′j,0 ∼ NB(r1, p1) [S20]

• For each VL case j missing a treatment time who may have had active VL at the start of the study (assumed to be only
those who had onset after January 2001 since those with onset before January 2001 were likely to have been treated by
January 2002 (Fig. S2A)):

– if their onset time Ij,0 is missing, draw it from U(−11, 0) (i.e. uniformly from January 2001–December 2001)
– draw their treatment time Rj,0 as in Eq. (S20)

• For each VL case j that suffered relapse:

– if their relapse time IRj,0 is missing, draw it using Eq. (S8)
– draw their relapse treatment time RRj,0 using Eq. (S5), i.e.

RRj,0 = IRj,0 + OT j,0, OT j,0 ∼ NB(r1, p1)

• For each VL case j, draw an infection time:

Ej,0 = Ij − IPj,0, IPj,0 ∼ NB(r, p0)

• For each non-symptomatic individual j:

– draw their initial status (susceptible, currently asymptomatically infected, or previously asymptomatically infected
and recovered) according to Eqs (S13)–(S15)

– if they are initially recovered from previous asymptomatic infection, set (Aj,0, Rj,0) = (0, 0)
– if they are initially actively asymptomatically infected, draw their recovery time Rj,0 from {1, . . . ,Wj − 1, T + 1}

with probability {
fA(Rj,0) for 1 ≤ Rj,0 ≤Wj − 1,
1− FA(Wj − 1) for Rj,0 = T + 1

– for the subset that are initially susceptible:
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∗ calculate the infection pressure on them (Eq. (S9)) from VL cases and PKDL cases with prior VL
∗ use this to calculate the probability of asymptomatic infection at each time point as in Eq. (S18), i.e. with λj(t)
replaced by the infection pressure from VL and PKDL cases

∗ draw 1−pI
pI

nI − nAP individuals, where nAP is the number of asymptomatic individuals who develop PKDL, to
be asymptomatically infected according to their cumulative probability of asymptomatic infection before the

end of the study,
∑Wj−1

t=Vj
qj(t)∑

i∈S(0)

∑Wj−1
t=Vj

qi(t)

∗ for each asymptomatic individual draw an infection time Aj,0 ∈ {Vj + 1, . . . ,Wj − 1} with probability

qj(Aj,0)∑Wj−1
t=Vj+1 qj(t)

,

and a recovery time Rj,0 ∈ {Aj + 1, . . . ,Wj − 1, T + 1} with probability{
fA(Rj,0 −Aj,0) for Aj,0 < Rj,0 ≤Wj − 1,
1− FA(Wj − 1−Aj,0) for Rj,0 = T + 1.

∗ for all individuals not infected before the end of the study set (Aj,0, Rj,0) = (T + 1, T + 1)

• For each PKDL case j without prior VL, set a dormant infection start time, Dj,0, by drawing a dormant infection
duration and subtracting it from their PKDL onset time,

Dj,0 = Pj −DIPj,0, DIPj,0 ∼ NB(r3, p3),

and then draw an asymptomatic infection time, Aj,0, conditional on Aj,0 > Vj ,

Aj,0 = Dj,0 −AIPj,0, AIPj,0 ∼ Geom(p2).

The MCMC algorithm was run from a range of initial parameter values and asymptomatic infection and recovery time
configurations (with different numbers of individuals asymptomatically infected before the study and during the study etc.) to
test convergence, and in all cases converged to the same posterior distributions.

B.4. MCMC algorithm. With the initial parameter values, missing data and priors chosen as described, the MCMC algorithm
proceeds by repeating the steps below. Note that throughout the following we suppress notation of conditional dependencies
in the likelihood terms where they are obvious to maintain legibility. The algorithm also accounts for the fact that some
individuals were born or migrated or died during the study when updating the unknown pre-symptomatic infection times and
asymptomatic infection and recovery times (using the birth/migration/death times as bounds on the proposed unobserved
times), but we omit these details from the following description for simplicity.

We update 20% of infection times of VL cases and 20% of infection and recovery times of asymptomatic individuals in each
iteration of the algorithm to strike a balance between efficient mixing of the MCMC chain and computational speed. The
algorithm is run for N = 105 iterations, including a burn-in of 20, 000 iterations which is discarded.

Terms in the full likelihood (Eq. (S16)) for the asymptomatic infection duration, dormant infection duration, VL symptom
duration of cases with missing onset and/or treatment time, and relapse duration do not appear in the acceptance probabilities
for the updates for asymptomatic infection and recovery times, dormant infection times, missing onset and treatment times,
and missing relapse and relapse treatment times (steps 4–10 below), as they cancel with the proposal probabilities for the
newly proposed times, and are unaffected by the other steps in the algorithm.

1. Update transmission parameters:
Update the transmission parameters β = (β, α, ε, δ) conditional on the current incubation period distribution parameter
p and missing data values X and observed data Y, using an adaptive random walk Metropolis-Hastings step:

(a) Propose new values β′ as described in §2B.5.
(b) Accept β′ with probability

min
(

1, L1(β′)L2(β′)L3(β′)L4(β′)
L1(β)L2(β)L3(β)L4(β)

P(β′)
P(β)

)
.

2. Update incubation period distribution parameter:
Update p by drawing from its conditional posterior distribution P(p|β,Y,X) (Eq. (S19)).

3. Move pre-symptomatic infection times:
Update one-at-a-time the pre-symptomatic infection times of a random 20% of VL cases for whom both the onset and
treatment times were observed, and the infection times of all cases missing their onset and/or treatment time:
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(a) For each case j, propose a new infection time conditional on the current values of the other infection times and
the model parameters, E′j |((X \ {Ej}),Y, θ), using an independence sampler, i.e. propose a new incubation period
IP ′j ∼ NB(r, p) and subtract this from the onset time:

E′j = Ij − IP ′j .

(b) Accept the infection time move with probability

min
(

1,
L1(E′j |E−j)L2(E′j |E−j)L3(E′j |E−j)L4(E′j |E−j)
L1(Ej |E−j)L2(Ej |E−j)L3(Ej |E−j)L4(Ej |E−j)

fE(IPj)
fE(IP ′j)

)
.

where E−j = (E1, . . . , Ej−1, Ej+1, . . . , EnI ) is the set of pre-symptomatic infection times with j’s infection time Ej
removed.

4. Update asymptomatic infection and recovery times:
Update one-at-a-time the asymptomatic infection and recovery times of 20% of non-symptomatic individuals as follows.
This step may appear complicated, but essentially consists of proposing a new asymptomatic infection time and recovery
time pair (A′j , R′j) from anywhere in an approximately triangular grid of possibilities in discrete (A,R)-space (since
Rj ≥ Aj with equality only when Aj = 0 or Aj = T + 1), recalculating the parts of the likelihood that change with
(A′j , R′j) and accepting/rejecting according to the product of the likelihood ratio and the proposal ratio for the move
(Aj , Rj)→ (A′j , R′j).

(a) Choose a non-symptomatic individual j with probability proportional to their cumulative probability of being
asymptomatically infected before the end of the study

∑Wj−1
t=Vj

q
(k)
j (t).

(b) Draw a new asymptomatic infection time A′j ∈ {Vj , . . . ,Wj − 1, T + 1} from the asymptomatic infection time
proposal distribution q(k)

j (·) (Eq. (S18)).
(c) i. If Aj = 0:

A. If A′j = 0, propose a new R′j ∈ {0, 1, . . . ,Wj − 1, T + 1} with probability:
pR0 (aj)

(pA0 (aj)+pR0 (aj)) for R′j = 0,
pA0 (aj)

pA0 (aj)+pR0 (aj)fA(R′j) for 1 ≤ R′j ≤Wj − 1,
pA0 (aj)

pA0 (aj)+pR0 (aj)

(
1− FA(Wj − 1)

)
for R′j = T + 1.

Accept (A′j , R′j) with probability

min
(

1,
L1(A′j , R′j |A−j ,R−j)L2(A′j , R′j |A−j ,R−j)L4(A′j , R′j |A−j ,R−j)L5(A′j , R′j |A−j ,R−j)
L1(Aj , Rj |A−j ,R−j)L2(Aj , Rj |A−j ,R−j)L4(Aj , Rj |A−j ,R−j)L5(Aj , Rj |A−j ,R−j)

Q

)
, [S21]

where

Q =


1 if Rj = 0, R′j = 0,
pA0 (aj)
pR0 (aj) if Rj > 0, R′j = 0,
pR0 (aj)
pA0 (aj) if Rj = 0, R′j > 0,
1 if Rj > 0, R′j > 0,

and A−j = A \ {Aj} and R−j = R \ {Rj}.
B. If A′j = T + 1, set R′j = T + 1 and accept (A′j , R′j) with probability in Eq. (S21), but where Q is now

Q =


pR0 (aj)

pA0 (aj)+pR0 (aj)
q

(k)
j

(0)

q
(k)
j

(T+1)
if Rj = 0,

pA0 (aj)
pA0 (aj)+pR0 (aj)

q
(k)
j

(0)

q
(k)
j

(T+1)
if Rj > 0.

C. If A′j ∈ [1, T ], propose R′j ∈ {A′j + 1, A′j + 2, . . . ,Wj − 1, T + 1} with probability:{
fA(R′j −A′j) for A′j < R′j ≤Wj − 1,
1− FA(Wj − 1−A′j) for R′j = T + 1,

and accept (A′j , R′j) with probability in Eq. (S21) but with

Q =


pR0 (aj)

pA0 (aj)+pR0 (aj)
q

(k)
j

(0)

q
(k)
j

(A′
j
)

if Rj = 0,

pA0 (aj)
pA0 (aj)+pR0 (aj)

q
(k)
j

(0)

q
(k)
j

(A′
j
)

if Rj > 0.
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ii. If Aj = T + 1:
A. If A′j = T + 1, then R′j = T + 1, so accept immediately as the likelihood does not change.
B. If A′j = 0, follow Step 4(c)iA, except with

Q =


1

pR0 (aj)/(pA0 (aj)+pR0 (aj))
q

(k)
j

(T+1)

q
(k)
j

(0)
if R′j = 0,

1
pA0 (aj)/(pA0 (aj)+pR0 (aj))

q
(k)
j

(T+1)

q
(k)
j

(0)
if R′j > 0.

C. If A′j ∈ [1, T ], follow Step 4(c)iC, except with

Q =
q

(k)
j (T + 1)
q

(k)
j (A′j)

.

iii. If Aj ∈ [1, T ]:
A. If A′j = 0, follow Step 4(c)iA, but with Q replaced by

Q =


1

pR0 (aj)/(pA0 (aj)+pR0 (aj))
q

(k)
j

(Aj)

q
(k)
j

(0)
if R′j = 0,

1
pA0 (aj)/(pA0 (aj)+pR0 (aj))

q
(k)
j

(Aj)

q
(k)
j

(0)
if R′j > 0.

B. If A′j = T + 1, follow Step 4(c)iB except with

Q =
q

(k)
j (Aj)

q
(k)
j (T + 1)

.

C. If Aj ∈ [1, T ], follow Step 4(c)iC but with

Q =
q

(k)
j (Aj)
q

(k)
j (A′j)

.

5. Update asymptomatic infection times and dormant infection times of PKDL cases without prior VL:
Update the asymptomatic infection and dormant infection times for each PKDL case j without prior VL, conditional on
the asymptomatic infection time being after the start of the study or j’s birth (whichever is later):

(a) Propose a new time, D′j , for recovery to dormant infection from asymptomatic infection using an independence
sampler:

D′j = Pi −DIPj , DIPj ∼ NB(r3, p3).

(b) Propose a new asymptomatic infection time, A′j :

A′j = D′j −AIPj , AIPj ∼ Geom(p2).

(c) If A′j < Vj + 1, reject immediately. Otherwise accept (A′j , D′j) with probability

min
(

1,
L1(A′j , D′j |A−j ,D−j)L2(A′j , D′j |A−j ,D−j)L4(A′j , D′j |A−j ,D−j)
L1(Aj , Dj |A−j ,D−j)L2(Aj , Dj |A−j ,D−j)L4(Aj , Dj |A−j ,D−j)

)
,

where D−j = D \ {Dj}.

6. Update missing treatment times of VL cases during the study:
Update the treatment time of each VL case j with a missing treatment time but known onset time, conditional on the
treatment time being before their PKDL onset:

(a) Propose a new treatment time:
D′j = Ij + OT ′j , OT ′j ∼ NB(r1, p1).

(b) If D′j > Pj − 1, reject immediately. Otherwise accept D′j with probability

min
(

1,
L1(D′j |D−j)L2(D′j |D−j)L4(D′j |D−j)
L1(Dj |D−j)L2(Dj |D−j)L4(Dj |D−j)

)
.
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7. Update whole onset-to-treatment period of potentially initially active VL cases:
Update the onset and treatment times of all cases who potentially had active VL at the start of the study (t = 0) who
are missing both onset and treatment times, one case at a time. For each case j:

(a) Propose new onset and treatment times, I ′j and R′j :

I ′j = Ij +M, M ∼ round(Normal(0, 4)) \ {0}
R′j = I ′j + OT ′j , OT ′j ∼ NB(r1, p1).

(b) If I ′j is not in j’s onset year or R′j > min(Pj − 1,Mj , T ), reject immediately. Otherwise, accept the new times with
probability

min
(

1,
L1(I ′j , R′j |I−j ,R−j)L2(I ′j , R′j |I−j ,R−j)L4(I ′j , R′j |I−j ,R−j)
L1(Ij , Rj |I−j ,R−j)L2(Ij , Rj |I−j ,R−j)L4(Ij , Rj |I−j ,R−j)

)
,

where I−j = I \ {Ij}.

8. Update missing treatment times of potentially initially active VL cases:
Update the treatment times of cases who potentially had active VL at the start of the study whose treatment times were
not recorded but whose onset times are known, one by one. For each case j:

(a) Propose a new treatment time, R′j :

R′j = Ij + OT ′j , OT ′j ∼ NB(r1, p1).

(b) If R′j > min(Pj − 1,Mj , T ), reject immediately. Otherwise, accept R′j with probability

min
(

1,
L1(R′j |R−j)L2(R′j |R−j)L4(R′j |R−j)
L1(Rj |R−j)L2(Rj |R−j)L4(Rj |R−j)

)
.

9. Update whole relapse period of cases missing both relapse and relapse treatment times:
Update the relapse and relapse treatment times of all VL cases who suffered relapse during the study who are missing
both times, one case at a time. For each case j:

(a) Propose new relapse and relapse treatment times, I ′Rj and R′Rj

I ′Rj = Rj + TRj , TRj ∼ Geom(p4),
R′Rj = I ′Rj + OT ′j , OT ′j ∼ NB(r1, p1).

(b) If I ′Rj > min(Pj − 2,Wj − 2) or R′Rj > min(Pj − 1,Wj − 1), reject immediately. Otherwise, accept I ′Rj and R′Rj
with probability

min
(

1,
L1(I ′Rj , R′Rj |IR,−j ,RR,−j)L2(I ′Rj , R′Rj |IR,−j ,RR,−j)L4(I ′Rj , R′Rj |IR,−j ,RR,−j)
L1(IRj , RRj |IR,−j ,RR,−j)L2(IRj , RRj |IR,−j ,RR,−j)L4(IRj , RRj |IR,−j ,RR,−j)

)
,

where IR,−j = IR \ {IRj} and RR,−j = RR \ {RRj}.

10. Update missing relapse treatment times of relapse VL cases:
Update the missing relapse treatment times of VL cases with known relapse times:

(a) Propose a new relapse treatment time, R′Rj

R′Rj = IRj + OT ′j , OT ′j ∼ NB(r1, p1).

(b) If R′Rj > min(Pj − 1,Wj − 1), reject immediately. Otherwise, accept R′Rj with probability

min
(

1,
L1(R′Rj |RR,−j)L2(R′Rj |RR,−j)L4(R′Rj |RR,−j)
L1(RRj |RR,−j)L2(Rj |RR,−j)L4(RRj |RR,−j)

)
.
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B.5. Accelerated adaptive random walk Metropolis algorithm. We block update the transmission parameters in step 1 of the algorithm
above using a combination of an ‘Accelerated Shaping’ algorithm and an ‘Accelerated Scaling’ algorithm. The Accelerated
Shaping algorithm is a generalised version of the adaptive random walk Metropolis algorithm of Haario et al. (35), which uses
the running estimate of the covariance matrix of the posterior distribution of the parameters from the MCMC chain in the
multivariate normal proposal distribution to automatically tune the proposal covariance matrix to make efficient proposals.
The Haario algorithm uses a fixed initial guess for the covariance matrix for a certain number of iterations at the start of the
chain and then the estimate of the covariance matrix from the whole history of the chain after that, including the initial values
and the burn-in, which can lead to slow convergence of the chain due to the sensitivity of the covariance estimate to outliers.
The Accelerated Shaping algorithm instead begins adapting straight away and removes early iterations of the chain from the
running estimate of the covariance matrix at a rate slower than it includes new iterations. This helps to ensure that the chain
converges to the posterior mode quickly even if the initial guesses for the parameter values and covariance matrix are relatively
poor.

If βk is the vector of the values of the transmission parameters at the kth iteration, then the proposal for β at the (k + 1)th
iteration is given by

β′k+1 = N(βk, 2.382c2kΣk+1/nβ) [S22]

where Σk+1 and nβ are the running estimate of the covariance matrix and dimension of the posterior density for β, and ck is a
scaling constant that is tuned to achieve efficient mixing via the Accelerated Scaling algorithm (see below). To discard early
iterations at a slower rate than new ones are included, a non-decreasing sequence of integers is used, f(k) =

⌊
k
2

⌋
, such that

f(0) = 0 and f(k + 1) = f(k) or f(k + 1) = f(k) + 1 for all k, and Σk+1 for k > 0 is defined as

Σk+1 =
(

k − f(k)
k − f(k) + k0

)
cov(βf(k), . . . ,βk) +

(
k0

k − f(k) + k0

)
Σ0, [S23]

where

cov(βf(k), . . . ,βk) = 1
k − f(k)

k∑
i=f(k)

(
βiβ

T
i − βi+1β

T

i+1

)
is the empirical covariance of the last k − f(k) + 1 samples of β from the chain,

βk+1 = 1
k − f(k) + 1

k∑
i=f(k)

βi

is the mean of the last k − f(k) + 1 samples, Σ0 is the initial guess for the covariance matrix, and k0 determines the rate at
which the influence of Σ0 on Σk+1 decreases (the weight of Σ0 halves after the first 2k0 iterations). We use k0 = 1000 here.

If f(k) = f(k − 1) (i.e. if k is odd with f(k) chosen as above), an additional observation is added to the estimate of the
covariance matrix:

Σk+1 = 1
k − f(k) + k0

(
(k − 1− f(k) + k0)Σk + βkβTk + (k − f(k))βkβ

T

k − (k − f(k) + 1)βk+1β
T

k+1

)
,

where
βk+1 = k − f(k)

k − f(k) + 1βk + 1
k − f(k) + 1βk,

and if f(k) = f(k − 1) + 1 (i.e. if k is even), the new observation replaces the oldest:

Σk+1 = Σk + 1
k − f(k) + k0

(
βkβTk − βf(k)−1βTf(k)−1 + (k − f(k) + 1)

(
βkβ

T

k − βk+1β
T

k+1

))
where

βk+1 = βk + 1
k − f(k) + 1(βk − βf(k)−1).

It has been shown that N(βk, 2.382Σ/nβ), where Σ is the covariance matrix of the posterior distribution, is the optimal
proposal distribution for rapid convergence and efficient mixing of the MCMC chain for symmetric product-form posterior
distributions as nβ →∞, and leads to an acceptance rate of 23.4% (36, 37). This corresponds to a scaling of ck = 1 in Eq. (S23).
However, we are in a context with a large amount of missing data, which is strongly correlated with some of the transmission
parameters (see §8B), so the posterior distribution is not symmetric, and this scaling is not optimal. We therefore scale ck
adaptively as the algorithm progresses to target an acceptance rate of approximately 23.4% for updates to β (Accelerated
Scaling). We do this by rescaling ck by a factor of xk > 1 every time an acceptance occurs and by a factor of xν/(ν−1)

k < 1
every time a rejection occurs such that the acceptance rate ν approaches 23.4% in the long run,

ck+1 =
{
ckxk if proposal is accepted
ckx

ν/(ν−1)
k if proposal is rejected.
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In order to satisfy the ‘Diminishing Adaptation’ condition (38), which is necessary to ensure the Markov chain is ergodic and
converges to the correct posterior distribution, it is required that ck tends to a constant as k →∞. So that the adaptation
diminishes as k increases, we use the sequence

xk = 1 + m0

m0 + k
,

where m0 is the number of iterations over which the scaling factor xk decreases from 2 to 1.5. Here we use m0 = 100.

3. Model Comparison

We compare the goodness of fit of models with and without additional within-household transmission using DIC (39). DIC
measures the trade-off between model fit and complexity, and lower values indicate better fit. Since some variables were not
observed, we use a version of DIC appropriate for missing data from (40), which is based on the complete data likelihood
L(θ; Z) = P(Y,X|θ). This is equivalent to the standard version of DIC for fully observed data except that it is averaged over
the missing data:

DIC = D(θ̃) + 2pD
= D(θ) + pD

= 2D(θ)−D(θ̃)
= −4Eθ,X[logL(θ; Y,X)] + 2EX[logL(θ̃; Y,X)], [S24]

where D(θ) is the deviance (the measure of model fit), given (up to an additive constant dependent only on the data) by

D(θ) = −2 log(L(θ; Z));

pD is the effective number of parameters in the model (the measure of model complexity), defined by

pD = D(θ)−D(θ̃),

and θ̃ is an appropriate summary statistic for θ from its posterior distribution (here we use the posterior mode).
The first term in Eq. (S24) can be straightforwardly estimated as the mean of the values of the log-likelihood over the

MCMC samples:

Eθ,X[logL(θ; Y,X)] ≈ 1
N

N∑
i=1

logL(θi; Y,Xi).

The second term in Eq. (S24) is calculated by storing the values of the missing data while running the MCMC, re-running the
full log-likelihood computation for each iteration using the stored values and the posterior mode, and averaging these values

EX[logL(θ̃; Y,X)] ≈ 1
N

N∑
i=1

logL(θ̃; Y,Xi).

Since there can be issues with using DIC for model comparison (41), we also compared the posterior distributions of the
deviances of the models to assess differences in quality of fit and validated the DIC metric on simulated data (see §10).

4. Calculating the Contribution of Different Infection States to Transmission

We calculate the contribution of each infection state to the total infection pressure on all susceptible individuals λ(t) (Fig. 2A
in the main text), which determines the rate of new infections at time t, by summing the infection pressures on susceptible
individuals from each state:

λX (t) =
∑
i∈S(t)

∑
j∈X (t)

λij(t), [S25]

where X ∈ {A, E , I,P} denotes the infection state. The relative contribution to the infection pressure on susceptible individuals
(Fig. S21) is then given by

λX (t)∑
Y∈{A,E,I,P} λY(t) + S(t)ε

= λX (t)
λ(t) . [S26]

The relative contribution of state X to the infection pressure on the ith VL case at their infection time, i.e. the probability
that i’s infection source is X (Fig. 2B in the main text), is:∑

j∈X (Ei−1) λij(Ei − 1)∑
Y∈{A,E,I,P}

(∑
j∈Y(Ei−1) λij(Ei − 1)

)
+ ε

=
∑

j∈X (Ei−1) λij(Ei − 1)
λi(Ei − 1) , X ∈ {A, E , I,P}. [S27]

The probability that the ith VL case is infected from the background transmission is ε

λi(Ei − 1) .
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5. Reconstructing the Epidemic

A. Reconstructing the transmission tree. We reconstruct the transmission tree following the ‘sequential approach’ described
in (42). We draw N samples (θk,Xk) (k = 1, . . . , N) from the joint posterior distribution from the MCMC, calculate the
probability that infectee i was infected by individual j conditional on their infection time Ei

pij|Ei
= λij(Ei − 1)∑

l∈Inf (Ei−1) λil(Ei − 1) + ε
[S28]

for all infectees and possible infectors for each sample, and draw an infector for each infectee from the posterior distribution of
possible infectors {pij|Ei

(θk,Xk)} from each sample. This yields a sample of N transmission trees drawn from their predictive
distribution, and thus accounts for uncertainty in the infection source (given fixed values of the parameters and missing data),
and uncertainty in the parameter values and missing data (over the posterior distribution). We use N = 1000 here.

We reconstruct the transmission chains for each infected individual by searching backwards through each sampled transmission
tree for their infector, and the infector of their infector, and so on, until the “index” case (in practice the earliest observed case
during the study period) in the chain is reached. This gives the transmission chain for each infectee in each transmission tree.
We then find the set of all “index” cases (the roots of all the transmission chains) and calculate the mean time from their
onset to the infections of their infectees, and mean distance to their infectees, in each infection generation, and average these
quantities over all sampled transmission trees.

B. Calculating transmission distances and times. The mean infector-to-VL-infectee distance and mean infector-onset-to-VL-
infectee-infection time for each VL and PKDL infector (Figures 4A and 4B in the main text) are calculated from the sample of
N transmission trees by averaging the distances and times from each infector to their VL infectees within each tree, and then
averaging these quantities over all the trees in which that VL/PKDL case is an infector:

dj = 1
|Fj |

∑
k∈Fj

 1
|Gj,k|

∑
i∈Gj,k

dij

 [S29]

τj = 1
|Fj |

∑
k∈Fj

 1
|Gj,k|

∑
i∈Gj,k

τ
(k)
ij

 [S30]

where τ (k)
ij is the time between j’s onset and i’s infection in the kth tree, Fj is the set of all trees in which j is an infector, Gj,k

is the set of all infectees of j in the kth tree, and | · | denotes set size.

C. Calculating reproduction numbers. The individual-level reproduction number for infectious individual j is obtained by
summing the probabilities in Eq. (S28) over all individuals i that j could have infected (43, 44):

Rj =
n∑
i=1

pij|Ei
. [S31]

To account for uncertainty in infected individuals’ unobserved infection times these reproduction numbers are averaged over
the joint posterior distribution of the transmission parameters and missing data:

Rj =
∑
X∈Ω

∫
Rj(θ,X)P(θ,X) dθ ≈ 1

N

N∑
k=1

R
(k)
j , [S32]

where Ω is the space of all possible values of the missing data X, R(k)
j is individual j’s reproduction number from the kth

iteration of the MCMC chain (with the burn-in removed), and N is a suitably large number of samples from the posterior
distribution (we use N = 1000). Since we are interested in comparing the numbers of new infections generated by VL and
PKDL cases, in the main text we separate the expected numbers of secondary infections coming from the VL episodes and
PKDL episodes of individuals who had both VL and PKDL (Fig. 5A in the main text) (i.e. we effectively treat them as coming
from separate individuals), and hence no longer refer to the numbers of secondary infections per VL case and per PKDL case
as reproduction numbers.

The time-dependent overall effective reproduction number (Fig. 5C in the main text) can also be calculated from the
transmission probabilities as the mean of the individual reproduction numbers for all VL cases and asymptomatic individuals
with onset and infection, respectively, at time t (43):

Re(t) =
∑

j∈(A(t)∪I(t))\(A(t−1)∪I(t−1)) Rj∣∣(A(t) ∪ I(t)
)
\
(
A(t− 1) ∪ I(t− 1)

)∣∣ . [S33]
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The absolute contribution of each infectious state to the effective reproduction number at time t is:∑
j∈X (t)\X (t−1) Rj∣∣(A(t) ∪ I(t)
)
\
(
A(t− 1) ∪ I(t− 1)

)∣∣ [S34]

where X ∈ {A, I} denotes the infectious state, and, as described above, in the main text we split the numbers of secondary
infections (Rj) arising from VL and PKDL for cases that had both.

6. Model Simulations

To assess the fit of the model and simulate hypothetical interventions against PKDL, we create a stochastic simulation version of
the individual-level spatiotemporal transmission model described above. We follow standard stochastic simulation methodology
for discrete-time individual-level transmission models (45), converting infection event rates into probabilities in order to simulate
who gets infected in each month. We assume that an individual’s progression through different infection states following
infection occurs independently of the rest of the epidemic (i.e. is either governed by internal biological processes or random
external processes of detection), which enables the simulation of an individual’s full infection history from the point of infection.

So that we can simulate durations of PKDL infectiousness, we fit a negative binomial distribution NB(r5, p5) to the observed
PKDL onset-to-treatment times and onset-to-resolution times for self-resolving PKDL cases in the data:

fP (x) = P(RPj −Dj = x) = Γ(r5 + x− 1)
(x− 1)!Γ(r5) p

r5
5 (1− p5)x−1, x ∈ {1, 2, 3, . . . }, [S35]

by maximum likelihood estimation, which yields r5 = 1.18, p5 = 0.066 (corresponding to a mean duration of PKDL infectiousness
of 18 months).

We simulate epidemics for the study population starting from January 2003 (at which point all but one of the paras had
had at least 1 VL case since January 2002) using the individual-level location and demographic information (months of birth,
death and migration) from the observed data, and posterior samples of the parameter values and individuals’ infection statuses
in December 2002 obtained from the MCMC algorithm.

Given these pieces of information, the simulation algorithm proceeds as follows:
1. Starting at t = 12, draw the times of the next events for all individuals that have already been infected, e.g. VL onset times

for individuals already pre-symptomatically infected, using the size-biased negative binomial distributions corresponding
to Eq. (S4), Eq. (S5), Eq. (S7), and Eq. (S35), and Eq. (S6) for the asymptomatic infection durations. The size-biased
negative binomial distribution accounts for the fact that individuals with left-censored infection times who are observed to
be actively infected at a particular point in time are likely to have had long durations of infection if the infection duration
is negative binomially distributed (46). The PMF of a size-biased negative binomial random variable X∗ corresponding
to X ∼ NB is:

P(X∗ = x∗) = P(X ≥ x∗)
E[X]

2. Simulate the times of the subsequent events for these individuals by drawing from Eq. (S4)–Eq. (S7) and Eq. (S35). Assign
each PKDL case an infectiousness by drawing from Cat({h1, h2, h3, hu},p), where Cat(·) is the categorical distribution
and p = (101/190, 31/190, 6/190, 52/190) are the probabilities of the different lesion types according to their observed
frequencies in the data (Table S1).

3. For each susceptible individual i from the set of individuals who have been born/immigrated and have not yet
died/emigrated, determine whether they become infected:

(a) Infection occurs with probability 1− e−λi(t), where λi(t) is given by Eq. (S9).
(b) Else they remain susceptible.

4. Set t = t+ 1.

5. For each infection, decide if it is a pre-symptomatic infection or an asymptomatic infection:

(a) Pre-symptomatic infection occurs with probability pI . In which case, draw an onset time:

Ii = t+ IPi, IPi ∼ NB(r, p),

and decide whether the individual subsequently develops PKDL or not:
i. PKDL occurs with probability pP . In which case draw times for progression to dormant infection, PKDL onset

and recovery:

Di = Ii + OT i, OT i ∼ NB(r1, p1),
Pi = Di + DIPi, DIPi ∼ NB(r3, p3),
Ri = Pi + PRi, PRi ∼ NB(r5, p5),

and assign a PKDL infectiousness to the individual by drawing from Cat({h1, h2, h3, hu},p).
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ii. Else the individual recovers upon treatment, so draw a treatment time:

Ri = Ii + OT i, OT i ∼ NB(r1, p1).

(b) Else it is an asymptomatic infection. In which case, decide whether the individual progresses to PKDL or not:
i. Progression to PKDL occurs with probability pD. In which case, draw times for progression to dormant infection,

PKDL onset and recovery:

Di = Ii + AIPi, AIPi ∼ Geom(p2),
Pi = Di + DIPi, DIPi ∼ NB(r3, p3),
Ri = Pi + PRi, PRi ∼ NB(r5, p5),

and assign a PKDL infectiousness by drawing from Cat({h1, h2, h3, hu},p).
ii. Else the individual recovers without developing PKDL, so draw a recovery time:

Ri = Ai + AIPi, AIPi ∼ Geom(p2).

6. Repeat steps 3–5 until t = T (as the last iteration).

We run 10,000 simulations of the model for each PKDL intervention scenario (normal interventions, complete PKDL
prevention (h1 = h2 = h3 = hu = 0) and halving the mean duration of infectiousness (r5 = 1.18, p5 = 0.13)), consisting of 100
simulations (to account for stochastic uncertainty) of each of 100 posterior samples for the model parameters and individuals’
infection statuses in December 2002 (to account for uncertainty in their values given the observed data).

7. Code

Code for running the MCMC algorithm and processing the MCMC output was written in MATLAB R2017b (47) and
the simulation code was written in Julia 1.0.5 (48, 49). All code is freely available from https://github.com/LloydChapman/
VLSpatiotemporalModelling.

8. MCMC Output

A. Model selection. The posterior deviance distributions and DIC values for the different models tested are presented in Fig.
S5 and Table S4 respectively. Based on the DIC values, models with additional within-household transmission fit better than
those without. We focus on the output of the model with the highest level of relative asymptomatic and pre-symptomatic
infectiousness (both 2% as infectious as VL) below and in the main text, as there is some evidence to suggest that asymptomatic
individuals occasionally generate VL cases (50, 51) and this is the most conservative assumption in terms of estimating the
contribution of PKDL to transmission.

Fig. S5. Posterior deviance distributions for different models tested
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B. Parameter estimates. The modes and 95% highest posterior density intervals (HPDIs) of the transmission parameters (β,
α, ε and δ) and incubation period distribution parameter p for the different models are shown in Table S4. The parameter
estimates are very similar across the different models and vary in the way expected – the spatial transmission rate constant β
and background transmission rate ε are lower for models with additional within-household transmission (δ > 0) and decrease
with increasing relative asymptomatic infectiousness h4, and the mode for α is slightly larger for models with δ > 0 (since a
flatter kernel shape compensates for the extra within-household transmission). The posterior distributions for the incubation
period distribution parameter p correspond to a mean incubation period of 5.4–6.7 months (95% HPDIs (4.6,6.2)–(5.7,7.8)
months).

The log-likelihood trace and posterior distributions for the parameters for the model with additional within-household
transmission and 2% relative asymptomatic and pre-symptomatic infectiousness are shown in Fig. S6. The parameters are
clearly well defined by the data, as the posterior distributions differ significantly from the weak prior distributions.

Fig. S6. Output of the MCMC algorithm for the model with additional within-household transmission and 2% asymptomatic and pre-symptomatic infectiousness relative to VL
cases. Top: Log-likelihood trace plot. 2nd-4th row: Posterior distributions for the spatial transmission rate constant β (month−1), risk decay distance α (m), background
transmission rate ε (month−1), additional within-household transmission rate δ (month−1), and incubation period distribution parameter p, with prior distributions (green lines),
posterior modes (magenta lines) and 95% highest posterior density intervals (red lines). Bottom: Number of active VL cases over time in 100 iterations of the MCMC algorithm
(red lines) with inferred missing onset and recovery times, and number of active cases excluding individuals with missing onset and/or recovery times (black dashed line).

The corresponding autocorrelation plots are shown in Fig. S7. The high degree of autocorrelation evident for all the
parameters is due to strong correlation between the transmission parameters and the missing data, in particular between
the spatial transmission rate constant β and the asymptomatic infection times. Fig. S8 shows that β is strongly negatively
correlated with the mean asymptomatic infection time Ā. This is expected since a higher overall transmission rate leads to
individuals being infected earlier. With a continuous-time model we could tackle this correlation using a ‘non-centred’ MCMC
algorithm, i.e. by re-parameterising the model to reduce the a priori dependence between β and the asymptomatic infection
times (29, 32), but with a discrete-time model the re-parameterisation is much more difficult, since the asymptomatic infection
times do not vary continuously with β. We therefore ran the MCMC algorithm for a large number of iterations (N = 105) to
obtain a sufficient number of independent samples.
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Table S4. Parameter estimates (modes and 95% highest posterior density intervals) for models with different relative pre-symptomatic and
asymptomatic infectiousness, h0 and h4, and without and with additional within-household transmission, δ = 0 vs δ > 0

Parameter No additional within-household transmission, δ = 0 Additional within-household transmission, δ > 0

h0, h4 = 0 h0, h4 = 0.01 h0, h4 = 0.02 h0, h4 = 0 h0, h4 = 0.01 h0, h4 = 0.02

β (month−1) 2.65 (2.32,2.99) 2.51 (2.25,2.82) 2.44 (2.19,2.70) 2.16 (1.95,2.48) 2.08 (1.80,2.31) 1.94 (1.74,2.20)
α (m) 104 (88,120) 100 (88,118) 100 (88,114) 119 (101,140) 115 (103,140) 117 (101,136)
ε (10−4 month−1) 6.7 (3.6,9.5) 6.0 (3.8,9.5) 5.1 (3.3,8.0) 6.1 (3.6,9.0) 5.0 (3.0,7.8) 4.0 (2.3,6.9)
δ (month−1) 0 0 0 0.09 (0.07,0.13) 0.10 (0.08,0.15) 0.12 (0.08,0.16)
p 0.41 (0.36,0.45) 0.40 (0.36,0.46) 0.41 (0.36,0.45) 0.37 (0.34,0.41) 0.36 (0.32, 0.39) 0.35 (0.30,0.39)

∆DIC 2950 3182 3261 955 460 0

∆DIC is the difference in DIC from the model with δ > 0 and h0, h4 = 0.02
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Fig. S7. Autocorrelation plots for the model parameters θ = (β, α, ε, δ, p) for the model with additional within-household transmission and 2% relative asymptomatic and
pre-symptomatic infectiousness, showing the correlation between samples in the MCMC chain at different lags.

Correlations between the model parameters were explored by plotting the pairwise marginal posterior densities (Fig. S9)
and calculating the correlation coefficient matrix of the MCMC samples, ρ(θ, θ) = (corr(θi, θj))i,j=1,...,nθ , where corr(x,y) =
cov(x,y)/

√
var(x) var(y) and var(x) is the sample variance of x and nθ is the dimension of θ. Fig. S9 and the correlation

coefficient matrix,

ρ(θ, θ) =


1 0.02 −0.45 −0.09 −0.05

0.02 1 −0.40 −0.18 0.31
−0.45 −0.40 1 0.08 −0.11
−0.09 −0.18 0.08 1 −0.55
−0.05 0.31 −0.11 −0.55 1


show that there is some negative correlation between β and ε, α and ε, and δ and p. These correlations are not surprising: the
more transmission that is explained by proximity to infectious individuals (the higher β), the less needs to be explained by the
background transmission (the lower ε); the flatter the spatial kernel (the larger α), the fewer infections need to be explained by
the background transmission; and the more infections are accounted for by transmission within the same household (the higher
δ), the longer the incubation period (the lower p) needs to be (due to long times between onsets of cases in the same household).

The acceptance rate for the transmission parameter updates (Step 1 in the MCMC algorithm) was 23.2–23.4% for all models,
as expected from tuning the proposal variance (see §2B.5). The acceptance rates for the updates for the pre-symptomatic
infection times; missing VL onset and treatment times; and unobserved asymptomatic infection and recovery times were
between 56% and 97% for every model, indicating that the algorithm efficiently explores the space of unobserved data.

C. Unobserved pre-symptomatic infection times, and asymptomatic infection and recovery times. Here we present plots of
various quantities derived from the posterior distributions of the pre-symptomatic infection times and asymptomatic infection
and recovery times to demonstrate what can be inferred about the missing data using the data augmentation algorithm. Fig.
S10 shows the incidence curve of VL and PKDL cases for the whole study area and the inferred incidence curve of asymptomatic
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Fig. S8. Correlation between the spatial transmission rate constant β and the mean asymptomatic infection time Ā = 1
nA

∑nA

j=1
Aj , where nA = |{j : 1 ≤ Aj ≤ T}| is

the number of individuals asymptomatically infected during the study.

Fig. S9. Posterior distributions and pairwise correlations of the transmission parameters for the model with additional within-household transmission and 2% relative
asymptomatic and pre-symptomatic infectiousness. Main diagonal: Marginal posterior distributions of the transmission parameters. Off diagonals: Heatmap plots of pairwise
marginal posterior densities showing the correlations between parameters. Lighter yellower colours indicate areas of higher posterior density.

infections (averaged over the MCMC chain). The number of asymptomatic infections increases and decreases with the number
of VL cases as expected given the assumption of a fixed incidence ratio of asymptomatic to symptomatic infection.

The posterior probabilities that individuals were asymptomatically infected during the study (shown in Fig. S11, with
individuals arranged in order of para and household number) show clustering of asymptomatic infection in space and that this
is associated with proximity to VL cases (the probabilities of asymptomatic infection are higher where the VL case density is
higher). This is as expected given the estimates of the transmission parameters — the rapid decrease in the risk of infection with
distance from an infectious individual (Fig. S19) — and the relative infectiousness of VL cases and asymptomatic individuals.

The examples shown in Fig. S12 demonstrate that the data does provide some information about the asymptomatic
“infection” times of non-symptomatic individuals, since the posterior distributions are non-uniform over the range of possible
asymptomatic infection times for each individual. They also show that the asymptomatic infection time posterior distributions
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Fig. S10. Numbers of new VL and PKDL cases over time in the study area, with inferred numbers of new asymptomatic infections.

Fig. S11. Posterior probabilities individuals were asymptomatically infected during the study (blue lines). Individuals who had VL onset during the study are marked by red dots.

and proposal distributions (probabilities of asymptomatic infection according to the empirical average of the infection pressure
on the individual over the history of the chain) converged with each other. This is as expected since the model parameters
converge to the high posterior density part of the parameter space as the chain progresses, such that the running average of
the infection pressure on each individual at each time point approaches a constant and the asymptomatic infection times are
effectively proposed from their posterior distributions in the long run.

Fig. S13 shows the posterior distributions of the unobserved infection times of a selection of VL cases, and indicates that the
data does contain sufficient information to constrain the probable infection times of some cases, as the posterior distributions
differ significantly from the prior distributions (i.e. from the prior for the incubation period distribution) for some cases.

D. Reconstructed transmission trees. Snapshots of one inferred transmission tree in the part of the south-east cluster of paras
shown in Fig. 3 in the main text at different time points are shown in Fig. S14. These show that while asymptomatic infection
(and therefore subsequent immunity) was initially mostly clustered around VL cases, by December 2005 it was widespread and
by December 2009 had saturated in this part of the study population. The relatively high uncertainty in infection sources can
be seen in the different pattern of infectors and longer inferred transmission distances in this single tree (from one sample from
the joint posterior distribution of model parameters and missing data) than the consensus tree in Fig. 3 in the main text.

Fig. S15 shows, for all inferred transmission chains, the relationship between the mean time after the onset of the index
case in the chain at which infectees in each infection generation were infected and the mean distance from the index case to
infectees in each infection generation (averaged over 1000 sampled transmission trees). It suggests that infection spread over
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A B C

Fig. S12. Posterior distributions of the unobserved asymptomatic infection times of a selection of individuals (blue histograms) and their final asymptomatic infection time
proposal distributions (red lines). Note that asymptomatic “infection" in months 0 and T + 1 = 109, represent asymptomatic infection before the study and no asymptomatic
infection up to the end of the study, respectively. (A) Individual who migrated into a house with an active VL case from outside the study area in month 53 and therefore had
a high initial probability of asymptomatic infection, followed by further peaks in asymptomatic infection risk in months 64 and 69 with the PKDL and VL onsets of two other
household members in months 63 and 68 respectively. (B) Individual born in month 2 with a high probability of having avoided asymptomatic infection for the duration of the
study. (C) Individual who was 23-years-old at the start of the study with a moderately high risk of having been asymptomatically infected before the study and a small peak in
asymptomatic infection risk when a fellow household member had VL onset in month 45.

Fig. S13. Posterior distributions of the unobserved infection times of a selection of VL cases with known onset times (blue histograms), with prior distributions (green lines) and
modes (magenta lines).

large distances from index cases (up to ∼500m) even within early infection generations, since the infection generations show
considerable horizontal spread on the plot.
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C

Fig. S14. Inferred transmission tree in part of the south-east cluster of villages at different stages of the epidemic — (A) December 2003, (B) December 2005, and (C)
December 2009 — from a single sample from the joint posterior distribution of model parameters and missing data. Model parameters chosen close to the posterior mode
(β = 1.93 month−1, α = 120 m, ε = 3.9 × 10−4 month−1, δ = 0.11 month−1, p = 0.34). Dots show susceptible individuals/symptomatic cases and crosses
asymptomatic individuals, and are coloured by infection state (see key). Arrows show the source of infection for each VL case infected up to that point in time and are coloured
by type of infection source. GPS locations of individuals are jittered slightly so that individuals from the same household are more visible. An animated version showing all
months is provided in Movie S2.
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Fig. S15. Relationship between mean index-case-onset-to-infectee-infection time and mean index-case-to-infectee distance by infection generation (see key) for transmission
chains from 1000 sampled transmission trees. Some index-case-to-infectee distances are large even within early generations of transmission chains.
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9. MCMC Validation

The MCMC algorithm was run on simulated data to verify that it can accurately infer the parameter values and missing data.
Since a high proportion of infections are asymptomatic, there is a large amount of missing data in the form of the missing
asymptomatic infection and recovery times. To test the ability of the algorithm to infer this missing data and simultaneously
recover the true parameter values, we simulated transmission in paras 1–4 (comprising 6231 individuals) from January 2002 to
December 2010 with three different proportions of symptomatic infection, pI ∈ {0.1, 0.15, 0.2}, and ran the inference procedure
on each of the simulated datasets with the asymptomatic infection data removed, assuming the symptomatic proportion
was known. The values of pI were chosen to cover a plausible range based on the highest cumulative VL incidence in any
of the paras over the study period (∼10%, which equates to a maximum possible proportion of asymptomatic infection of
∼90% if the whole population was infected) and estimates from previous studies (in which the highest estimated symptomatic
proportion was 20%) (52). To ensure relatively consistent VL incidence across the simulated datasets and to account for
potential correlation between pI and other parameter values, we ran the MCMC algorithm on the observed data for paras 1–4
for each value of pI and re-simulated the data with the simulation model using parameter values close to the posterior modes
obtained. There were 242, 303 and 331 VL cases in the simulations with pI = 0.1, 0.15 and 0.2 respectively.

Fig. S16 shows the posterior distributions for the parameters obtained from running the MCMC algorithm on the simulated
datasets. All of the posterior distributions overlap the true parameter values, indicating that the algorithm is able to recover
the true parameter values, even for proportions of asymptomatic infection as high as 90%. The algorithm can also accurately
estimate the number of new asymptomatic infections each month across the range of symptomatic proportions tested, as shown
by the inferred epidemic curves of asymptomatic infections in Fig. S17.

A

B

C

Fig. S16. Validation of the MCMC algorithm. Posterior distributions of the model parameters obtained from running the inference procedure for 105 iterations on simulated
datasets for paras 1–4 with different symptomatic proportions: (A) pI = 0.1, (B) pI = 0.15, (C) pI = 0.2. True parameter values (shown by the red lines) chosen as values
close to the posterior modes estimated from fitting to the observed data: (A) β = 3.68 month−1, α = 123 m, ε = 6.4× 10−4 month−1, δ = 0.16 month−1, p = 0.30,
(B) β = 2.63 month−1, α = 113 m, ε = 4.7 × 10−4 month−1, δ = 0.15 month−1, p = 0.33, (C) β = 1.82 month−1, α = 116 m, ε = 4.0 × 10−4 month−1,
δ = 0.13 month−1, p = 0.35.

10. Validation of DIC for Model Comparison

As it is known that there can be issues with using DIC to compare models, particularly in the context of missing data
(40, 41, 53), we verified that the version of DIC for latent variable models that we use (Eq. (S24)) can discriminate between
models with/without additional within-household transmission using simulated data. We simulated transmission in paras 1
to 4 from January 2002 to December 2010 without and with additional within-household transmission δ = 0month−1 and
δ = 0.15month−1 (and h0, h4 = 0.02), and then ran the MCMC algorithm and DIC calculation on the simulated datasets with
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Fig. S17. Simulated (black dots) and inferred (black line = median, grey shading = 95% CI) epidemic curves of asymptomatic infections for paras 1–4 with different symptomatic
proportions (A) pI = 0.1, (B) pI = 0.15, (C) pI = 0.2. Parameter values as in Fig. S16.

δ = 0month−1 and δ = 0.15month−1. In both cases the DIC measure correctly identified the true underlying model (Table
S5). These results agree with the findings of Gamado et al. (53) that the DIC defined in Eq. (S24) can be used to distinguish
different forms of spatial kernel.

Table S5. Validation of use of DIC for identifying whether there is additional within-household transmission, δ = 0 vs δ > 0. Values shown
are differences in DIC from the best-fitting model for each true value of δ, which is shown in bold.

Assumed True

δ = 0 δ = 0.15

δ = 0 0 390
δ = 0.15 59 0

Table S6. Para-level populations and VL and PKDL incidence 2002–2010

Para Cluster Total no. individu-
als

Mean population Total VL cases Total PKDL cases Mean VL incidence
(cases/10,000/yr)

Mean PKDL incidence
(cases/10,000/yr)

1 NW 1398 1219 120 11 109 10
2 NW 1650 1376 46 3 37 2
3 NW 998 830 18 3 24 4
4 NW 2185 1768 197 35 124 22
5 NW 934 774 15 2 22 3
6 NW 1640 1363 94 22 77 18
7 SE 604 493 42 7 95 16
8 SE 585 496 8 0 18 0
9 SE 969 809 33 6 45 8
10 SE 701 595 17 3 32 6
11 SE 1300 1080 28 9 29 9
12 SE 2807 2388 102 25 47 12
13 SE 933 816 36 7 49 10
14 SE 446 391 23 3 65 9
15 SE 660 574 15 3 29 6
16 NW 905 762 26 9 38 13
17 NW 2080 1764 75 13 47 8
18 NW 3212 2653 61 11 26 5
19 NW 774 647 62 18 107 31
Total 24781 20798 1018 190 54 10

NW = north-west, SE = south-east.
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Fig. S18. Para-level annual incidence of (A) VL and (B) PKDL. Insets: distributions of annual incidences.
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Fig. S19. Estimated spatial transmission kernel showing decrease in infection pressure with distance from an infectious individual. Transmission rate per month, βK(d),
shown as a function of distance d away from a VL case (solid black line = mode, dark grey shaded region = 95% CI). Background transmission rate, ε, for unexplained infections
also shown for comparison (dashed black line = mode, light grey shaded region = 95% CI). Inset: enlarged view of the part of the transmission kernel outside the household of
the VL case.
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A B

Fig. S20. Inferred prevalences of the different infection states in the model over time: (A) susceptible (S) and recovered (R), (B) asymptomatically infected (A), pre-
symptomatically infected (E), symptomatic VL (I), dormant infection (D), symptomatic PKDL (P). Solid lines show modes, shaded bands show 95% CIs. Note the difference in
vertical axis scales.
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Fig. S21. Relative contributions of background transmission, asymptomatic (Asx) individuals, pre-symptomatic (Presx) individuals, VL cases and PKDL cases to the total
infection pressure on susceptible individuals. Solid lines show modes, shaded bands show 95% CIs.
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Fig. S22. Number of secondary infections generated by (A) each VL case and (B) each PKDL case. Dots show mean reproduction number, bars show 95% CI (2.5–97.5%
quantile).
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Fig. S23. Para-level epidemic curves simulated with the individual-level spatiotemporal transmission model starting from January 2003 (by which point all but one para had had
at least 1 VL case since January 2002) under normal conditions (solid grey lines) (17% of VL cases develop PKDL and 0.3% of asymptomatic individuals develop PKDL) and
with complete prevention of PKDL (solid pink lines). Solid coloured lines show 100 randomly chosen simulations from 10,000 simulations (100 samples of the model parameters
and initial infection statuses from the posterior distribution each simulated 100 times), solid black lines show observed VL incidence, dashed lines show the minimums and
maximums of all the simulations at each time point.
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Table S7. Observed and simulated numbers of VL cases in each para for different PKDL interventions 2002–2010

Para Observed VL
cases

Simulated VL cases under different PKDL interventions (mean (95% CI))

Normal interventions Complete prevention
of PKDL

Difference Mean PKDL duration
halved

Difference

1 120 49 (19,86) 37 (15,68) -12 (-54,29) 45 (18,79) -4 (-49,40)
2 46 36 (9,71) 24 (6,53) -12 (-52,26) 31 (8,66) -5 (-48,38)
3 18 24 (7,52) 19 (5,41) -6 (-37,22) 22 (6,48) -2 (-34,29)
4 197 119 (81,160) 92 (62,128) -27 (-75,21) 109 (74,147) -11 (-61,40)
5 15 24 (6,50) 16 (3,38) -8 (-38,19) 21 (5,46) -3 (-34,28)
6 94 66 (33,101) 43 (20,74) -23 (-65,19) 58 (29,91) -8 (-53,37)
7 42 33 (18,50) 27 (15,42) -6 (-26,13) 31 (17,47) -3 (-23,17)
8 8 10 (2,26) 8 (2,22) -1 (-19,14) 9 (2,25) 0 (-18,17)
9 33 24 (12,42) 20 (10,35) -4 (-24,14) 23 (11,39) -1 (-22,18)
10 17 25 (13,43) 17 (8,29) -9 (-27,8) 22 (11,38) -4 (-24,16)
11 28 36 (18,59) 22 (11,39) -14 (-40,10) 31 (15,53) -6 (-33,21)
12 102 91 (43,145) 70 (33,114) -21 (-84,38) 84 (39,137) -7 (-73,59)
13 36 44 (17,75) 33 (13,60) -11 (-47,25) 40 (15,69) -4 (-43,35)
14 23 14 (3,30) 11 (2,24) -3 (-21,14) 13 (3,28) -1 (-20,17)
15 15 5 (0,17) 5 (0,14) -1 (-13,10) 5 (0,15) 0 (-13,11)
16 26 34 (15,58) 22 (9,40) -13 (-39,13) 29 (12,52) -5 (-34,24)
17 75 49 (22,82) 39 (18,66) -10 (-48,25) 45 (21,77) -3 (-43,37)
18 61 46 (18,86) 37 (15,69) -9 (-50,30) 43 (17,80) -3 (-47,40)
19 62 20 (6,42) 16 (5,34) -4 (-29,18) 19 (6,39) -2 (-28,23)
Total 1018 752 (594,926) 557 (425,701) -194 (-362,-36) 679 (530,839) -73 (-245,96)
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Movie S1. Animation of the evolution of the most likely transmission tree in Fig. 3 in the main text over
the course of the epidemic from January 2003 (t = 13) to December 2010 (t = 108). Dots show individuals
coloured by their infection state (see key). Arrows show the most likely source of infection for each case over
1000 sampled transmission trees, coloured by type of infection source and shaded according to the proportion
of trees in which that individual was the most likely infector (darker shading indicating a higher proportion).

Movie S2. Animation of the transmission tree shown in Fig. S14 from a single sample from the joint posterior
distribution of model parameters and missing data. Dots, crosses and arrows as in Fig. S14.
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