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Supporting Information Text11

Supplementary Information A:12

Equilibrium of the model with cultural transmission13

The linear recursion [4] can be rewritten in matrix form:(
xn+1

1
xn+1

2
xn+1

3

)
=

( 2e1p 2e1q 0
e2p e2 e2q
0 2e3p 2e3q

)(
xn1
xn2
xn3

)
+

(
c1
c2
c3

)
= Bx + c. [A1]

The eigenvalues of B, the roots of the characteristic polynomial of matrix B, are roots of14 ∣∣∣∣∣ 2e1p− λ 2e1q 0
e2p e2 − λ e2q
0 2e3p 2e3q − λ

∣∣∣∣∣ = 0, [A2]15

which reduces to16

λ
[
λ2 − (2e1p+ e2 + 2e3q)λ+ 2e1e2p

2 + 2e2e3q
2 + 4e1e3pq

]
= 0. [A3]17

These roots are λ = 0 and the roots of f(λ) = 0, where18

f(λ) = λ2 − (2e1p+ e2 + 2e3q)λ+ 2e1e2p
2 + 2e2e3q

2 + 4e1e3pq. [A4]19

Since

∆ = (2e1p+ 2e3q + e2)2 − 4(2e1e2p
2 + 2e2e3q

2 + 4e1e3pq)
= p(2e1p− 2e3q + e2)2 + q(−2e1p+ 2e3q + e2)2 ≥ 0;

λ1 + λ2 = 2e1p+ 2e3q + e2 ∈ (−2, 2);
λ1λ2 = 2e1e2p

2 + 2e2e3q
2 + 4e1e3pq ∈ (−1, 1).

[A5]

This implies

λ1 ∈ (−1, 1);
λ2 ∈ (−1, 1).

[A6]

We conclude that the system will converge to the equilibrium point, which is given by

x1 = 2e1px1 + 2e1qx2 + c1;
x2 = e2px1 + e2x2 + e2qx3 + c2;
x3 = 2e3qx3 + 2e3px2 + c3.

[A7]

This can be rewritten as

(1− 2e1p)x1 − 2e1qx2 = c1;
−e2px1 + (1− e2)x2 − e2qx3 = c2;

(1− 2e3q)x3 − 2e3px2 = c3.

[A8]

We can then solve these equations to get

x1 = B1

A
;

x2 = B2

A
;

x3 = B3

A
;

A = 1− e2 − 2e1p− 2e3q + 2e1e2p
2 + 2e2e3q

2 + 4e1e3pq;
B1 = (1− e2 − 2e3q + 2e2e3q

2)c1 + 2e1q(1− 2e3q)c2 + 2e1e2q
2c3;

B2 = e2p(1− 2e3q)c1 + (1− 2e3q)(1− 2e1p)c2 + e2q(1− 2e1p)c3;
B3 = 2e3e2p

2c1 + 2e3p(1− 2e1p)c2 + (1− e2 − 2e1p+ 2e1e2p
2)c3.

[A9]
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Supplementary Information B:20

Calculation of covariance and regression coefficients in model with cultural transmission21

Denote x = E(Xch) = E(Xp) = E(Xm), it is easy to see22

Cov(Xch, Nn
pa) = E(XchNn

pa)− E(Xch)E(Nn
pa)

= P (Xch = 1, Nn
pa = 1) + 2P (Xch = 1, Nn

pa = 2)− E(Xch)E(Nn
pa)

= 1− P (XchNn
pa = 0)− P (Xch = 1, Nn

pa = 2) + 2P (Xch = 1, Nn
pa = 2)− 2xq

= 1 + P (Xch = 0, Nn
pa = 0) + P (Xch = 1, Nn

pa = 2)− P (Xch = 0)− P (Nn
pa = 0)− 2xq

[B1]

P (Xch = 0, Nn
pa = 0) = p4(1− c1 − 2e1x1) + 2p3q[1− c2 − e2(x1 + x2)] + p2q2(1− c3 − 2e3x2); [B2.a]

P (Xch = 1, Nn
pa = 2) = p2q2(c1 + 2e1x2) + 2pq3[c2 + e2(x2 + x3)] + q4(c3 + 2e3x3); [B2.b]

P (Xch = 0) = 1− x; [B2.c]
P (Nn

pa = 0) = p2; [B2.d]
x = p2x1 + 2pqx2 + q2x3. [B2.e]

Thus, we have

Cov(Xch, Nn
pa) = 1 + P (Xch = 0, Nn

pa = 0) + P (Xch = 1, Nn
pa = 2)− P (Xch = 0)− P (Nn

pa = 0)− 2xq
= 1 + p4(1− c1 − 2e1x1) + 2p3q[1− c2 − e2(x1 + x2)] + p2q2(1− c3 − 2e3x2)

+ p2q2(c1 + 2e1x2) + 2pq3[c2 + e2(x2 + x3)] + q4(c3 + 2e3x3)− (1− x)− p2 − 2xq
= x(1− 2q) + p2(q2 − p2)c1 + 2pq(q2 − p2)c2 + q2(q2 − p2)c3
− 2p3x1(pe1 + qe2) + 2pqx2[q(pe1 + qe2)− p(pe2 + qe3)] + 2q3x3(pe2 + qe3)

= (p− q)(x− c)− 2p3x1(pe1 + qe2) + 2pqx2[q(pe1 + qe2)− p(pe2 + qe3)] + 2q3x3(pe2 + qe3).

[B3]

From [11] we can further simplify to obtain

Cov(Xch, Nn
pa) = −2p2q(pe1 + qe2)x1 + 2pqx2[p(pe1 + qe2)− q(pe2 + qe3)] + 2q2p(pe2 + qe3)x3

= 2pq[p(pe1 + qe2)(x2 − x1) + q(pe2 + qe3)(x3 − x2)].
[B4]

Then we get

β1 =
Cov(Xch, N t

pa)
V ar(N t

pa) = p(x2 − x1) + q(x3 − x2); [B5.a]

β2 =
Cov(Xch, Nn

pa)
V ar(Nn

pa) = p(pe1 + qe2)(x2 − x1) + q(pe2 + qe3)(x3 − x2). [B5.b]
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Supplementary Information C:23

Covariance decomposition24

The parent-offspring phenotype covariance is given by
Cov(Xch, Xp +Xm) = E[Xch(Xp +Xm)]− E(Xch)E(Xp +Xm)

= P (Xch = 1, Xp +Xm = 1) + 2P (Xch = 1, Xp +Xm = 2)− 2x2

= 1− P (Xch(Xp +Xm) = 0) + P (Xch = 1, Xp +Xm = 2)− 2x2

= 1− P (Xch = 0)− P (Xp = 0, Xm = 0) + P (Xch = 0, Xp = 0, Xm = 0)
+ P (Xch = 1, Xp = 1, Xm = 1)− 2x2,

[C1]

where25

P (Xp = 0, Xm = 0) = P (Xp = 0)P (Xm = 0) = (1− x)2, [C2.a]

P (Xch = 0, Xp = 0, Xm = 0) = p2(1− c1)
[
p(1− x1) + q(1− x2)

]2
+ 2pq

[
p(1− x1) + q(1− x2)

][
p(1− x2) + q(1− x3)

]
+ q2(1− c3)

[
p(1− x2) + q(1− x3)

]2
= (1− x)2 −

{
p2c1

[
1− (px1 + qx2)

]2 + 2pqc2
[
1− (px1 + qx2)

][
1− (px2 + qx3)

]
+ q2c3

[
1− (px2 + qx3)

]2}
[C2.b]

and
P (Xch = 1, Xp = 1, Xm = 1) = p2(c1 + 2e1)(px1 + qx2)2 + 2pq(c2 + 2e2)(px1 + qx2)(px2 + qx3)

+ q2(c3 + 2e3)(px2 + qx3)2.
[C2.c]

Hence
Cov(Xch, Xp +Xm) = x− 2x2 − (p2c1 + 2pqc2 + q2c3) + 2p(px1 + qx2)(pc1 + qc2) + 2q(px2 + qx3)(pc2 + qc3)

+ 2p2e1(px1 + qx2)2 + 4pqe2(px1 + qx2)(px2 + qx3) + 2q2e3(px2 + qx3)2

= ∆1 + ∆2,

[C3]

where
∆1 = 2p(px1 + qx2)2 + 2q(px2 + qx3)2 − 2x2

= 2
{
p(px1 + qx2)2 + q(px2 + qx3)2 −

[
p(px1 + qx2) + q(px2 + qx3)

]2}
= 2pq(px1 + qx2 − px2 − qx3)2

= 2pq(px1 + qx2 − px2 − qx3)2

= 2pqβ2
1 ,

[C4.a]

and
∆2 = x− c− 2p(px1 + qx2)

[
p(x1 − c1) + q(x2 − c2)

]
− 2q(px2 + qx3)

[
p(x2 − c2) + q(x3 − c3)

]
+ 2p2e1(px1 + qx2)2 + 4pqe2(px1 + qx2)(px2 + qx3) + 2q2e3(px2 + qx3)2 [C4.b]

Again we use the equilibrium condition [11], which gives26

∆2 = x− c− 2p(px1 + qx2)
[
p(x1 − c1) + q(x2 − c2)

]
− 2q(px2 + qx3)

[
p(x2 − c2) + q(x3 − c3)

]
+ 2p2e1(px1 + qx2)2 + 4pqe2(px1 + qx2)(px2 + qx3) + 2q2e3(px2 + qx3)2

= e1
[
2p2(px1 + qx2)− 4p2(px1 + qx2)2 + 2p2(px1 + qx2)2]

+ e2
[
2pq(px1 + x2 + qx3)− 2pq(px1 + x2 + qx3)2 + 4pq(px1 + qx2)(px2 + qx3)

]
+ e3

[
2q2(px2 + qx3)− 4q2(px2 + qx3)2 + 2q2(px2 + qx3)2]

= 2p2(px1 + qx2)
[
1− (px1 + qx2)

]
e1

+ 2pq
{

(px1 + qx2)
[
1− (px1 + qx2)

]
+ (px2 + qx3)

[
1− (px2 + qx3)

]}
e2

+ 2q2(px2 + qx3)
[
1− (px2 + qx3)

]
e3

= 2p(pe1 + qe2)(px1 + qx2)
[
1− (px1 + qx2)

]
+ 2q(pe2 + qe3)(px2 + qx3)

[
1− (px2 + qx3)

]
.

[C5]
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Supplementary Information D: Analysis of Missing Heritability27

From equations (16) and (17), the parent-offspring phenotype covariance can be decomposed in the following way

Cov(Xch, Xp +Xm) = ∆1 + ∆2;
∆1 = 2pq(j1 − j2)2;
∆2 = 2p(pe1 + qe2)j1(1− j1) + 2q(pe2 + qe3)j2(1− j2),

[D1]

where j1 = px1 + qx2, j2 = px2 + qx3.28

There is missing heritability when ∆2 � ∆1. Here we carry out a quantitative analysis of a simple case and derive some29

conditions when there is missing heritability.30

Before doing the analysis, we make some preparations. Using the equilibrium condition ([4], also supplementary equation31

[A9]), we have32

j1 = px1 + qx2 = pB1 + qB2

A
= p(1− e2p− 2e3q)c1 + q(1− 2e3q)c2 + q2e2c3

A
; [D2]

j2 = px2 + qx3 = pB2 + qB3

A
= p2e2c1 + p(1− 2e1p)c2 + q(1− e2q − 2e1p)c3

A
, [D3]

where

B1 = (1− e2 − 2e3q + 2e2e3q
2)c1 + 2e1q(1− 2e3q)c2 + 2e1e2q

2c3;
B2 = e2p(1− 2e3q)c1 + (1− 2e3q)(1− 2e1p)c2 + e2q(1− 2e1p)c3;
B3 = 2e3e2p

2c1 + 2e3p(1− 2e1p)c2 + (1− e2 − 2e1p+ 2e1e2p
2)c3;

A = 1− e2 − 2e1p− 2e3q + 2e1e2p
2 + 2e2e3q

2 + 4e1e3pq.

[D4]

Now consider the simple case, where ci = c+ δci; ei = e+ δei, with i = 1, 2, 3 and c� δci; e� δei. In this case, we have33

j1 = c

1− 2e +O1(δc, δe)

j2 = c

1− 2e +O2(δc, δe).
[D5]

Neglecting higher order terms and writing κ= c
1−2e , the criterion ∆2 � ∆1 becomes

∆2 ≈ 2eκ(1− κ)� pqO(δc2, δe2) ≈ ∆1. [D6]

Now we assume k is of intermediate size (e.g., of the order of p or q). Then, a sufficient condition for ∆2 � ∆1 will be:34

e� O(δc2, δe2), and since we already know that e� O(δe), which implies: e� O(δe2), the condition reduces to e� O(δc2).35

This means that the magnitude of cultural effect (e) is greater than that of the variance of genetic effects (δc2).36

The following is a numerical example of this sufficient condition. Assume

c = 0.5; e = 0.05; p = 0.8; q = 0.2; (δ1, δ2, δ3) = (0.0322, 0.0223, 0.0542); (ε1, ε2, ε3) = (0.0036, 0.0018, 0.0044).

Here δ’s are sampled from a uniform distribution of (0, 0.05), ε’s are sampled from a uniform distribution on (0, 0.005). Thus,37

in this case, e = O(δc) = 0.05, which means that e� O(δc2) is satisfied, and ∆1
∆1+∆2

∼ 10−4 � 1.38

In the main paper, we examine the case where (c1, c2, c3) = (c, c+ d, c+ 2d); (e1, e2, e3) = (e, e, e). From equation [9.a], it is39

easy to see ∆1 = 2pqd2

(1−e)2 , and now we calculate Cov(Xch, Xp +Xm).40

Replacing the c’s and e’s in equation [11.b] with (c, c+ d, c+ 2d) and (e, e, e), and px1 + qx2 and px2 + qx3 with j1 and j2,
we have

∆2 = 2e[pj1(1− j1) + qj2(1− j2)]. [D7]
From (8.a) we know j2 = j1 + β1. Thus41

∆2 = 2e[pj1(1− j1) + qj2(1− j2)] = 2e[(j1 + qβ1)− (j1 + qβ1)2 − pqβ2
1 ], [D8]

which means42

Cov(Xch, Xp +Xm) = ∆1 + ∆2 = 2pqβ2
1 + 2e[(j1 + qβ1)− (j1 + qβ1)2 − pqβ2

1 ]
= 2pq(1− e)β2

1 + 2e(j1 + qβ1)− 2e(j1 + qβ1)2.
[D9]

Now replace β1 and j1 with their corresponding expressions and we obtain43

Cov(Xch, Xp +Xm) = 2pqd2

1− e + 2e[c(1− e) + qd]
(1− e)(1− 2e) −

2e[c(1− e) + qd]2
(1− e)2(1− 2e)2 , [D10]
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which depends on both d and e. (Dividing this covariance by the total variance does not change the results, since the total44

variance equals c1+2qd
1−2e (1− c1+2qd

1−2e ).)45

Since this case is relatively simple, it is possible to make corrections for ∆1. However, when e’s are different, even analogous46

corrections are impossible and neither ∆1 nor Cov(Xch, Xp +Xm) have a clear interpretation.47

Although cultural transmission can contribute to missing heritability, absence of missing heritability does not necessarily48

mean that cultural transmission is weak or non-existent. There exists parameter regions where cultural transmission is relative49

strong but the two heritability estimates are roughly the same. Here we give an example: assume (c1, c2, c3) = (0.001, 0.05, 0.95),50

(e1, e2, e3) = (0.02, 0.02, 0.02); p = 0.9; q = 0.1 In this case, cultural transmission is much more important than genetic factors51

for 81% of people whose genotype is A1A1; equal in importance for 18% of people whose genotype is A1A2; and relatively52

unimportant for 1% of people whose genotype is A2A2. Thus, although in this case cultural transmission is very important for53

most people in the population, ∆1
∆1+∆2

≈ 85%., which means that there is almost no missing heritability.54
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Supplementary Information E: On Kong et al.’s Analysis of ‘Direct Effect’55

In the main text, we illustrate how Kong et al’s analysis of direct effect works for discrete trait when parents’ phenotypes have56

the same effect on different children’s genotypes. Here we provide a similar analysis for continuous traits and point out some57

issues in Kong et al’s calculation.58

In the Supplementary Information of Kong et al.’s paper “Effects of genetic nurture on phenotypic correlation between
relatives” (ref. [S1]), they propose the following model

Xch = (δ + η)(am + ap) + η(aNTm + aNTp) + ε, [E1]

where ap ,am represent the number transmitted paternal and maternal alleles and aNTm , aNTp represent the number non-59

transmitted maternal and paternal alleles(for a reference allele). ε is the sum of the intercept and the residual. δ + η and η are60

the regression coefficients and δ is what they call ’direct effect’, while η represents the genetic nurturing effect.61

For consistency, we transform their notation into the notation in our main text, where we have for the child’s phenotype62

Xch = β1(am + ap) + β2(aNTm + aNTp) + δ, [E2]63

and for the mother’s phenotype64

Xm = β1(amp + amm) + β2(amNTm + amNTp) + δm. [E3]65

Here amp and amm represent the number of transmitted alleles from mother’s father and mother’s mother, respectively, while66

amNTm and amNTp represent the number of non-transmitted alleles from mother’s mother and mother’s father, respectively,67

while δ, δm, and δp (below) are the sums of the intercepts and the residuals.68

Since both (amp, amm) and (am, ap) refer to the mother’s genotype, we have69

amp + amm = am + aNTm . [E4]70

Thus, for the mother,71

Xm = β1(am + aNTm) + β2(amNTm + amNTp) + δm. [E5]72

Similarly for the father we have73

Xp = β1(ap + aNTp) + β2(apNTp + apNTm) + δp. [E6]74

Now consider a simple linear mechanistic model for a continuous trait, Xch = α1(am + ap) + α2(Xm + Xp) + ε, where ε75

represents random effects. (For a more complex model, see ref [9] of the main paper.)76

In this case, Kong et al’s analysis holds and from path analysis we can see77

α1 + α2β1 = β1; α2β1 = β2. [E7]78

This implies
β1 = α1

1− α2
and β2 = α1α2

1− α2
. [E8]

It is easy to see that β1 − β2 = α1, which is exactly the direct genetic effect in the mechanistic model. This analysis can be79

extended to cases where the relationship between Xch and (am, ap) is not linear, but it fails when the relationship between Xch80

and (Xm, Xp) is not linear. A simple example has α2 different for different genotypes (gene-environment interaction in the81

norm of reaction, see ref. (9)). As in the discrete model, this is because the influence of genetic nurturing on the equilibrium82

frequency cannot be neglected when parents’ phenotypes have different effects on different children’s genotypes.83

Another issue raised by Kong et al’s model concerns the calculation of parent-offspring covariance and covariance between84

relatives; they assume that ε’s and a’s are independent of each other (S1). However, as we will show, this assumption of85

independence can be problematic even in linear cases. In order to show why this is unreasonable, we first calculate the86

covariance between mother and offspring without this assumption and then explain the consequences of the assumption.87

From the regressions E2 and E5,88

Cov(δ, am) = Cov(δ, aNTm) = Cov(δm, am) = Cov(δm, aNTm) = 0 [E9]89

Because of random mating, all the a’s are independent of each other. Also90

Cov(δm, ap) = Cov(δm, aNTp) = 0. [E10]91

We can then calculate the mother-offspring covariance as92

Cov(Xch, Xm) = β1
2V ar(am) + β1β2V ar(aNTm) + Cov(δ, γm), [E11]93

where94

γm = β2(amNTm + amNTp) + δm. [E12]95

Since V ar(am) = V ar(aNTm) = pq, we have96

Cov(Xch, Xm) = (β1
2 + β1β2)pq + Cov(δ, γm), [E13]97

Hao Shen, Marcus W. Feldman 7 of 21



which holds without any assumption of independence. Then, if we add the assumption of independence of δ’s and a′s, we have98

Cov(δ, γm) = 0, and hence99

Cov(Xch, Xm) = (β1
2 + β1β2)pq. [E14]100

This is the formula Kong et al. used in their calculation. However, this assumption (and simplification) basically entails101

that genetic nurturing is very weak. To show this for continuous traits, consider a mechanistic model for genetic nurturing:102

Xch = f(am, ap, Xm, Xp, ε), where ε represents random effects in the model (if the model is deterministic, then there is no ε103

term).104

We then have the same regression expressions [E2] and [E5], Xch = β1(am + ap) + β2(aNTm + aNTp) + δ and Xm =105

β1(am + aNTm) + γm, which imply106

β1(am + ap) + β2(aNTm + aNTp) + δ = f(am, ap, β1(am + aNTm) + γm, Xp, ε). [E15]107

Thus108

δ = f(am, ap, β1(am + aNTm) + γm, Xp, ε)− [β1(am + ap) + β2(aNTm + aNTp)]. [E16]109

Using the fact that γm is independent of am; ap; aNTm ; aNTp , we have110

Cov(δ, γm) = Cov(γm, f(am, ap, β1(am + aNTm) + γm, Xp, ε)). [E17]111

Here γm is independent of all the terms in the f function except the γm term. For continuous traits, we use the Taylor
expansion

Cov(δ, γm) = ∂f

∂Xm
V ar(γm) + 1

2
∂2f

∂X2
m
Cov(γm, γ2

m) + · · · [E18]

For the first term, we know that112

V ar(γm) = 2β2
2pq + V ar(δm) = 2β2

2pq + V ar(δ). [E19]113

The assumption that we can neglect Cov(δ, γm) can be represented by114

Cov(δ, γm)� (β1
2 + β1β2)pq [E20]115

If we assume that Cov(δ, γm) ∼ ∂f
∂Xm

V ar(γm), then [E20] implies116

∂f
∂Xm

[2β2
2pq + V ar(δ)]� (β1

2 + β1β2)pq. [E21]117

However, since V ar(δ) depends on the form of f , this inequality will not automatically hold unless ∂f
∂Xm

is very small, which118

requires weak genetic nurturing.119

120

A special case of a continuous trait is the linear model. Again assume Xch = α1(am + ap) + α2(Xm +Xp) + ε; from path121

analysis we have α2(γm + γp) + ε = δ (see eq. [E2]). Together with [E19] this implies122

4α2
2β

2
2pq + 2α2

2V ar(δ) + V ar(ε) = V ar(δ), [E22]123

which means V ar(δ) = 4α2
2β

2
2pq+V ar(ε)
1−2α2

2
.124

125

For the inequality ∂f
∂Xm

[2β2
2pq + V ar(δ)]� (β1

2 + β1β2)pq, notice that ∂f
∂Xm

= α2. Then126

α2[2β2
2pq + V ar(ε)]� (1− 2α2

2)(β1
2 + β1β2)pq. [E23]127

Use [E8] and replace β1, β2 with α1, α2 to obtain128

(1− α2)2α2V ar(ε) + 2α2
1α

3
2pq � α2

1(1− 2α2
2)(1 + α2)pq. [E24]129

This inequality depends on the relative magnitude of α1, α2 ,V ar(ε) and pq and thus will not automatically hold. To be more130

specific, the condition will only hold when V ar(ε) is very small and α2 is not too big.131

132

We now turn to the discrete case, which is difficult to analyze directly in general. However, we already have a special case,
which is the model in the main paper, where from [10],

Cov(Xch, Xm) = ∆1 + ∆2

2 = (β2
1 + β1β2)pq + ∆2

2 − β1β2pq. [E25]

Thus
Cov(δ, γm) = ∆2

2 − β1β2pq, [E26]

and inequality [E20] becomes
∆2

2 − β1β2pq � (β2
1 + β1β2)pq. [E27]
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or133

∆2 � (2β2
1 + 4β1β2)pq. [E28]134

However, this can be problematic even in the simplest case. Assume c1 = c2 = c3 = c and e1 = e2 = e3 = e. In this case,135

both β1 and β2 are 0, but ∆2 > 0. We have also seen that in the cases of ‘missing heritability’, ∆2 � ∆1 (or more explicitly136

∆2 � 2β2
1pq), which makes it very unlikely that ∆2 � (2β2

1 + 4β1β2)pq (one way to make the assumption reasonable is to137

make the c’s different enough and set the e’s to be small, but this again assumes weak genetic nurturing).138

In general, the assumption in [E20] cannot be automatically satisfied in both discrete and continuous cases. We have to139

make additional assumptions about the strength of genetic nurturing and the form of the function f in eq. [E15], including the140

randomness of the transmission process, assumptions that can be violated in many cases.141
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Supplementary Information F: Covariance and regression coefficient in the population subdivision model142

Here we calculate the covariance among N t
p, N

t
m, N

n
p , N

n
m and Xch and then compute the regression coefficients.143

144

To simplify the calculation, we use the law of total covariance, which states that for random variables Y1, Y2, Z in the same145

probability space, Cov(Y1, Y2) = E(Cov(Y1, Y2|Z)) +Cov(E(Y1|Z), E(Y2|Z)). Let I be the indicator function for subpopulation146

with I = i when the individual (and thus its parents) is in population i. Then, for the law of total covariance, set Z = I,147

Y1 = Na
A, Y2 = Nb

B , where Na
A and Nb

B are two different elements from the set {N t
p, N

t
m, N

n
p , N

n
m}. Within each subpopulation,148

N t
p, N

t
m, N

n
p , N

n
m are mutually independent; thus E(Cov(Na

A, N
b
B |I)) = 0, and149

Cov(Na
A, N

b
B) = Cov(E(Na

A|I), E(Nb
B)|I)). [F1]150

.151

Since for i = 1, 2, . . . , k,

E[E(Na
A|I)] = E[E(Nb

B)|I] = E(Na
A) = E(Nb

B) = q; E(Na
A|I = i) = E(Nb

B |I = i) = qi; P (I = i) = αi,

we have

Cov(Na
A, N

b
B) = Cov(E(Na

A|I), E(Nb
B)|I))

=
k∑
i=1

αiq
2
i − q2 = w − q2 = pq − v.

[F2]

(This calculation can also be made using Wright’s Fst and heterozygosity, where the correlation between Na
A and Nb

B can be152

written in another form from which the covariance can be calculated.)153

154

In order to compute the regression coefficients, we also need to calculate Cov(Xch, N t
m) and Cov(Xch, Nn

m). Cov(Xch, N t
F )155

and Cov(Xch, Nn
p ) can then be automatically found be symmetry. Similarly to [14], we again use the law of total covariance to156

obtain157

Cov(Xch, Nn
m) = E(Cov(Xch, Nn

m|I)) + Cov(E(Xch|I), E(Nn
m|I)). [F3]158

Since Xch and Nn
m are independent within each subpopulation, we again have E(Cov(Xch, Nn

m|I)) = 0 and Cov(Xch, Nn
m) =159

Cov(E(Xch|I), E(Nn
m|I)).160

161

Now set xi = c1p
2
i + 2c2piqi + c3q

2
i , and x =

∑k

i=1 αixi, which represent, respectively, the frequency of bar in each162

subpopulation and the meta-population. We have Cov(Xch, Nn
m) = Cov(E(Xch|I), E(Nn

m|I)) =
∑k

i=1 αiqixi − qx, which we163

denote by K1. As in [16], Cov(Xch, N t
m) can be decomposed as164

Cov(Xch, N t
m) = E(Cov(Xch, N t

m|I)) + Cov(E(Xch|I), E(N t
m|I)). [F4]165

Then, since Cov(E(Xch|I), E(N t
m|I)) = Cov(E(Xch|I), E(Nn

m|I)) =
∑k

i=1 αiqixi − qx, all we need is E(Cov(Xch, N t
m|I)), as166

in the cultural transmission model; this is equal to
∑k

i=1 αipiqi[pi(c2 − c1) + qi(c3 − c2)], which we denote by K2.167

168

Now we produce all the expressions needed to calculate β1 and β2. From multivariate regression analysis, β1 and β2 are
given by equations [F5]

Cov(Xch, N t
m) = β1[V ar(N t

m) + Cov(N t
m, N

t
p)] + β2[Cov(N t

m, N
n
m) + Cov(N t

m, N
n
p )];

Cov(Xch, Nn
m) = β1[Cov(Nn

m, N
t
m) + Cov(Nn

m, N
t
p)] + β2[V ar(Nn

m) + Cov(Nn
m, N

n
p )].

[F5]

Replace the covariances with the expressions above and since V ar(N t
m) = V ar(Nn

m) = pq we obtain

K1 +K2 = β1(2pq − v) + β2(2pq − 2v);
K1 = β1(2pq − 2v) + β2(2pq − v),

[F6]

and therefore

β1 = K1v +K2(2pq − v)
(4pq − 3v)v ;

β2 = K1v −K2(2pq − 2v)
(4pq − 3v)v ;

β1 − β2 = K2

v
.

[F7]
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Supplementary Information G: Recursion analysis of the assortative mating system169

Here we show that there is a unique fixed point which is globally stable for this assortative mating system.170

171

From main text, the recursion for Qn is

Qn+1 = (1− r)pq + (Pnc1 +Qnc2)(Rnc3 +Qnc2)
[Pnc1 + 2Qnc2 +Rnc3]2 (rPnc1 + 2rQnc2 + rRnc3)

+ [Pn(1− c1) +Qn(1− c2)][Rn(1− c3) +Qn(1− c2)]
[Pn(1− c1) + 2Qn(1− c2) +Rn(1− c3)]2 [rPn(1− c1) + 2rQn(1− c2) + rRn(1− c3)].

[G1]

Using Pn +Qn = p;Rn +Qn = q, the recursion can be reduced to

Qn+1 = (1− r)pq + r[Qn(c2 − c1) + pc1][Qn(c2 − c3) + qc3]
Qn(2c2 − c1 − c3) + pc1 + qc3

+ r[−Qn(c2 − c1) + p(1− c1)][−Qn(c2 − c3) + q(1− c3)]
−Qn(2c2 − c1 − c3) + p(1− c1) + q(1− c3) . [G2]

To simplify this expression, assume f(Qn, c1, c2, c3) = r[Qn(c2−c1)+pc1][Qn(c2−c3)+qc3]
Qn(2c2−c1−c3)+pc1+qc3

.172

Then173

Qn+1 = (1− r)pq + r[f(Qn, c1, c2, c3) + f(Qn, 1− c1, 1− c2, 1− c3)]. [G3]174

Now we decompose f(Qn, c1, c2, c3)

f(Qn, c1, c2, c3) = [Qn(c2 − c1) + pc1][Qn(c2 − c3) + qc3]
Qn(2c2 − c1 − c3) + pc1 + qc3

= (c2 − c1)(c2 − c3)(Qn)2 + [pc1(c2 − c3) + qc3(c2 − c1)]Qn + pqc1c3
Qn(2c2 − c1 − c3) + pc1 + qc3

= (c2 − c1)(c2 − c3)
2c2 − c1 − c3

Qn +
[pc1(c2 − c3) + qc3(c2 − c1)− (c2−c1)(c2−c3)(pc1+qc3)

2c2−c1−c3
]Qn + pqc1c3

Qn(2c2 − c1 − c3) + pc1 + qc3

= (c2 − c1)(c2 − c3)
2c2 − c1 − c3

Qn +
pc1(c2−c3)2+qc3(c2−c1)2

2c2−c1−c3
Qn + pqc1c3

Qn(2c2 − c1 − c3) + pc1 + qc3

= (c2 − c1)(c2 − c3)
2c2 − c1 − c3

Qn + pc1(c2 − c3)2 + qc3(c2 − c1)2

(2c2 − c1 − c3)2 +
pqc1c3 − [pc1(c2−c3)2+qc3(c2−c1)2](pc1+qc3)

(2c2−c1−c3)2

Qn(2c2 − c1 − c3) + pc1 + qc3
.

[G4]

Replacing (c1, c2, c3) by (1− c1, 1− c2, 1− c3), we get a similar expression for f(Qn, 1− c1, 1− c2, 1− c3). We then sum all175

the terms and get176

Qn+1 = (1− r)pq + r[f(Qn, c1, c2, c3) + f(Qn, 1− c1, 1− c2, 1− c3)]

= (1− r)pq + r[p(c2 − c3)2 + q(c2 − c1)2

(2c2 − c1 − c3)2 + A

g(Qn) + B

1− g(Qn) ],
[G5]

where177

A = pqc1c3 −
[pc1(c2 − c3)2 + qc3(c2 − c1)2](pc1 + qc3)

(2c2 − c1 − c3)2 = −[pc1(c2 − c3)− qc3(c2 − c1)]2
(2c2 − c1 − c3)2 ;

B = −[p(1− c1)(c2 − c3)− q(1− c3)(c2 − c1)]2
(2c2 − c1 − c3)2 ;

g(Qn) = Qn(2c2 − c1 − c3) + pc1 + qc3.

Write dQn+1

dQn
= h(Qn), M = g(Qn), a = pc1(c2 − c3)− qc3(c2 − c1), b = p(1− c1)(c2 − c3)− q(1− c3)(c2 − c1), and assume178

p ≥ q. We now prove that |h(x)| ≤ r < 1 for x ∈ [0, q].179

180

From the expression for Qn+1, we get181

h(x) = r[a− (a+ b)g(x)][a− (a− b)g(x)]
(2c2 − c1 − c3)g(x)2[1− g(x)]2 . [G6]

Since a− (a+ b)g(x) = (2c2 − c1 − c3){pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}, we get

h(x) = r{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}[a− (a− b)g(x)]
g(x)2[1− g(x)]2 . [G7]
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We now prove |a| ≤ g(x); |b| ≤ 1− g(x) for x ∈ [0, q].182

183

Due to the symmetry between a and −b, g(x) and 1− g(x), and since g(x) is a linear function of x, we only need to prove184

|a| ≤ g(0) and |a| ≤ g(q).185

186

The first inequality is obvious since

|a| = |pc1(c2 − c3)− qc3(c2 − c1)|
≤ pc1|(c2 − c3)|+ qc3|(c2 − c1)|
≤ pc1 + q3 = g(0).

[G8]

We now prove |a| ≤ g(q).When c2 − c1 > 0, we have187

g(q) = 2c2q + (p− q)c1 = c1 + 2(c2 − c1)q;
|a| = |pc1(c2 − c3)− qc3(c2 − c1)| ≤ c1|p(c2 − c3)|+ c3(c2 − c1)q.

[G9]

Comparing the coefficients of c1 and c2 − c1 in g(q) and |a|, we see |a| ≤ g(q).188

189

When c2 − c1 ≤ 0, we have

a = pc1(c2 − c3)− qc3(c2 − c1)
= pc1c2 − (p− q)c1c3 − qc2c3
≤ pc1c2
≤ pc2

= qc2 + (p− q)c2
≤ 2qc2 + (p− q)c1 = g(q);

−a = −[pc1(c2 − c3)− qc3(c2 − c1)]
= −pc1c2 + (p− q)c1c3 + qc2c3

≤ qc2 + (p− q)c1
≤ 2qc2 + (p− q)c1 = g(q).

[G10]

Thus, |a| ≤ g(q). Now we have proved |a| ≤ g(x); |b| ≤ 1− g(x). Notice that:190

|a− (a− b)g(x)| = |a[1− g(x)] + bg(x)|
≤ |a|[1− g(x)] + |b|g(x)
≤ 2g(x)[1− g(x)].

[G11]

We have191

|h(x)| = |r{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}[a− (a− b)g(x)]
g(x)2[1− g(x)]2 |

≤ |2{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}
g(x)[1− g(x)] |r.

[G12]

We now prove that

|2{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}
g(x)[1− g(x)] | ≤ 1. [G13]

This is equivalent to proving192

2|pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x| ≤ g(x)[1− g(x)]. [G14]193

The right hand of this inequality is a quadratic function opening downward, and the left hand side is a linear function.194

Thus we only need to prove the inequality at x = 0 and x = q.195

196
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When x = 0,

2|pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]× 0 = 2pq|c1 − c3|;

g(0)[1− g(0)] = [pc1 + qc3][p(1− c1) + q(1− c3)]
= p2c1(1− c1) + q2c3(1− c3) + 2pq(c1 + c3 − 2c1c3)
≥ 2pq[c1 + c3 − 2min(c1, c3)]

= 2pq|c1 − c3|.

[G15]

When x = q,

2|pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]q = 2q(p− q)|c1 − c2|;

g(q)[1− g(q)] = [2c2q + (p− q)c1][2(1− c2)q + (p− q)(1− c1)]
= (p− q)2c1(1− c1) + 4c2(1− c2)q2 + 2q(p− q)[c1(1− c2) + c2(1− c1)]
≥ 2q(p− q)(c1 + c2 − 2c1c2)
≥ 2q(p− q)[c1 + c2 − 2min(c1, c2)]

= 2q(p− q)|c1 − c2|.

[G16]

Hence we have proved
2{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}

g(x)[1− g(x)] | ≤ 1. [G17]

Thus

|h(x)| ≤ |2{pq(c1 − c3)− [p(c2 − c3)− q(c2 − c1)]x}
g(x)[1− g(x)] |r

≤ r ∈ (0, 1).
[G19]

We now prove that there is a unique fixed point in (0, q). When Qn = 0, Qn+1 > 0; when Qn = q,Qn+1 < q; thus, there is197

at least one fixed point in (0, q). Now we assume there are at least two fixed points, say x1 and x2, assume x1 < x2. By the198

mean value theorem, there exists one point y in (x1, x2) such that h(y) = 1, which contradicts |h(y)| ≤ r < 1.199

200

Assume the fixed point is q∗. We now prove that it is globally stable. Applying the mean value theorem to two points,201

(Qn, Qn+1) and (q∗, q∗), we can see there exist a point zn such that | |Q
n+1−q∗|
|Qn−q∗| = |h(zn)| ≤ r < 1. This implies that the fixed202

point is globally stable.203
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Supplementary Information H: Covariances with assortative mating204

Here we compute the covariance among N t
p, N

t
m, N

n
p , N

n
m and Xch under assortative mating. First we identify three groups205

according to how assorting occurs:206

207

0. Random mating;208

1. Assortative mating and both parents are bar;209

2. Assortative mating and both parents are non-bar.210

211

We use an index function I to represent the parents’ assorting group. I = 0, 1, 2 represents parents in assorting groups212

0, 1, 2, respectively. The frequencies of A1 and A2 in mating group 0 are p, q. We denote the frequencies of A1 and A2 in213

assorting group 1 by p1, q1, and the frequencies of A1 and A2 in assorting group 2 by p2, q2, where214

p1 = uc1 + vc2
uc1 + 2vc2 + wc3

,

p2 = u(1− c1) + v(1− c2)
u(1− c1) + 2v(1− c2) + w(1− c3) .

[H1]

Before calculating the covariances, we introduce some useful notation and identities. Write215

α = [p(c2 − c3)− q(c2 − c1)]v + pq(c3 − c1);
β = (c3 + c1 − 2c2)(q1 + q2) + 2(c2 − c1);
x = E(Xch) = uc1 + 2vc2 + wc3.

[H2]

Then

q1 − q = p− p1

= p− uc1 + vc2
uc1 + 2vc2 + wc3

= p− pc1 + v(c2 − c1)
pc1 + qc3 + v(2c2 − c1 − c3) = [p(c2 − c3)− q(c2 − c1)]v + pq(c3 − c1)

x

= α

x
.

[H3]

Similarly, we have q2 − q = p− p2 = −α
1−x. , which also means

q1 = q + α

x
; q2 = q − α

1− x ; p1 = p− α

x
; p2 = p+ α

1− x .

We can replace p1, p2, q1, q2 in the equilibrium condition216

v = (1− r)pq + rxp1q1 + r(1− x)p2q2 [H4]217

and obtain

v − pq = rx

[
(p− q)α

x
− α2

x2

]
+ r(1− x)

[
(q − p)α

1− x − α2

(1− x)2

]
= −rα2

x(1− x) .
[H5]

Now we calculate the covariances.

Cov(Xch, N t
m) = E(XchN t

m)− E(Xch)E(N t
m)

= vc2 + wc3 − (uc1 + 2vc2 + wc3)q
= [2p(c2 − c3)− 2q(c2 − c1)]v + pq(c3 − c1)
= α.

[H6]

Next we calculate Cov(Na
A, N

b
B), where Na

A and Nb
B are two different elements from {N t

p, N
t
m, N

n
p , N

n
m}. From eq. [F2] we218

know this is equal to pq − v, which also equals rα2

x(1−x) , as in equation [H5].219

220

We now calculate Cov(Xch, Nn
m). Within the same assorting group, Xch and Nn

m are conditionally independent; that221

is,E[Cov(Xch, Nn
m|I)] = 0; Cov(Xch, Nn

m) = Cov(E(Xch|I), E(Nn
m|I)).222

223
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Since

E[E[Xch|I)] = E(Xch) = uc1 + 2vc2 + wc3;
E(Xch|I = 0) = p2c1 + 2pqc2 + q2c3;
E(Xch|I = 1) = p2

1c1 + 2p1q1c2 + q2
1c3;

E(Xch|I = 2) = p2
2c1 + 2p2q2c2 + q2

2c3

[H7]

we have

Cov(Xch, Nn
m) = rx[E(Xch|I = 1)− E(Xch)](q1 − q) + r(1− x)[E(Xch|I = 2)− E(Xch)](q2 − q)

= rα[E(Xch|I = 1)− E(Xch|I = 2)]
[H8]

Using the expression q1 = q + α
x

; q2 = q − α
1−x and the definitions in [H2], we have

E(Xch|I = 1)− E(Xch|I = 2) = (p2
1c1 + 2p1q1c2 + q2

1c3)− (p2
2c1 + 2p2q2c2 + q2

2c3)
= [(c3 + c1 − 2c2)q2

1 + 2(c2 − c1)q1 + c1]− [(c3 + c1 − 2c2)q2
2 + 2(c2 − c1)q2 + c1]

= (q1 − q2)[(c3 + c1 − 2c2)(q1 + q2) + 2(c2 − c1)]

= αβ

x(1− x) .

[H9]

Thus, Cov(Xch, Nn
m) = rα2β

x(1−x) = β(pq − v) = βCov(Na
A, N

b
B).224
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Supplementary Information J: Causal analysis225

The last section (A unified causal framework) of the main paper makes heavy use of previous studies in causal analysis. Here226

we provide a short introduction to the key notions related to this analysis as well as proofs to some of our results.227

In this framework, causal relationships can be represented by graphs, where vertices (or nodes) correspond to random228

variables (later we use vertices/nodes/variables interchangeably), and edges will represent relationships between the random229

variables. A directed edge represents a causal relationship if all the edges are directed, in which case, the relationship can also230

be represented by a pair of vertices. A directed acyclic graph (DAG), which is a common setting in causal analysis, is a graph231

in which there are no cycles. Sometimes, as in our model, there are also bidirected edges, which represent the existence of232

hidden confounders between the variables. A path is a sequence of edges such that each edge starts with the vertex ending233

the preceding edge. A directed path is a path where each edge is an arrow that points from the first to the second vertex of234

the pair. We call Y a parent of X if there exist a directed edge from Y to X, or conversely, X is a child of Y . We call Z an235

ancestor of X if there is a directed path from Z to X, and conversely, X is a descendant of Z.236

Consider a DAG with nodes X1, X2, . . . , Xn and denote the set of parents of Xi by Pai or Pa(Xi), and the set of ancestors237

of Xi by Ani or An(Xi) Then the causal information of this DAG is encoded in the decomposition P (X1, X2, . . . , Xn) =238

ΠiP (Xi|Pai). (P (X1, X2, . . . , Xn) is said to be compatible with a DAG if such a decomposition holds.) This decomposition239

guarantees that the model is Markovian, i.e., Pai screens off all the effect of Xi’s ancestors, which means P (Xi|Pai) =240

P (Xi|Pai, Ani − Pai). Formally, a Markovian model M is defined as (V,G, P (Xi|Pai)), where V is the set of variables, G is a241

DAG, and P (Xi|Pai) are the conditional probabilities that make up the joint distribution of X1, X2, . . . , Xn.242

Another way to look at a DAG is a functional model perspective, which assumes that Xi = fi(Pai, Ui), where fi is a243

function and Ui is a set of hidden variables which screen off all the randomness between Xi and Pai. In the setting of a244

DAG, Uis are jointly independent so that the model is Markovian . Because Uis are jointly independent, P (X1, X2, . . . , Xn) =245 ∑
Ui

ΠiP (Xi|Pai, Ui) = ΠiP (Xi|Pai).) Thus these two ways of looking at the same causal diagram are obviously equivalent246

in the setting of a DAG, i.e., for each set of P (Xi|Pai), there is a set of fis and Uis that generate the same joint distribution,247

and vice versa.248

A functional model can be further extended to a causal diagram with both unidirected and bidirected edges, where it is no249

longer assumed that Uis are jointly independent. Such models are called ‘semi-Markovian’, since Xi is still determined by250

Pai and Ui, and the joint distribution is determined once the joint distribution of Uis is known. Similarly to a Markovian251

model represented by a DAG, a semi-Markovian functional model has its probabilistic equivalent given by P (X1, X2, . . . , Xn) =252

ΠiP (Xi|Pai, Ui), where Uis are not necessarily all independent. The proof of such equivalency can be found in Druzdze and253

Simon (1993) (S2). Formally, the probabilistic model can be represented as (V,U,GV U , P (Xi|Pai, Ui)), where V is the set254

of observable variables, U = ∪iUi is the set of hidden variables, and GV U is the graph with nodes in both V and U . The255

corresponding graph G for observed variables can then be obtained by adding bidirected edges between two nodes if the two256

variables are confounded by variables in U ; i.e. there exists a path Xi ← ...← Uk → ...→ Xj , where all nodes except Xi and257

Xj in the path are in U . The corresponding functional model can be represented as (V,U,GV U , fi). Because of the equivalency258

mentioned above, we choose one of the two perspectives (probabilistic or functional) for convenience in this section. A model259

can either be referred to as (V,U,G, P (Xi|Pai, Ui)) or as (V,U,GV U , fi), depending on the context.260

We now introduce some of the graphical tools for describing and analyzing the relationships between the variables we studied261

in the main paper. First, we introduce the idea of d-separation in a semi-Markov model in the presence of bidirected edges,262

and then introduce the notions of a front-door path and a back-door path.263

A path p is said to be d-separated (or blocked) by a set of vertices (S7) if and only if either264

• p contains one of the following three patterns of edges:265

I →M → J, I ↔M → J, I ←M → J , such that M is in Z.266

• p contains one of the following three patterns of edges:267

I →M ← J, I ↔M ← J, I ↔M ↔ J such that M is not in Z and no descendant of M is in Z.268

Note here that Z can be the empty set, in which case p is said to be blocked (by the empty set) if and only if there exists269

one of the following three edge patterns: I →M ← J, I ↔M ← J, I ↔M ↔ J . p is said to be active if it is not blocked.270

A front-door path from X to Y is a path starting with an edge pointing away from X, i.e. a path starting with X → ... .271

An active front-door path has the form X → ...→ ...→ Y , and is also called a causal path.272

A back-door -path from X to Y is a path starting with an edge pointing to X, i.e. a path starting with X ← ....An active back-273

door path is a backdoor path such that there is no collider structure. i.e. →M ←, which means no I →M ← J, I ↔M ← J274

or I ↔M ↔ J . Such paths are also called non-causal paths.275

For a path from X to Y to be active, there exists a probability dependence between X and Y ,.i.e. P (Y ) 6= P (Y |X).276

However, such dependence can be either causal, through a front-door path, or non-causal, through back-door paths. Thus, to277

identify causal effects, we need to cancel non-causal effects. It is then natural to ask whether causal effects can be identified278

using observed data and, if they can be identified, how can this be done. To answer these questions, we introduced a279

systematic approach developed by Pearl (S3), namely, the do operator, and the identification of an interventional distribution280

for semi-Markovian models (S5, S6).281

Recall the functional causal model M with n variables, X1, X2, . . . , Xn, and Xi = fi(Pai, Ui). P (Xj = xj |do(Xi = xi)) in282

the graph G, where PM (Xj = xj |do(Xi = xi)), is defined as P (Xj = xj) in model M ′, which we denote by PM′(Xj = xj).283
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Here G′ is a new model where Xi is fixed at xi; i.e., we change Xi = fi(Pai, Ui) to Xi = xi. This can be understood as284

removing all the edges pointing toward Xi and make it fixed. For other sets of variables Y and Z, we can similarly define285

P (Y |do(Z)). The problem is then to identify this expression using observed data, which naturally leads to the definition of286

identifiability (see Tian and Pearl (S5)):287

The causal effect of a set of variables T on a disjoint set of variables S is said to be identifiable from a graph G (of the288

observed variables) if the quantity P (S|do(T )) can be uniquely calculated from the positive joint distribution of the observed289

variables,i.e. PM1 (S|do(T )) = PM2 (S|do(T )) for any two models with graph G of observed variables and their joint distribution.290

Full graphical criteria have been obtained for the identifiability of causal effects in semi-Markovian models, as well as the291

procedure for identifying such causal effects (S5, S6). Using the methods in these papers (as well as the additional definition of292

P (Xpa|Tpa, NTpa, Gpa), equation [20] in the main paper), all the expressions used in the main paper, such as those in equation293

[22] and [23] are identifiable and can be calculated according to the procedure. (Of course, in empirical cases, there will be294

more restrictions on the potential distributions, which means that the counterexamples used to illustrate the non-identifiability295

of some graphs may be problematic. However, these restrictions will not influence the expression of a causal effect when it is296

identifiable.)297

In the process of determining identifiability of a causal effect, or calculating a causal effect if it is identifiable, a very useful298

technique is the do-calculus (S2). Here we show a naive version of it, which can be expressed by the following three rules.299

• P (Y |do(X), Z,W ) = P (Y |do(X), Z) if Z blocks all the paths from W to Y .300

• P (Y |do(X), Z) = P (Y |X,Z) if Z blocks all back-door paths from X to Y . (We also say Z satisfies the back-door criteria.)301

• P (Y |do(X), Z) = P (Y |Z) if Z blocks all causal paths from X to Y .302

These rules will be used later in this section to prove the results at the end the main paper. First, however, we introduce by303

introducing path-specific effects, natural direct effects and natural indirect effects.304

Having introduced the do operator, we now use it to calculate the total causal effect of a variable X on another variable305

Y , represented as P (Y = y|X = x′)− P (Y = y|X = x). (We can average over Y if we want to calculate the expected causal306

effect.) However, such a causal effect is the joint effect of all the causal paths from X to Y . A natural question then is whether307

we can identify the causal effect in each path, i.e., the path-specific effects.308

An intuitive understanding of path-specific effect is that it is the effect of only changing X from x to x′ for the path under309

study while keeping other paths unchanged. Applying this to mediation analysis, the ‘natural direct effect’, an extension of310

‘direct effect’ in path analysis, can be defined as the path specific effect of the ‘direct path’. The ‘natural indirect effect’, an311

extension of ‘indirect effect’, can be defined as the path specific effect of the path mediated by the mediator. (The sign and312

direction of change varies for ’natural direct effect’ and ’natural indirect effect’, but both can be viewed as path specific effects.)313

Using this intuition, we can see how equations [24] and [25] work. These can be viewed as the path specific effect of path 1′314

from Tpa = x to Tpa = y and the opposite path specific effect of path 4′ from Tpa = y to Tpa = x. Such a decomposition is also315

called the ‘mediation formula’ (S4). (For a formal definition of path specific effects using counterfactuals and the corresponding316

identification criteria, see Avin et al. (S8))317

Now refer to the casual diagram in the main paper (repeated here as Figure S1, which corresponds to Figure 1 in the main318

paper). We turn to proving the results at the end of the main paper, namely, to show that when equations [29–33] hold, the319

quantities in [26], [27], [28] are the same.320

Fig. S1. A unified causal diagram for genetic nurturing, population subdivision and assortative mating

The results can be proven using do calculus and the fact that Tpa and NTpa are independent. To show how this works, we321

explain the derivation of the expression for P (Xch|do(NTpa = x)) and some key subsequent steps. The rest of the proof should322

be easy to understand.323

Notice that for equations [26], [27] and [28], we can always decompose the change from x = (xm, xp) to y = (ym, yp) into324

two steps: the first step changes mother’s genotype with father’s genotype fixed, i.e., changes from (xm, xp) to (ym, xp); and325

the second changes father’s genotype with mother’s genotype fixed, i.e., changes from (ym, xp) to (ym, yp). Since the two steps326
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are similar, we only need to prove that the statement is true for the first step. The second step then follows naturally, and so327

does the general statement.328

Thus, without loss of generality, we assume x = (xm, z) and y = (ym, z), and prove the statement in this case.

P (Xch|do(NTpa = x))

=
∑
Tpa

P (Xch|Tpa, do(NTpa = x))P (Tpa|do(NTpa = x)) (Law of total probability)

=
∑
Tpa

P (Xch|Tpa, do(NTpa = x))P (Tpa) (Rule 3 of do−calculus)

=
∑
Tpa
Xpa

P (Xch|Tpa, Xpa, do(NTpa = x))P (Xpa|Tp, do(NTpa = x))P (Tpa)
(Law of total probability)

=
∑
Tpa
Xpa

P (Xch|Tpa, Xpa)P (Xpa|Tpa, do(NTpa = x))P (Tpa)
(Rule 3 of do−calculus)

=
∑
Tpa
Xpa
Gpa

P (Xch|Tpa, Xpa)P (Xpa|Tpa, do(NTpa = x), Gpa)P (Tpa)P (Gpa|Tpa, do(NTpa = x))
(Law of total probability)

=
∑
Tpa
Xpa
Gpa

P (Xch|Tpa, Xpa)P (Xpa|Tpa, NTpa = x,Gpa)P (Tpa)P (Gpa|Tpa, do(Tpa = x))
(Rule 2 of do−calculus)

=
∑
Tpa
Xpa
Gpa

P (Xch|Tpa, Xpa)P (Xpa|Tpa, NTpa = x,Gpa)P (Tpa)P (Gpa|Tpa)
(Rule 3 of do−calculus)

[J1]

Recall that

P (Xm|Tm, NTm = ym, Gm)− P (Xm|Tm, NTm = xm, Gm) = F1(Xm, ym, xm);
P (Xm|Tm = ym, NTm, Gm)− P (Xm|Tm = xm, NTm, Gm) = F1(Xm, ym, xm);

P (Xp|Tp, NTp = yp, Gp)− P (Xp|Tp, NTp = xp, Gp) = F1′(Xp, yp, xp);
P (Xp|Tp = yp, NTp, Gp)− P (Xp|Tp = xp, NTp, Gp) = F1′(Xp, yp, xp);

P (Xch|Tpa = y,Xpa)− P (Xch|Tpa = x,Xpa) = F2(Xch, y, x).

[J2]

Then

P (Xch|do(NTpa = y))− P (Xch|do(NTpa = x))

=
∑
Tpa
Xpa
Gpa

{
P (Xch|Tpa, Xpa)

[
P (Xpa|Tpa, NTpa = y,Gpa)− P (Xpa|Tpa, NTpa = x,Gpa)

]
× P (Tpa)P (Gpa|Tpa)

}
=
∑
Xpa

F1(Xm, ym, xm)
∑
Tpa
Gpa

P (Xch|Tpa, Xpa)P (Tpa, Gpa)P (Xp|Tp, NTp = z,Gp)

[J3]
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For the transmitted alleles, we have

P (Xch|do(Tpa = x))

=
∑
NTpa

P (Xch|NTpa, do(Tpa = x))P (NTpa|do(Tpa) = x)

=
∑
NTpa

P (Xch|NTpa, do(Tpa = x))P (NTpa)

=
∑
NTpa
Xpa

P (Xch|NTpa, Xpa, do(Tpa = x))P (Xpa|NTpa, do(Tpa = x))P (NTpa)

=
∑
NTpa
Xpa

P (Xch|Tpa = x,Xpa)P (Xpa|NTpa, do(Tpa = x))P (NTpa)

=
∑
NTpa
Xpa
Gpa

{
P (Xch|Tpa = x,Xpa)P (Xpa|NTpa, do(Tpa = x), Gpa)P (NTpa)

× P (Gpa|NTpa, do(Tpa = x))
}

=
∑
NTpa
Xpa
Gpa

P (Xch|Tpa = x,Xpa)P (Xpa|NTpa, Tpa = x,Gpa)P (NTpa, Gpa).

[J4]

Thus,

P (Xch|do(Tpa = y))− P (Xch|do(Tpa = x))

=
∑
NTpa
Xpa
Gpa

{
P (Xch|Tpa = y,Xpa)

[
P (Xpa|NTpa, Tpa = y,Gpa)− P (Xpa|NTpa, Tpa = x,Gpa)

]
× P (NTpa, Gpa)

}
+
∑
NTpa
Xpa
Gpa

{[
P (Xch|Tpa = y,Xpa)− P (Xch|Tpa = x,Xpa)

]
× P (Xpa|NTpa, Tpa = x,Gpa)P (NTpa, Gpa)

}
=
∑
Xpa

F1(Xm, ym, xm)
∑
NTpa
Gpa

P (Xch|Tpa = y,Xpa)P (NTpa, Gpa)P (Xp|Tp = z,NTp, Gp)

+ F2(Xch, ym, xm)
∑
NTpa
Xpa
Gpa

P (Xpa|NTpa, Tpa = x,Gpa)P (NTpa, Gpa)

=
∑
Xpa

F1(Xm, ym, xm)
∑
NTpa
Gpa

P (Xch|Tpa = y,Xpa)P (NTpa, Gpa)P (Xp|Tp = z,NTp, Gp) + F2(Xch, y, x)

[J5]

Since P (Xch|Tpa = y,Xpa) = F2(Xch, y, α) + P (Xch|Tpa = α,Xpa) for any α = (α1, α2), and using the fact that
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∑
Xm

F1(Xm, ym, xm) = 1− 1 = 0 we have∑
Xpa

F1(Xm, ym, xm)
∑
NTpa
Gpa

P (Xch|Tpa = y,Xpa)P (NTpa, Gpa)P (Xp|Tp = z,NTp, Gp)

=
∑
Xpa

F1(Xm, ym, xm)
∑
α
Gpa

P (Xch|Tpa = y,Xpa)P (NTpa = α,Gpa)P (Xp|Tp = z,NTp = α2, Gp)

=
∑
Xpa

F1(Xm, ym, xm)
∑
α
Gpa

P (Xch|Tpa = y,Xpa)P (Tpa = α,Gpa)P (Xp|NTp = z, Tp = α2, Gp)

=
∑
Xp
α
Gpa

F2(Xch, y, α)P (Tpa = α,Gpa)P (Xp|NTp = z, Tp = α2, Gp)
∑
Xm

F1(Xm, ym, xm)

+
∑
Xpa

F1(Xm, ym, xm)
∑
α
Gpa

P (Xch|Tpa = α,Xpa)P (Tpa = α,Gpa)P (Xp|NTp = z, Tp = α2, Gp)

=
∑
Xpa

F1(Xm, ym, xm)
∑
α
Gpa

P (Xch|Tpa = α,Xpa)P (Tpa = α,Gpa)P (Xp|NTp = z, Tp = α2, Gp)

=
∑
Xpa

F1(Xm, ym, xm)
∑
Tpa
Gpa

P (Xch|Tpa, Xpa)P (Tpa, Gpa)P (Xp|Tp, NTp = z,Gp)

[J6]

This means that expression [26] is[
P (Xch|do(Tpa = y))− P (Xch|do(Tpa = x))

]
−
[
P (Xch|do(NTpa = y))− P (Xch|do(NTpa = x))

]
= F2(Xch, y, x).

[J7]

Similarly, expression [28] can be represented as

F2(Xch, y, x)
∑
NTpa
Xpa
Gpa

P (Xpa|NTpa, Tpa = x,Gpa)P (NTpa, Gpa)

= F2(Xch, y, x).

[J8]

Thus, we only need to prove that the difference in [27] is F2(Xch, y, x).329

Similarly to the previous analysis, we can write

P (Xch|NTpa = x)

=
∑
Tpa

P (Xch|Tpa, NTpa = x)P (Tpa|NTpa = x)

=
∑
Tpa
Xpa

P (Xch|Tpa, Xpa, NTpa = x)P (Xpa|Tpa, NTpa = x)P (Tpa)
(Law of total probability, independence of Tpa and NTpa)

=
∑
Tpa
Xpa

P (Xch|Tpa, Xpa)P (Xpa|Tpa, NTpa = x)P (Tpa) (Rule 1 of do−calculus).

[J9]

Thus

P (Xch|NTpa = y)− P (Xch|NTpa = x)

=
∑
Tpa
Xpa

P (Xch|Tpa, Xpa)P (Tpa)[P (Xpa|Tpa, NTpa = y)− P (Xpa|Tpa, NTpa = y)]. [J10]

This expression will be in general different from that of P (Xch|do(NTpa = y))− P (Xch|do(NTpa = x)) in equation [J3] ,330

which means Kong et al.’s estimate of indirect effect is biased. Actually, this bias can be shown even in the simplest example331

represented by equations [9a], [9b] and [9c], where the indirect effect estimated by Kong et al. would be β2 = ed
1−e , while the332

true indirect effect is ed . (This again proves that Kong et al.’s method only works when genetic nurturing is weak, and we can333

assume 1− e ≈ 1 and β2 ≈ ed.)334
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For transmitted alleles, we have

P (Xch|Tpa = x)

=
∑
NTpa

P (Xch|NTpa, Tpa = x)P (NTpa|Tpa = x)

=
∑
NTpa

P (Xch|NTpa, Tpa = x)P (NTpa) (Independence of NTpa and Tpa)

=
∑
NTpa
Xpa

P (Xch|NTpa, Xpa, Tpa = x)P (Xpa|NTpa, Tpa = x)P (NTpa)

=
∑
NTpa
Xpa

P (Xch|Xpa, Tpa = x)P (Xpa|NTpa, Tpa = x)P (NTpa) (Rule 1 of do−calculus)

[J11]

Thus

P (Xch|Tpa = y)− P (Xch|Tpa = x)

= F2(Xch, y, x)
∑
NTpa
Xpa

P (Xpa|NTpa, Tpa = y)P (NTpa)

+
∑
Xpa

P (Xch|Tpa = x,Xpa)
∑
NTpa

P (NTpa)[P (Xpa|NTpa, Tpa = y)− P (Xpa|NTpa, Tpa = x)]

= F2(Xch, y, x) +
∑
Xpa

P (Xch|Tpa = x,Xpa)
∑
Tpa

P (Tpa)[P (Xpa|Tpa, NTpa = y)− P (Xpa|Tpa, NTpa = x)]

= F2(Xch, y, x) +
∑
Xpa

P (Xch|Tpa = x,Xpa)
∑
α

P (Tpa = α)[P (Xpa|Tpa = α,NTpa = y)− P (Xpa|Tpa = α,NTpa = x)]

= F2(Xch, y, x) +
∑
α
Xpa

P (Xch|Tpa = α,Xpa)P (Tpa = α)[P (Xpa|Tpa = α,NTpa = y)− P (Xpa|Tpa = α,NTpa = x)]

+
∑
α
Xpa

F2(Xch, x, α)P (Tpa = α)[P (Xpa|Tpa = α,NTpa = y)− P (Xpa|Tpa = α,NTpa = x)]

= F2(Xch, y, x) + P (Xch|NTpa = y)− P (Xch|NTpa = x)

+
∑
α

F2(Xch, x, α)P (Tpa = α)
∑
Xpa

[P (Xpa|Tpa = α,NTpa = y)− P (Xpa|Tpa = α,NTpa = x)]

= F2(Xch, y, x) + P (Xch|NTpa = y)− P (Xch|NTpa = x).
[J12]

and F2(Xch, y, x) is the difference in [27], which completes the proof.335
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