- 1 Supplementary Information: Signaling pathways have an inherent need for noise
- 2 to acquire information

3 Eugenio Azpeitia^{1,2,3}, Eugenio P. Balanzario³, Andreas Wagner^{1,2,4,*}

4

5 Supplementary text 1

6 We want to compute the mutual information $I(S_0; O)$ of the two random variables S_0 , 7 which represents the signal, and O, which represents the output. S_0 is the initial number 8 of signal molecules and takes on n values uniformly distributed in the interval 9 $[N_{Smax}/n, N_{Smax}]$, where N_{Smax} is the maximal number of signal molecules. 10 $O = O_{\infty}$, where $O_t = S_0 - S_t$ and where S_t is a birth and death Markov process 11 determined by the following set of infinitesimal generators

12

$$\lim_{h \to 0} \frac{p_{j,j+1}(h)}{h} = \lambda_j = k_d (S_0 - j)$$
$$\lim_{h \to 0} \frac{p_{j,j-1}(h)}{h} = \mu_j = k_a (R_0 - (S_0 - j))$$
$$\lim_{h \to 0} \frac{p_{j,j}(h)}{h} = \lambda_j + \mu_j$$

1	2
Т	J

14 with $p_{i,j}(h) = P\{S_{t+s} = j | S_s = i\}$ for $s \ge 0$. R_0 is an initial condition for the number of 15 receptors, equal to the total number of receptor molecules. The birth and death 16 process S_t depends on the parameters k_a and k_d . Let $m = S_0 - R_0$ be the minimum 17 value of O_t and let $M = S_0 + O_0$ be the maximum value. Notice that by now we have four 18 parameters k_a , k_d , R_0 and O_0 that govern the birth and death process. The process is 19 described by the following set of Kolmogorov forward equations

$$p_{i,m}'(t) = \mu_{m+1}p_{i,m+1}(t) - \lambda_m p_{i,m}(t)$$

$$p_{i,j}'(t) = \mu_{j+1}p_{i,j+1}(t) - (\lambda_j + \mu_j)p_{i,j}(t) + \lambda_{j-1}p_{i,j-1}(t)$$

$$p_{i,M}'(t) = -\mu_M p_{i,M}(t) + \lambda_{M-1}p_{i,M-1}(t)$$

22

23 with the initial conditions $p_{i,j}(0) = \delta_{ij}$. If we let $\pi_i = p_{i,j}(\infty)$ and let 24 $t \to \infty$ in the Kolmogorov forward equations, then $p'_{i,j}(\infty) = 0$ and we obtain the 25 following set of algebraic equations

26

$$\pi_{m+1} = \frac{\lambda_m}{\mu_{m+1}} \pi_m, \qquad \pi_{j+1} = \frac{\lambda_j + \mu_j}{\mu_{j+1}} \pi_j - \frac{\lambda_{j-1}}{\mu_{j+1}} \pi_{j-1}, \qquad \pi_{m+1} = \frac{\lambda_{M-1}}{\mu_M} \pi_{M-1}$$

27

where λ_j and μ_j are as stated above. These equations can be solved recursively. The set $\{\pi_j : m \le j \le M\}$ determines the probability distribution of S_{∞} and hence also of $O_{\infty} = S - S_{\infty}$.

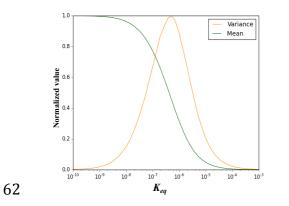
31

It is more expedient to write $\pi_j(S_0)$ instead of π_j , since the above computations depend on the value of S_0 . To compute the mutual information $I(S_0; O) = H(\Pr(O_\infty)) H(\Pr(O_\infty | S_0))$, we must determine the marginal distribution of $O = O_\infty$. This marginal distribution is given by

36

$$P\{O_{\infty} = S_0 - j\} = \sum_{i=m}^{M} P\{S_{\infty} = j | S_0 = i\} P\{S_0 = i\} = \frac{1}{n} \sum_{i=m}^{M} \pi_j(S_0 = i)$$

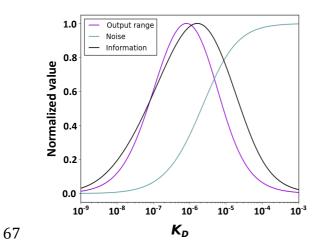
37


and allows us to compute mutual information, output range, and noise (Sup Fig 2).

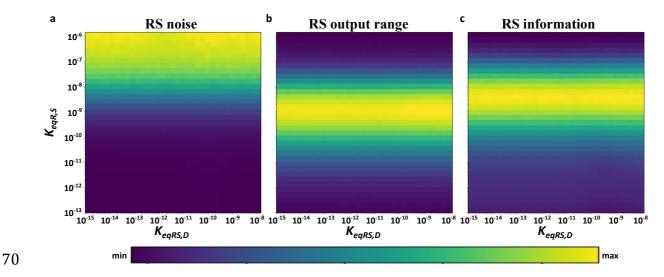
40 Supplementary text 2

In the model of a complete signaling pathway the signal-bound receptor molecules. 41 42 Receptor-signal complexes act as TFs that associate and dissociate from a regulatory 43 binding site on DNA (DNA_{bs}). Once a receptor-signal-DNA_{bs} complex is formed, mRNA is 44 transcribed at rate k_1 , and protein is produced from mRNA molecules at rate k_2 . mRNA and protein are degraded at rates d_1 and d_2 . $K_{eqrs.}$ and $K_{eqrs.}$ describe the affinity of the 45 46 receptor to the signal, and the affinity of the receptor-signal complex to the DNA_{bs}, 47 respectively. This model resembles nuclear receptor signaling pathways, where nuclear 48 receptors directly regulate gene transcription (reviewed in (1)). Although many nuclear 49 receptors act as dimers (e.g., (2)), we consider here for simplicity a receptor that acts as 50 a monomeric transcriptional regulator.

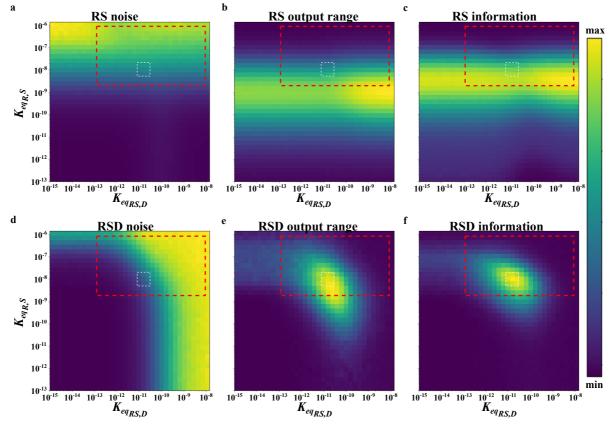
51


Based on our previous result we expected that both reversible binding interactions 52 53 included in the model, namely the receptor-signal and the receptor-signal-DNA_{bs} 54 interactions, should acquire and transmit information at intermediary affinities values, 55 where both noise levels and the output range are high. At intermediary affinity values, 56 the binding-unbinding dynamic of the receptor-signal with the DNA_{bs} should amplify the 57 fluctuations in the number of proteins, thus increasing both noise and increasing 58 information transmission. Our simulation shows that this is indeed the case. Information 59 acquisition in this simple signaling model is maximized at intermediary affinity values of 60 both binding interactions (Sup Fig 8).

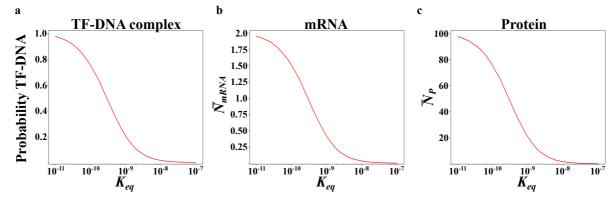
63 **Sup Fig 1.** Mean and variance of the number of receptor-signal complexes (\overline{N}_{RS}) formed at different affinity values

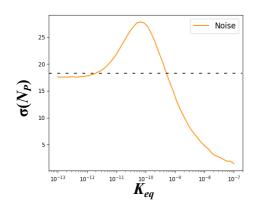

64 (*K*_{eq}). The maximum number of receptor-signal complexes for this simulation is 50 (see Sup Table 1). For visualization

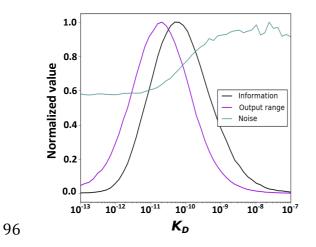
- 65 purposes, mean and variance are normalized by their maximal value.
- 66

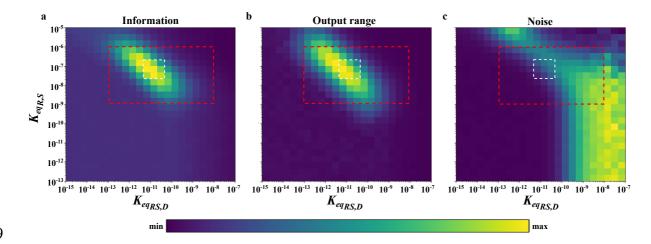


Sup Fig 2. Analytic results of information, noise and output range in the receptor-signal system (see Sup Text 1).

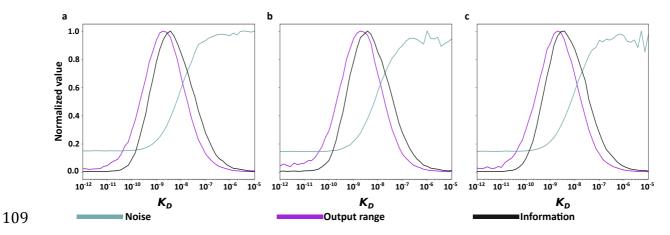



71Sup Fig 3. Information, output range and noise in a pair of reversible binding interactions. Contour plots of (a)72noise, (b) output range and (c) information acquisition in the receptor-signal complex (RS) as a function of the73affinities between both the receptor and the signal ($K_{eqR,S}$), and the receptor-signal complex with the downstream74molecule ($K_{eqRS,D}$). Acquired information, output range and noise are plotted from minimally to maximally observed75values, color-coded as indicated by the color bar (see Sup Table 2 for the parameters).


77 78 Sup Fig 4. Information, output range and noise in two consecutive binding interactions with ten DNAbs. 79 Contour plots of (a and d) noise, output range (b and e) and information acquisition (c and f) in the receptor-signal 80 complex (RS; a-c) and in the receptor-signal-DNA_{bs} complex (RSD; d-f) as a function of the affinities between both the 81 receptor and the signal ($K_{eqR,S}$), and the receptor-signal complex with the downstream molecule ($K_{eqR,S,D}$). Red-dashed 82 rectangles circumscribe biologically sensible receptor-signal DNA affinities ([10-8M,10-13M]) and receptor signal 83 affinities ([10-6M,10-9M]). White-dashed rectangles delineate the region of maximal information acquisition at the 84 receptor-signal-DNA_{bs} level. Acquired information, output range and noise are plotted from minimally to maximally 85 observed values, color-coded as indicated by the color bar (see Sup Table 2 for the parameters). 86


87 **Sup Fig 5.** (a) Probability of TF-*DNA* binding, (b) mean number of mRNA molecules (\overline{N}_{mRNA}), and (c) mean number of 89 protein molecules (\overline{N}_P), as a function of TF-DNA affinity (K_{eq}). For the parameters we used (Sup Table 3), the expected 90 mean number of mRNA and protein molecules produced from a constitutively expressed gene is 2 and 100, 91 respectively.

- 92
- 93 Sup Fig 6. Non-normalized values of standard deviation in the number of proteins. The black line is the standard
- 94 deviation expected for the parameters used in this simulation (Sup Table 3).
- 95



97 Sup Fig 7. Information, output range and noise in the gene regulation model for proteins with a half-life of ~12h (see Sup
98 Table 3).

100 Sup Fig 8. Contour plot of acquired information and noise in a complete signaling pathway. (a) Information, (b) 101 output range, and (c) noise for different affinities between receptor and signal molecules (KeqR,S, y axis), and receptor-102 signal complexes with a DNA binding site (KeqRS,D, x axis) in a model of a simple lineal signaling pathway where a signal 103 bound receptor can bind DNA and regulate gene expression. The number of signal molecules constitute the input into 104 this pathway, and the number of protein molecules expressed from the regulated gene constitute the output. The red-105 dashed rectangle show experimentally measured affinity values between receptors and signals ([10⁻⁶M,10⁻⁹M]) and 106 between transcriptional regulators and DNA ([10⁻⁸M,10⁻¹³M]). The amount of acquired information and noise level are 107 indicated in the color bar (see Sup Table 4 for the parameters).

110 Sup Fig 9. Acquired information, output range, and noise in a gene regulation model that includes the binding

111 of RNA polymerase subject to extrinsic noise. Noise, output range, and information observed in numerical

simulations of the gene expression system with added polymerase-DNA binding. The affinity between the polymerase

113 and the TF-DNA is 10⁻⁹. The mean number of polymerase molecules is 10 times the maximal number of TF molecules

114 (see N_{Tmax} in Sup Table 5) and has a standard deviation of (a) 0% (no extrinsic noise) (c) 10% and (d) 30%.

115 Information, noise, and output range are normalized by their respective maximal values.

Sup Table 1. Parameter values used for the receptor-signal model.

	<i>k</i> _d (s ⁻¹)	ka (M ⁻¹ s ⁻¹)	NSmax	N _{RT}	Volume (L)	n
Fig 2 and Sup Fig 1	0.001	[10,107]	5000	50	8.3×10 ⁻¹⁵	50
and 2						
Fig 3a-c	0.001	[10 ¹ ,10 ⁷]	[50,5000]	50	8.3×10 ⁻¹⁵	50
Fig 3d-f	0.001	[10,107]	5000	50	[8.3×10 ⁻¹⁷ , 8.3×10 ⁻¹³]	50

Sup Table 2. Parameter values used for the model of two consecutive reversible binding interactions.

	<i>k_{dRS}</i> (s ⁻¹)	$k_{aR,S}$ (M ⁻¹ s ⁻¹)	k _{dRSD} (s ⁻¹)	$k_{aRS,D}$ (M ⁻¹ s ⁻¹)	NSmax	N _{RT}	Volume (L)	n
Fig 4, Sup Fig	0.001	[10 ² ,10 ¹⁰]	0.001	[10 ² ,10 ¹⁰]	104	100	1.66×10 ⁻¹³	50
3 and 4								

Sup Table 3. Parameter values used for the gene expression model.

	<i>k</i> _d (s ⁻¹)	ka (M ⁻¹ s ⁻¹)	<i>k</i> ₁ (s ⁻¹)	k₂ (s⁻¹)	<i>d</i> ₁ (s ⁻¹)	<i>d</i> ₂ (s ⁻¹)	NTFmax	Volume (L)	n
Fig 5, Sup	0.001	[10 ⁴ ,10 ¹⁰]	0.01	0.011	0.005	0.00022	10,000	1.66×10-14	50
Fig 5 and 6									
Sup Fig 7	0.001	[104,1010]	0.01	0.011	0.005	0.000022	10,000	1.66×10 ⁻¹⁴	50

Sup Table 4. Parameter values used for the complete signaling pathway model.

	<i>k</i> _{dRS}	k _{aR,S}	<i>k_{dRSD}</i>	k _{aRS,D}	k_1	k_2	<i>d</i> ₁	d_2 (s ⁻¹)	N _{Smax}	N_{RT}	Volume	n
	(S ⁻¹)	(M ⁻¹ s ⁻¹)	(s-1)	(M ⁻¹ s ⁻¹)	(s-1)	(s-1)	(s-1)				(L)	
Sup	0.001	[10 ² ,10 ¹⁰]	0.001	[104,1012]	0.01	0.011	0.005	0.00022	5000	50	8.3×10-	25
Fig 8											12	

125 Sup Table 5. Parameter values used for the extended gene expression model.

	<i>k</i> _d	$k_a(M^{-1}s^{-1})$	<i>k</i> _{dTPD}	kaTD,P	k_1	<i>k</i> 2	<i>d</i> 1	<i>d</i> ₂ (s ⁻¹)	N _{Tmax}	N_P	Volume	n
	(s ⁻¹)		(s ⁻¹)	(M ⁻¹ s ⁻¹)	(s ⁻¹)	(s ⁻¹)	(s ⁻¹)				(L)	
Sup Fig	0.001	106	0.001	0.0001	0.01	0.011	0.005	0.00022	100	NA	1.66×10 ⁻	25
9											12	

127 Supplementary References

128 1. Sever R, Glass CK. Signaling by Nuclear Receptors. Cold Spring Harbor

- 129 Perspectives in Biology. 2013 Mar 1;5(3):a016709–a016709.
- 130 2. Lefebvre P, Benomar Y, Staels B. Retinoid X receptors: common
- 131 heterodimerization partners with distinct functions. Trends in Endocrinology &
- 132 Metabolism. 2010 Nov;21(11):676–83.