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Supplementary Notes 

1. The coarse-grained optimization models by Scott et al. and Klumpp et al. 

In Ref. 1, Scott et al. use a phenomenological model based on the „bacterial growth laws” most 
prominently described in Ref. 2. This model considers two proteome sectors, a ribosomal sector with 
proteome fraction ΦR and a metabolic sector with proteome fraction ΦP, responsible for the 
production of the amino acids consumed by the ribosomal sector. A constraint relates these two 
proteome sectors to the maximally available proteome fraction for protein synthesis, ΦR

max, which is 
assumed to be constant: ΦR + ΦP = ΦR

max. Thus, the model of Scott et al. has only one free parameter, 
the proteome fraction allocated to the ribosomal sector, ΦR. For a given ΦR , the growth rate (which 
is defined by the rate of protein production) is set by three phenomenological parameters: the 
“translational efficiency” γ (translation rate per ribosomal proteome fraction), assumed to be constant; 
the “nutritional efficiency” ν (amino acid production rate per metabolic proteome fraction), assumed 
to be condition-dependent; and a constant proteome fraction of inactive ribosomes, ΦR

min . 
Maximizing the growth rate under these constraints results in an optimal ribosomal proteome fraction.  

The approach by Scott et al. aims to answer broadly the same question as explored in the present 
work: given that cellular resources are limited, what is the optimal way to allocate them in order to 
allow fast growth? Scott et al. approach this question by maximizing the growth rate while assuming 
constant translational efficiency γ and fraction of inactive ribosomes ΦR

min. The parameters are 
derived from fits to coarse-grained experimental data. With this approach, Scott et al. show that under 
relatively simple assumptions, an optimal allocation of proteome mass to translation and metabolism 
exists, and the relationship between the ribosomal proteome fraction and the growth rate is 
qualitatively similar to that observed experimentally, i.e., is linear. While in subsequent publications 
of the same group, the model of Scott et al. has been shown to be very powerful at explaining growth-
related phenomena, it requires parameters fitted to experimental data, and the mechanistic basis of 
its components are unclear. In particular, there is no clear explanation for the existence and size of 
the “offset” of the ribosomal proteome fraction at zero growth rate in this model, ΦR

min. 

While our model minimizes the cost of translation rather than maximizing growth rate, our approach 
is mathematically equivalent to a maximization of growth rate under a constraint on the total cost and 
under certain additional assumptions (such as a constant amino acid composition of the proteome 
across growth rates). Both our approach and that of Scott et al. vary some condition-dependent 
parameters (the nutritional efficiency for Scott et al., the proteome mass and composition in our 
manuscript) and then optimize an aspect of cellular resource allocation. However, in contrast to Scott 
et al., we are not interested in the relative global resource allocation between translation and 
biosynthesis based on a schematic, coarse-grained model, but in a mechanistic explanation of the 
quantitative pattern of resource allocation across different components of the translation machinery.  

Building on the same phenomenological bacterial growth laws 2 as Scott et al. 1, Klumpp et al. 3 also 
analysed the composition of the translation machinery. Noting that this machinery includes not only 
ribosomes, but also other highly expressed proteins – most notably elongation factors 4 and tRNA 
synthetases – Klumpp et al. argued that a full appreciation of the efficiency of protein synthesis 
requires the inclusion of the cost of these translation components. They extended the 
phenomenological, coarse-grained model of Ref. 2 into four proteome sectors, including a ribosomal 
(Rb) and a translation-associated (T) sector. Assuming co-regulation of the Rb and T sectors and fitting 
three phenomenological constants to the data, they were able to approximate the growth-rate 
dependence of ribosome concentration and elongation speed in E. coli 3. However, the experimentally 
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observed ratio between the protein concentrations in the T- and Rb-sectors, ΦT/ΦRb , deviates from 
the postulated constant ratio (see Fig. 3D in Ref. 3), indicating shortcomings of this phenomenological 
theory.  

Klumpp et al. also attempted to determine an optimal growth-rate dependence of the ratio between 
T- and Rb-sectors, by treating both proteome fractions as independent parameters when numerically 
optimizing the growth rate of their coarse-grained model cell. However, the results predicted a ratio 
ΦT/ΦRb that was substantially smaller than that observed (see Fig. 4C in Ref. 3), indicating that 
translation in E. coli is either not organized optimally, or that the objective optimized by natural 
selection differs from the proteome allocation examined by Klumpp et al.. Comparing the objective 
functions used by Klumpp et al. and in the present work, we note that proteins make up 1/3 of the 
ribosome, but 2/3 of the ternary complex (by mass). Thus, the ternary complex appears much more 
expensive to the cell when considering protein mass than when considering total mass, explaining why 
optimization of protein allocation results in smaller predictions of the ΦT/ΦRb ratio 3,5. 
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2. Ribosome states 

The ribosome is the most central component of translation, and the ribosome states in our model are 
slightly different from those used in proteome partitioning models 2,3,6. In this section, we will discuss 
the difference and the rationality of ribosome states in our model. 

Briefly, our model contains active ribosomes and free ribosomes. Active ribosomes are bound to 
mRNA and actively involved in elongating peptide chains. Free ribosomes are responsible for 
translation initiation; they are available for binding to mRNA and comprise a subset of the inactive 
ribosomes in proteome partitioning models. 

Proteome partitioning models distinguish between active ribosomes and inactive ribosomes. Active 
ribosomes have exactly the same meaning as in our model: they are engaged in elongation. At steady-
state growth, the protein synthesis rate can be written as: vprotein_syn = µ P = factive · keff · R, where µ is the 
growth rate, P is the total protein concentration (measured in amino acids per volume), factive is the 
fraction of active ribosomes among total ribosomes, keff is the turnover number of ribosomes during 
elongation, and R is the concentration of ribosomes. By measuring µ, keff, and the ratio between R and 
P (estimated through the RNA/Protein ratio and the fraction of rRNA in total RNA), Dai et al. estimated 
the fraction of active ribosomes as a function of growth rate 6. In the view of protein partitioning 
models, the inactive ribosomes comprise all ribosomes not actively engaged in elongation. Inactive 
ribosomes include not only ribosomes available for initiation (free ribosomes), but also ribosomes 
that are unavailable for initiation (unused, or deactivated, ribosomes) 2,3,6. In this work, we modeled 
both initiation and elongation, and thus both free and active ribosomes (but not deactivated 
ribosomes) are included.  

Our model is carefully built on first principles. All reactions are explicitly and exclusively constrained 
by reaction parameters and steady state growth; we avoid any empirical growth rate-dependent 
parameters, such as a growth rate-dependent fraction of active ribosomes or effective ribosome 
activity. In other words, our model contains only reactions for which we know why and how they occur. 
The mechanism leading to a fraction of deactivated ribosomes is not clear. Deactivated ribosomes 
facilitate faster transitions between growth environments that support different growth rates 7, a 
phenomenon that cannot be predicted with steady-state models such as ours. Moreover, the true 
fraction of deactivated ribosomes has not been measured experimentally. Thus, we did not attempt 
to predict the total concentration of ribosomes (including deactivated ribosomes), and only compared 
our predictions for active ribosome concentrations to experimental estimates.  
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3. Impact of GTP and GDP concentrations on the predictions 

GTP and GDP are involved in many intracellular reactions 8, and we thus do not expect to predict their 
concentrations in this translation model. In our model, GTP and GDP are involved in nucleotide 
exchange by elongation factor Tu 9 (see Methods). The concentrations of GTP and GDP may influence 
the rates of some reactions directly. In this section, we assess the impact of the assumed GTP and GDP 
concentrations on the predictions, examining three pairs of concentrations 10 resulting from growth 
of E. coli K-12 on different media. Note that GTP and GDP concentrations 10 and proteome data were 
collected for different strains of E. coli K-12 (NCM3722 and BW25113, respectively).  

The GTP/GDP measurements were done for growth on acetate (cGTP = 1250 µM; cGDP = 18 µM), glycerol 
(cGTP = 2690 µM; cGDP = 23 µM), and glucose (cGTP = 4900 µM; cGDP = 680 µM); all three conditions also 
appear in our simulations. We first simulated growth on acetate and on glycerol with GTP and GDP 
concentrations measured for E. coli cells growing on the same media. Next, we replaced the GTP and 
GDP concentrations with the data for glucose and repeated the simulations (Supplementary Fig. 8). 
Despite the large differences in GTP and GDP concentrations, the results obtained are very similar. For 
both acetate and glycerol growth, geometric mean fold-errors (GMFE) are below 1.03 (Supplementary 
Fig. 8), i.e., the predicted concentrations of the individual components of the translation machinery 
are on average less than 3% higher or lower in the two sets of predictions. Thus, GTP and GDP 
concentrations appear to have only a minor influence on the predictions. Because glucose is the 
reference condition for the protein expression data 4, we used the concentration of GTP and GDP for 
growth on glucose for all predictions in this study.   
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Supplementary Figures 
 

 

Supplementary Figure 1. The predicted optimal concentrations of the components of the translation 
machinery agree with experimental estimates across 20 growth conditions on different media and 
in chemostats with a minimal glucose medium (sorted by ascending growth rate). The conditions are 
those under which protein concentrations were measured in Ref.4. mRNA11 and tRNA12 were assayed 
in conditions with growth rates that differ from those of the proteomics experiment. To plot mRNA 
and tRNA data in the same panels, we fitted second order polynomial regression models to the 
available data for mRNA and tRNA concentrations, respectively, and then used the regressions to 
estimate the concentrations at the growth rates shown in the panels. Absolute mRNA concentration11 
was only assayed for growth rates between 0.11 h-1 and 0.49 h-1, and we did not attempt to extrapolate 
mRNA concentrations beyond this range.  
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Supplementary Figure 2. The concentrations of the major non-ribosomal RNA pools predicted from 
cost minimization are consistent with experimental observations. (a) mRNA 11, R2 = 0.97, GMFE = 
1.06. (b) Total tRNA data from Dong et al. 12 (summed over individual tRNAs), Forchhammer et al. 13, 
and Skjold et al. 14; combined R2 = 0.27, GMFE = 1.30. (c) number of tRNAs per ribosome from the 
same datasets as in (b). 

 

 

 

 

Supplementary Figure 3. Theoretically optimal resource allocation to the translation machinery as 
a fraction of total dry mass increases almost linearly with growth rate. The solid red line indicates 
the model predictions, without accounting for deactivated ribosomes. The dashed line indicates the 
predicted optimal mass fraction when we additionally include the fraction of deactivated ribosomes, 
which cannot be predicted by a steady-state model but which we estimated from experimental 
observations (Fig. 4 of the main text; see Methods for details). Experimental data (points) is the sum 
over the observed concentrations of translation associated proteins 4 (ribosomal proteins, EF-Tu, EF-
Ts) and RNA 2,6 (ribosomal RNA, tRNA, mRNA; interpolated to the same growth rates as in the protein 
measurements, see Methods). Note that the mass fraction of the translation machinery does not 
include GDP, GTP, free tRNA, tRNA-synthetases, and elongation factor G (FusA).  
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Supplementary Figure 4. Optimality of the translation machinery under chloramphenicol stress. 
Model predictions (red lines) of relative changes in the concentrations of (a) ribosome, (b) EF-Tu, and 
(c) EF-Ts under increasing chloramphenicol stress are qualitatively consistent with experimental data 
15 [a, b, c show the results for growth on glucose]. Predicted (d) elongation rates and (e) RNA/protein 
ratios under chloramphenicol stress are also qualitatively consistent with experimental data 6. Grey 
dots indicate experimental elongation rates without chloramphenicol stress; the black line marks the 
corresponding (non-stressed) predictions. Different symbols indicate varying chloramphenicol 
concentrations, while colours indicate growth conditions (different nutrients). Dashed lines connect 
experimental elongation rates (open symbols) under chloramphenicol stress on the same nutrient; 
solid lines connect the corresponding elongation rate predictions (filled symbols). Chloramphenicol 
concentrations were varied from 0 mM to 9 mM. In both predictions and experiment, elongation rates 
increase with growing chloramphenicol stress, with faster increases under progressively poorer 
nutrient conditions. The overestimated RNA/protein ratio on rich defined medium (RDM) likely 
reflects the fact that ribosome is inhibited less by chloramphenicol in vivo than theoretical calculations 
predict (see Fig. N1 in Ref. 6). The predictions are functions of the growth rate and of chloramphenicol 
concentration; the non-smoothness of the prediction lines likely arise from experimental uncertainties 
in the corresponding values.  
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Supplementary Figure 5. Different cost definition lead to broadly similar growth rate dependencies. 
The coloured lines show predictions based on minimizing the total mass density (as in the main text), 
carbon content, protein mass, and synthesis cost of the components of the translation machinery, 
respectively. The panels compare the predictions to experimental estimates for (a) active ribosomes 
(based on proteomics 4, black dots, and RNA/protein ratios, red dots); (b) EF-Tu; (c) EF-Ts; (d) mRNA; 
and (e) total tRNA. As it is unclear how to calculate ATP costs in the LB medium (µ = 1.9 h-1), no results 
for ATP costs are shown for this condition.  

To derive the molar concentration of active ribosomes from reported RNA/protein mass ratios for 
panel (a), we used the tRNA/ribosome ratios reported in the experimental papers on tRNA 
concentrations 12–14 to calculate the rRNA in total RNA (frRNA) (as mRNA is a very small fraction of total 
RNA by mass (~ 2-5%), we ignored its contribution in this calculation). With frRNA, the RNA/Protein mass 
ratio 2,6, and the mass fraction of protein in the ribosome, we calculated the fraction of ribosomal 
protein in total protein. Then, with equation (1) and the equation for the active ribosome fraction 
(factive = μ / (0.124 + μ)) we calculated the active ribosome concentration.  
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c d 

  

Supplementary Figure 6. Comparison of predicted concentrations at minimal mass concentration 
with alternative cost measures. Alternative cost measures based on (a) carbon content, (b) ATP cost 
of synthesis, and (c) the macromolecular investment into the synthesis lead to very similar predictions 
of the concentrations of the translation machinery components as mass concentration costs. A cost 
measure based on the protein content (d) does not assign costs to mRNA and tRNA and can hence not 
predict their concentrations. Each sub-panel corresponds to one growth condition assayed in Ref. 4. A 
data point shows the predicted concentration for one component based on an alternative cost 
measure vs. the predicted concentration based on the mass concentration cost employed for Figures 
2-5 in the main text. In the bottom right corner of each sub-panel, we provide the square of Pearson’s 
correlation coefficient on log-scale, R2, and the geometric mean fold error, GMFE. As it is not clear 
how to estimate ATP costs in the rich medium (LB), we made no predictions for this condition in (b). 

  



 
 

11 

 

Supplementary Figure 7. The cost of RNA per nucleotide, divided by the cost for the synthesis of 
protein per amino acid, plotted against the growth rate µ. (a) ATP cost of synthesis; (b) total required 
catalyst mass of synthesis (synthesis cost). The horizontal red line shows the RNA/protein cost ratio 
for the mass concentration cost, the horizontal grey line the cost ratio based on the carbon content. 
For ATP and synthesis costs, the RNA/protein cost ratios are different between stable RNA (tRNA, 
rRNA) and mRNA, as for mRNA we additionally consider degradation. The row of identical rRNA, tRNA 
cost ratios at low growth rates in (b) is for chemostat conditions with a minimal glucose medium.   

 

 

 

 

 

 

Supplementary Figure 8. Impact of GTP and GDP concentrations on model predictions. (a) Growth 
on acetate (geometric mean fold-error GMFE = 1.028). (b) Growth on glycerol (GMFE = 1.030). Each 
datapoint represents the concentration of one model component (ribosome, EF-Tu, EF-TS, aa-tRNA). 
x-axes show predictions using the GTP and GDP concentrations measured for the corresponding 
medium; y-axes show predictions when instead assuming the GTP and GDP concentrations measured 
for growth on glucose. GMFE measures the mean deviation from the identity line on the log-log plot; 
GMFE = 1 indicates perfect identity. The very low GMFE values indicate that in vivo GTP and GDP 
concentration has a very small effect on our model.  
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Supplementary Tables 
 

Supplementary Table 1. tRNAs - anticodon, cognate codons, common name(s), and 
corresponding genes. 

tRNA in the 
model Anticodon codon(s) tRNA(s) in 

Dong et al 12 Corresponding genes 

Ala1B UGC GCU, GCA, GCG Ala1B alaV, alaU, alaT 
Ala2 GGC GCC Ala2 alaX, alaW 
Arg2 ACG CGU, CGC, CGA Arg2 argQ, argZ, argY, argV 
Arg3 CCG CGG Arg3 argX 
Arg4 UCU AGA Arg4 argU 
Arg5 CCU AGG Arg5 argW 
Asn GUU AAC, AAU Asn asnT, asnW, asnU, asnV 
Asp1 GUC GAC, GAU Asp1 aspU, aspV, aspT 
Cys GCA UGC, UGU Cys cysT 
Gln1 UUG CAA Gln1 glnW, glnU 
Gln2 CUG CAG Gln2 glnX, glnV 
Glu2 UUC GAA, GAG Glu2 gltW, gltU, gltT, gltV 
Gly1 CCC GGG Gly1 glyU 
Gly2 UCC GGA, GGG Gly2 glyT 
Gly3 GCC GGC, GGU Gly3 glyW, glyV, glyX, glyY 
His GUG CAC, CAU His hisR 
Ile1 GAU AUC, AUU Ile1 ileV, ileY, ileU, ileT 
Ile2 CAU AUA Ile2 ileX 
Leu1 CAG CUG Leu1 leuT, leuV, leuP, leuQ 
Leu2 GAG CUC, CUU Leu2 leuZ 
Leu3 UAG CUA, CUG Leu3 leuU 
Leu4 CAA UUG Leu4 leuW 
Leu5 UAA UUA, UUG Leu5 leuX 
Lys UUU AAA, AAG Lys lysT, lysW, lysY, lysZ, lysQ, lysV 
Met CAU AUG Met m metU, metT 
Phe GAA UUC, UUU Phe pheV, pheU 
Pro1 CGG CCG Pro1 proK 
Pro2 GGG CCC, CCU Pro2 proL 
Pro3 UGG CCA, CCU, CCG Pro3 proM 
Ser1 UGA UCA, UCU, UCG Ser1 serT 
Ser2 CGA UCG Ser2 serU 
Ser3 GCU AGC, AGU Ser3 serV 
Ser5 GGA UCC, UCU Ser5 serW, serX 
Thr13 GGU ACC, ACU Thr1, Thr3 thrV, thrT 
Thr2 CGU ACG Thr2 thrW 
Thr4 UGU ACA, ACU, ACG Thr4 thrU 
Trp CCA UGG Trp trpT 
Tyr12 GUA UAC, UAU Tyr1, Tyr2 tyrV, tyrT, tyrU 
Val1 UAC GUA, GUG, GUU Val1 valT, valZ, valU, valX, valY 
Val2 GAC GUC, GUU Val2A, Val2B valV, valW 
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Supplementary Table 2. tRNAs. 

Codon tRNA1 

GGG Gly1, Gly2 
GGA Gly2 
CUG Leu1, Leu3 
CUA Leu3 
UUG Leu4, Leu5 
UUA Leu5 
CCG Pro1, Pro3 
CCC Pro2 
CCU Pro2, Pro3 
CCA Pro3 
UCA Ser1 
UCG Ser1, Ser2 
UCU Ser1, Ser5 
UCC Ser5 
ACC Thr13 
ACU Thr13, Thr4 
ACG Thr2, Thr4 
ACA Thr4 
GUG Val1 
GUA Val1 
GUU Val1, Val2 
GUC Val2 

 

1 tRNAs predicted to be non-expressed (concentration 0 μM) are shown in red. 
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Supplementary Table 3. RNA/protein cost ratios. 

Condition Growth 
rate (h-1) 

𝐑𝐍𝐀/𝐩𝐫𝐨𝐭𝐞𝐢𝐧	𝐜𝐨𝐬𝐭		𝐫𝐚𝐭𝐢𝐨	 =
𝐑𝐍𝐀	𝐜𝐨𝐬𝐭	𝐩𝐞𝐫	𝐍𝐓𝐏

𝐩𝐫𝐨𝐭𝐞𝐢𝐧	𝐜𝐨𝐬𝐭	𝐩𝐞𝐫	𝐚𝐦𝐢𝐧𝐨	𝐚𝐜𝐢𝐝
 

 

Mass Carbon 
content 

ATP cost1 
(sRNA/AA) 

ATP cost 
(mRNA/AA) 

Synthesis 
cost1 
(sRNA/AA) 

Synthesis 
cost 
(mRNA/AA) 

42°C glucose 0.66 3.01 2.00 1.61 2.39 1.69 2.05 
Acetate 0.30 3.01 2.00 1.61 3.37 2.05 2.58 
Chemostat  
μ = 0.12 0.12 3.01 2.00 1.61 6.07 1.69 3.61 

Chemostat  
μ = 0.2 0.20 3.01 2.00 1.61 4.27 1.69 2.85 

Chemostat  
μ = 0.35 0.35 3.01 2.00 1.61 3.11 1.69 2.36 

Chemostat  
μ = 0.5 0.50 3.01 2.00 1.61 2.65 1.69 2.16 

Fructose 0.65 3.01 2.00 1.61 2.40 1.71 2.06 
Fumarate 0.42 3.01 2.00 1.61 2.85 1.79 2.31 
Galactose  0.26 3.01 2.00 1.61 3.64 1.70 2.58 
Glucosamine 0.46 3.01 2.00 1.61 2.74 1.71 2.20 
Glucose 0.58 3.01 2.00 1.61 2.50 1.69 2.10 
Glycerol 0.47 3.01 2.00 1.61 2.72 1.66 2.17 
Glycerol + AA 1.27 3.01 2.00 7.48 10.97 0.88 1.18 
LB 1.90 3.01 2.00 NA NA 0.21 0.40 
Mannose 0.47 3.01 2.00 1.61 2.72 1.72 2.19 
Osmotic-
stress 
glucose 

0.55 3.01 2.00 1.61 2.55 1.69 2.12 

pH6 glucose 0.63 3.01 2.00 1.61 2.42 1.69 2.07 
Pyruvate 0.40 3.01 2.00 1.61 2.92 1.87 2.34 
Succinate 0.44 3.01 2.00 1.61 2.79 1.74 2.25 
Xylose 0.55 3.01 2.00 1.61 2.55 1.71 2.12 

 

1 sRNA = rRNA and tRNA 
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Supplementary Table 4. The protein, stable RNA (tRNA and rRNA), and mRNA synthesis 
costs (results from ccFBA). 

Condition Growth 
rate (h-1) 

vAA  
(mmol·gDW-1·h-1) 

vsRNA 
(mmol·gDW-1·h-1) 

vmRNA 
(mmol·gDW-1·h-1) 

costAA 
(0.27/vAA) 

costnucl-sRNA 
(0.27/vsRNA) 

costnucl-mRNA 
(0.27/vmRNA) 

42°C glucose 0.66 4.536 2.678 2.211 0.060 0.101 0.122 
Acetate 0.30 3.091 1.509 1.199 0.087 0.179 0.225 
Chemostat μ 
= 0.12 0.12 4.536 2.678 1.256 0.060 0.101 0.215 

Chemostat μ 
= 0.2 0.20 4.536 2.678 1.592 0.060 0.101 0.170 

Chemostat μ 
= 0.35 0.35 4.536 2.678 1.923 0.060 0.101 0.140 

Chemostat μ 
= 0.5 0.50 4.536 2.678 2.098 0.060 0.101 0.129 

Fructose 0.65 4.343 2.535 2.106 0.062 0.106 0.128 
Fumarate 0.42 4.229 2.360 1.827 0.064 0.114 0.148 
Galactose  0.26 4.480 2.629 1.734 0.060 0.103 0.156 
Glucosamin
e 0.46 4.344 2.537 1.974 0.062 0.106 0.137 

Glucose 0.58 4.536 2.678 2.161 0.060 0.101 0.125 
Glycerol 0.47 4.651 2.796 2.140 0.058 0.097 0.126 
Glycerol + 
AA 1.27 7.033 7.965 5.941 0.038 0.034 0.045 

LB 1.90 7.048 34.355 17.428 0.038 0.008 0.015 
Mannose 0.47 4.330 2.525 1.976 0.062 0.107 0.137 
Osmotic-
stress 
glucose 

0.55 4.536 2.678 2.139 0.060 0.101 0.126 

pH6 glucose 0.63 4.536 2.678 2.194 0.060 0.101 0.123 
Pyruvate 0.40 3.605 1.930 1.542 0.075 0.140 0.175 
Succinate 0.44 4.282 2.456 1.905 0.063 0.110 0.142 
Xylose 0.55 4.386 2.568 2.069 0.062 0.105 0.131 

 

 

 

 

Supplementary Table 5. Class 1 and Class 2 codons. 

Codon class Codons 

Class 1 

GCA, GCG, GCU, GCC, CGC, CGU, CGA, CGG, AGA, AGG, AAC, AAU, GAC, GAU, 
UGC, UGU, CAA, CAG, GAG, GAA, GGA, GGU, GGC, CAC, CAU, AUC, AUU, AUA, 
CUU, CUC, CUA, UUA, AAG, AAA, AUG, UUU, UUC, CCC, CCA, UCA, AGU, AGC, 
UCC, ACC, ACA, UGG, UAU, UAC, GUG, GUA, GUC 

Class 2 GGG, CUG, UUG, CCG, CCU, UCG, UCU, ACU, ACG, GUU 
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