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MSC-Derived Exosomes Protect Vertebral
Endplate Chondrocytes against Apoptosis
and Calcification via the miR-31-5p/ATF6 Axis
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Apoptosis and calcification of endplate chondrocytes (EPCs)
can exacerbate intervertebral disc degeneration (IVDD).
Mesenchymal stem cell-derived exosomes (MSC-exosomes)
are reported to have the therapeutic potential in IVDD. How-
ever, the effects and related mechanisms of MSC-exosomes
on EPCs are still unclear. We aimed to investigate the role of
MSC-exosomes on EPCs with a tert-butyl hydroperoxide
(TBHP)-induced oxidative stress cell model and IVDD rat
model. First, our study revealed that TBHP could result in
apoptosis and calcification of EPCs, and MSC-exosomes could
inhibit the detrimental effects. We also found that these protec-
tive effects were inhibited after miroRNA (miR)-31-5p levels
were downregulated in MSC-exosomes. The target relationship
between miR-31-5p and ATF6 was tested. miR-31-5p nega-
tively regulated ATF6-related endoplasmic reticulum (ER)
stress and inhibited apoptosis and calcification in EPCs. Our
in vivo experiments indicated that sub-endplate injection of
MSC-exosomes can ameliorate IVDD; however, after miR-31-
5p levels were downregulated in MSC-exosomes, these protec-
tive effects were inhibited. In conclusion, MSC-exosomes
reduced apoptosis and calcification in EPCs, and the underly-
ing mechanism may be related to miR-31-5p/ATF6/ER stress
pathway regulation.
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INTRODUCTION
Intervertebral disc (IVD) degeneration (IVDD) leads to a series of
spinal degenerative disc diseases that resulted in a huge burden on
the global healthcare system.1,2 The IVD is composed of the out-sur-
rounded annulus fibrosus (AF), inner nucleus pulposus (NP), and up-
down cartilaginous endplate (CEP). IVD is the largest avascular struc-
ture in the human body and receives all nutrients from the bone
marrow of adjacent vertebral bodies.3 The endplate, CEP and bony
endplate (BEP) included, is the nutrition channel. Degeneration of
the CEP can act as a significant barrier to nutrient transport in the
endplate.3 Excessive endplate chondrocyte (EPC) apoptosis and calci-
fication are the two major processes of CEP degeneration.4 In addi-
tion, previous studies showed that stem cells in the adjacent vertebral
Molecular Therap
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body could migrate to the NP physiologically through the nutrition
channel to maintain the IVD environment balance.5,6 In IVDD,
CEP degeneration leads to blockage of the nutrition channel in the
endplate, which results in degeneration of the NP and endogenous
repair failure.7,8 Therefore, finding an effective method to alleviate
CEP degeneration to prevent or reverse IVDD is necessary.

Exosomes are nanoscale extracellular membrane vesicles (50–150 nm
in diameter).9 When endoplasmic multivesicular bodies (MVBs) are
fused with cell membranes, exosomes carrying biomolecules, such as
lipids, proteins, and microRNA (miRNA), are released into the extra-
cellular environment.10 The lipid membrane facilitates the uptake of
exosomes by nearby or distant receptor cells. The ingested exosomes
have biological activities, including immunomodulation, angiogen-
esis, autophagy, and stem cell differentiation.11 Almost all types of
cells can produce exosomes.12 The RNA cargo in exosomes has at-
tracted attention, especially miRNAs.11 In addition, the lipid mem-
brane of the exosome protects the internal miRNAs from digestion
by RNA enzymes.13

miRNAs are short noncoding RNAs that modulate numerous biolog-
ical processes.14 They interact directly with the complementary sites
of the 30 UTR of the target mRNAs, hence, modulating the degree
of degradation.15 Besides functioning within cells, miRNAs are pro-
duced in exosomes and then translocated to proximate or distant cells
to modulate gene expression and regulate cell function.16,17
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Figure 1. Apoptosis and Calcification in Cartilaginous Endplate (CEP) of IVDD Patients and TBHP-Treated EPCs

(A) Representative plain radiographs, computed tomography (CT), and MRI images of patients with cervical myelopathy or Hirayama disease (HD). (B) Endplate forms a

continuing boundary superior and inferior to the intervertebral disc that segregates the vertebra from the inner nucleus pulposus (NP). (C) Runx2 and BMP-2 protein levels

were upregulated in CEP from patients with IVDD. (D) Caspase-3 and caspase-7 protein levels were upregulated in CEP from patients with IVDD. (E) Calcification was

(legend continued on next page)
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Figure 2. Identification of MSC-Exosomes and MSC-Exosome Uptake by EPCs

(A) Transmission electronmicrograph (TEM) of the exosomes secreted from theMSC (scale bars, 100 nm). (B) Immunophenotype of MSC-exosomes. (C) Nano-sight analysis

for the particle size. (D) Confocal scanning laser microscopy exhibiting PKH26-labeled exosomes internalized by EPCs for 0, 3, and 6 h (scale bars, 200 mm).
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MicroRNA (miR)-31-5p is a commonly downmodulated miRNA in
IVDD tissues.18 In addition, it has been reported that miR-31-5p
serves as a negative mediator of calcification and apoptosis.19 There-
fore, we sought to inspect the miR-31-5p expression in mesenchymal
stem cell (MSC)-exosomes and their effects in EPCs.

In the current study, we investigated the effects of MSC-exosomes on
apoptosis and calcification in EPCs under oxidative stress induced by
tert-butyl hydroperoxide (TBHP) and then assessed their effects via
sub-endplate injection in a rat-tail IVDD model. We further eluci-
dated the possible mechanism ofMSC-exosomes in influencing EPCs.
RESULTS
Apoptosis and Calcification of CEP in IVDD and TBHP Induce

Apoptosis and Calcification in EPCs

To investigate apoptosis and calcification of CEP in IVDD, we in-
spected the expression levels of correlated proteins in 8 pairs of pa-
tients with degenerative cervical disc disease as IVDD and Hirayama
disease (HD) as control (Figures 1A and 1B; Table S1). The western
blot results showed increased expression of apoptosis-related proteins
(caspase-3 and caspase-7) and calcification-related proteins (Runx2
and BMP-2) in the CEP of IVDD (Figures 1C and 1D). To explore
upregulated in TBHP-treated EPCs using the alizarin red staining and ALP sta

immunofluorescence analysis (scale bars, 200 mm). (G) Impact of TBHP on EPC apopto

0.01, ***p < 0.001.
the calcification of EPCs caused by TBHP, EPCs were treated with
different levels of TBHP and then stained with alizarin red and alka-
line phosphatase (ALP). Consequently, the calcification of EPCs was
increased after TBHP treatment (Figure 1E). Further immunofluores-
cence staining showed that TBHP treatment distinctly increased the
level of Runx2 in EPCs (Figure 1F). Then, flow cytometry was used
to detect the impact of distinct concentrations of TBHP on the
apoptosis of EPCs. The results showed that the apoptosis of EPCs
increased under TBHP treatment (Figure 1G). These results indicated
that apoptosis and calcification of CEP in IVDD and oxidative stress
(TBHP) induced apoptosis and calcification in EPCs.
Identification of MSC-Exosomes and MSC-Exosome Uptake by

EPCs

We used transmission electron microscopy (TEM), dynamic light
scattering (DLS), and western blotting to evaluate the exosomes
isolated from MSCs. TEM showed that these particles possess a
cup-shaped or spherical morphology (Figure 2A), consistent with
previous studies.20,21 Western blotting further validated that these
particles possessed exosomal surface markers, including TSG101,
CD9, and CD63 (Figure 2B). DLS indicated that the particle size
was between 30 and 200 nm (Figure 2C), consistent with previous
ining methods (scale bars, 50 mm). (F) Runx2 expression was detected by

sis was examined using flow cytometry assay. Data are mean ± SD. *p < 0.05, **p <
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Figure 3. MSC-Exosomes Inhibited Apoptosis and Calcification in EPCs

(A) Anti-apoptosis of MSC-exosomes in TBHP-treated EPCs. (B) Capase-3, caspase-7, and caspase-9 in EPCs after treatment of MSC-exosomes. (C) Alizarin red staining

and ALP staining of EPCs after treatment of MSC-exosomes (scale bars, 50 mm). (D) Runx2, BMP-2, and Sox9 in EPCs after treatment of MSC-exosomes. (E) Immuno-

fluorescence of Runx2 protein in EPCs after treatment of MSC-exosomes (scale bars, 200 mm). Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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findings. These results together confirmed that the separated nano-
particles were exosomes. After incubation with EPCs, PKH26-labeled
exosomes exhibited red fluorescence in the cytoplasm of EPCs (Fig-
ure 2D), implying the MSC-exosome uptake by EPCs.
604 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
MSC-Exosomes Inhibited Apoptosis and Calcification in EPCs

under Oxidative Stress

Next, we explore the effects of MSC-exosomes on apoptosis and calci-
fication in EPCs under oxidative stress. The MSC-exosomes reduced
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Figure 4. miR-31-5p Was Highly Expressed in MSC-Exosomes, and ATF6 Was a Target of miR-31-5p

(A) Volcano plots depicted differential expression of miRNAs examined using miRNA microarray in MSC-exosomes compared to cells. (B) Heatmap of 20 upregulated

miRNAs in microarray. (C) qRT-PCR assay verified the upregulation of miR-31-5p in MSC-exosomes compared to fibroblast-exosomes. (D) Cystoscope was utilized to verify

the targets of miR-31-5p. (E) Venn diagram indicated the targets using different algorithms. (F) EPCs were inserted with miR-31-5p and luciferase constructs of ATF6 with the

wild-type-putative miR-31-5p binding sites or mutated sites via transfection. (G) FISH revealed that both miR-31-5p and ATF6 mRNA were localized in the cytoplasm. Blue

(legend continued on next page)
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the percentage of TBHP-induced apoptosis of EPCs but not fibro-
blast-exosomes (Figure 3A). At the same time, after treatment of
EPCs with MSC-exosomes, the expression levels of activated cas-
pase-3, caspase-7, and caspase-9 decreased but not fibroblast-exo-
somes (Figure 3B). Alizarin red and ALP staining results revealed
that TBHP-induced oxidative stress increased EPC calcification.
MSC-exosomes partially inhibited EPC calcification but not fibro-
blast-exosomes (Figure 3C). Moreover, the western blot results indi-
cated that calcification increased after TBHP treatment, but this
impact was reversed by MSC-exosome treatment (Figure 3D).
Further immunofluorescence analysis revealed that TBHP treatment
significantly increased the relative level of Runx2 in EPCs, whereas
MSC-exosome treatment reverses this effect (Figure 3E). These re-
sults indicated that MSC-exosomes have protective effects on
apoptosis and calcification in EPCs under oxidative stress.
miR-31-5p Was Highly Expressed in MSC-Exosomes, and ATF6

Was the Target of miR-31-5p

We used the microarray to compare the miRNA levels in exosomes
and cells. A total of 3,156 capture probes were detected (Figure 4A),
and 20 miRNAs were significantly upregulated in MSC-exosomes
(Figure 4B). In addition, we found that the content of miR-31-5p in
MSC-exosomes was markedly higher compared to the fibroblast-exo-
somes (Figure 4C). To investigate whether miR-31-5p targets ATF6
directly, we constructed themiRNA-mRNAnetwork using Cytoscape
software (https://cytoscape.org/) (Figure 4D). We searched for pro-
spective targets of miR-31-5p and compiled all of the predicted genes
for Venn analysis (Figure 4E). Furthermore, the binding regions be-
tween miR-31-5p and ATF6 were assessed using the dual-luciferase
activity experiment (Figure 4F). We also used the subcellular miRNA
and mRNA localization to elucidate the mode of action. The fluores-
cent in situ hybridization (FISH) results revealed that miR-31-5p and
ATF6 are both located in the cytoplasm (Figure 4G). Double staining
of ATF6, CHOP, and KDEL (endoplasmic reticulum [ER] marker)
indicated the action mode in EPCs in the ER (Figure 4H). Further-
more, MSC-exosomes decreased the expression of ATF6 in EPCs,
whereas this effect was suppressed by antagomir-31-5p (Figure 4I).
These data collectively elucidated that ATF6 was the target of miR-
31-5p, and miR-31-5p negatively regulated the ATF6-related ER-
stress pathway.
miR-31-5p in MSC-Exosomes Inhibited Apoptosis and

Calcification in EPCs under Oxidative Stress

We studied the role of miR-31-5p on TBHP-induced apoptosis and
calcification in EPCs by over- and underexpressing miR-31-5p. The
agomir-31-5p significantly reduced apoptosis, whereas antagomir-
31-5p aggravated apoptosis (Figures 5A and 5B). When the exosomes
extracted from the supernatant of MSCs were inserted with antago-
mir-31-5p via transfection, the exosomes lost their anti-apoptotic ef-
fluorescence designates the nucleus, red fluorescence designates miR-31-5p, and gree

double staining for colocalization of ATF6 andCHOPwith KDELwere localized in the end

protein in EPCs (scale bars, 100 mm). Data are mean ± SD. *p < 0.05, **p < 0.01, ***p

606 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
fect (Figures 5E and 5F). These results implied that miR-31-5p medi-
ated some therapeutic advantages of MSC-exosomes. Additionally,
we explored the effect of the miR-31-5p expression on EPC calcifica-
tion. Agomir-31-5p remarkably reduced calcification, whereas anta-
gomir-31-5p distinctly aggravated calcification (Figures 5C and
5D). When exosomes were extracted from the supernatant of MSCs
inserted with antagomir-31-5p via transfection, the exosomes lost
their anti-calcification influence (Figures 5G and 5H). These results
collectively indicated that miR-31-5p suppresses apoptosis and calci-
fication in EPCs, and MSC-exosomes inhibits apoptosis and calcifica-
tion in EPCs via miR-31-5p.
miR-31-5p Exerts Effects in EPCsby Targeting theATF6-Related

ER-Stress Pathway

To elucidate the target genes, as well as molecular cascades of EPCs,
pathway analysis indicated the direct role of ATF6 in regulation of
apoptosis and calcification via the ER-stress pathway (Figures 6A
and S2). After TBHP treatment, the levels of ATF6, apoptosis, and
calcification-related proteins in EPCs were significantly increased
(Figure 6B). Immunofluorescence staining showed that caspase-12
in EPCs was increased after TBHP treatment (Figure 6C). We incu-
bated the EPCs with miR-31-5p-deficient MSC-exosomes. The sup-
pressing impacts of MSC-exosomes on ER-stress-related apoptosis
and calcification were inhibited, implying that MSC-exosomes in-
hibited the ER-stress-related apoptosis and calcification in EPCs via
miR-31-5p (Figure 6D). Signal transduction pathways and expres-
sions of related genes in the GEO database revealed that ATF6-related
apoptosis and calcification were increased in IVDD (Figure 6E). Flow
cytometry was used to examine the relationship between ATF6 and
apoptosis. Compared with the control group, ATF6 small interfering
RNA (siRNA) markedly reduced the rate of apoptosis (Figure 6F).
These results collectively confirmed that miR-31-5p in MSC-exo-
somes alleviated apoptosis and calcification in EPCs by targeting
the ATF6-related ER-stress pathway.
Sub-Endplate Injection of MSC-Exosomes Ameliorated IVDD in

Rat Models

We established the rat IVDD model successfully. Once a week, up to
9 weeks, when they were sacrificed, we injected MSC-exosome sub-
endplate in the rat tail. 9 weeks following the injection, the MRI score
of the MSC-exosome group was distinctly lower compared to the
noninjection group (Figures 7A and 7B). At 9 weeks, histological
analysis was performed using hematoxylin and eosin (H&E) staining,
Safranin-O staining and Alcian blue staining. H&E staining results
showed that the structure of the CEP was confused, the volume of
the NP tissue was markedly decreased in the IVDD group, and
both CEP and NP tissues in the MSC-exosome group were better pre-
served (Figure 7C). Safranin-O stains proteoglycans and glycosami-
noglycans (red). We found that the CEP was thicker and that the
n fluorescence designates ATF6mRNA (scale bars, 10 mm). (H) Immunofluorescence

oplasmic reticulum (ER) of EPCs (scale bars, 20 mm). (I) Immunofluorescence of ATF6

< 0.001.

https://cytoscape.org/


TBHP agomir-31-5p agomir-NC

MSC-exosomes

MSC-exosomes

+antagomir-31-5p

+antagomir-31-5p

+antagomir-NC

MSC-ex
os

om
es

+a
nta

go
mir-3

1-5
p

+a
nta

go
mir-N

C

MSC-ex
os

om
es

+a
nta

go
mir-3

1-5
p

+a
nta

go
mir-N

C

+antagomir-NC

antagomir-31-5p antagomir-NC

TBHP

ag
om

ir-3
1-5

p

ag
om

ir-N
C

an
tag

om
ir-3

1-5
p

an
tag

om
ir-N

C

TBHP

ag
om

ir-3
1-5

p

ag
om

ir-N
C

an
tag

om
ir-3

1-5
p

an
tag

om
ir-N

C

TBHP agomir-31-5p agomir-NC antagomir-31-5p antagomir-NC

0

10

20

30

Ap
op

to
si

s 
ra

te
 (%

)

Ap
op

to
si

s 
ra

te
 (%

)

0

5

10

15

20

25

PI

Annexin V-FITC

PI

Annexin V-FITC

0

1

2

3

0

1

2

3

4

R
un

x2
 fl

uo
re

sc
en

ce
 in

te
ns

ity
 (o

f c
on

tro
l)

R
un

x2
 fl

uo
re

sc
en

ce
 in

te
ns

ity
 (o

f c
on

tro
l)

R
un

x2
Al

iz
ar

in
 R

ed
AL

P

Al
iz

ar
in

 R
ed

AL
P

D
AP

I
M

er
ge

R
un

x2
D

AP
I

M
er

ge

A

C

E

G

B

D

F

H

* *

*

*

*
*

* * *
*

Figure 5. miR-31-5p in MSC-Exosomes Inhibited Apoptosis and Calcification in EPCs under Oxidative Stress

(A) Impact of miR-31-5p on EPC apoptosis was examined using the flow cytometry assay. (B) Agomir-31-5p significantly alleviated EPC apoptosis, whereas the antagomir-31-5p

exacerbated apoptosis. (C) Impact ofmiR-31-5p on EPC calcificationwas evaluated using alizarin red staining, ALP staining (scale bars, 50 mm), and immunofluorescence staining of

Runx2 (scale bars, 200mm). (D) Agomir-31-5p significantly alleviatedEPCcalcification,whereas antagomir-31-5p exacerbated calcification. (E) Anti-apoptotic activities ofmiR-31-5p-

depleted MSC-exosomes were evaluated using flow cytometry. (F) The percentage of the apoptotic cells was increased after silencing miR-31-5p in MSC-exosomes. (G) Anti-

calcification activities ofmiR-31-5p-depletedMSC-exosomeswere detected using alizarin red staining, ALP staining (scale bars, 50 mm), and immunofluorescence staining of Runx2

(scalebars,200mm). (H)Thepercentageof theRunx2-positivecellwas increasedafter silencingmiR-31-5p inMSC-exosomes.Dataaremean±SD. *p<0.05, **p<0.01, ***p<0.001.
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Figure 6. Inhibition of Apoptosis and Calcification via the ATF6-Related ER-Stress Pathway

(A) A graphic representation of the turquoise module using string (https://string-db.org/cgi/input.pl). (B) ATF6, apoptosis-related proteins, and calcification-related proteins in

EPCs after TBHP treatment. (C) Immunofluorescence of caspase-12 protein in EPCs after TBHP treatment (scale bars, 100 mm). (D) miR-31-5p-deficient MSC-exosomes

lost the ability of inhibition in ER-stress, apoptosis, and calcification. (E) Signal transduction pathways and expressions of related genes in the GEO database. (F) ATF6 siRNA

significantly decreased apoptosis in EPCs induced by TBHP. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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structure was more intact in the MSC-exosome group than in the
noninjection group, indicating that MSC-exosomes had beneficial ef-
fects for protecting CEP. The results also revealed that NP tissues were
better preserved in theMSC-exosome group, implying thatMSC-exo-
somes may also be beneficial for NP tissues (Figure 7D). Alcian blue
(blue) staining results also showed similar effects (Figure 7E). Taken
together, the histological score of the noninjection group was mark-
edly higher compared with the MSC-exosome group (Figure 7F).
608 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
The western blot results revealed that MSC-exosome injection had
a positive effect on inhibiting apoptosis and calcification in CEP tis-
sues from IVDD (Figure 7G). We additionally used the TUNEL
3,30-diaminobenzidine (DAB) method to stain apoptotic cells in the
CEP. Consequently, the percentage of DAB-positive cells in the
MSC-exosome group was lower than in the noninjection group (Fig-
ures 7H and 7I). Immunohistochemical staining also showed that the
percentage of Runx2-positive cells in the MSC-exosome group
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Figure 7. Sub-Endplate Injection of MSC-Exosomes Ameliorated IVDD in Rat Models

(A) MRI of the rat tails in different groups. (B) The scores of MRI in different groups. (C) H&E staining of rat-tail IVD sections in different groups (scale bars, 1,000 mm). (D)

Safranin-O staining of rat-tail IVD sections in different groups (scale bars, 1,000 mm). (E) Alcian blue staining of rat-tail IVD sections in different groups (scale bars, 1,000 mm).

(F) The histological grades of rat-tail IVD sections in different groups. (G) Apoptosis- and calcification-related proteins from CEP in different groups. (H) TUNEL staining (DAB)

of rat-tail IVD sections, 20� (scale bars, 1,000 mm) and 200� (scale bars, 100 mm). Arrows indicate DAB-positive cells. (I) The percentage of DAB-positive cells in CEP in

different groups. (J) The immunohistology staining of Runx2-positive cells in CEP in different groups, 20� (scale bar, 1,000 mm) and 200� (scale bars, 100 mm). Arrows

indicate Runx2-positive cells. BEP, bony endplate; GP, growth plate. Data are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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decreased compared to the noninjection group (Figure 7J), indicating
that the MSC-exosome group reduced calcification in CEP compared
to the noninjection group. However, after the miR-31-5p levels were
downregulated in MSC-exosomes, these effects were significantly
inhibited.

DISCUSSION
Although MSC-exosomes have advantageous effects on IVD in
physiological and pathological conditions,20,22 their effects andmech-
anisms of action on EPCs are minimally understood. Here, we estab-
lished that in primary EPCs, MSC-exosomes inhibited apoptosis and
calcification. We found that this mechanism was, at least partly,
controlled by miR-31-5p, which can be transmitted into EPCs,
thereby disrupting ATF6-ER-stress and regulating cell function.

Exosomes are extracellular vesicles (EVs) found in various cells types
that can deliver miRNAs to recipient cells.21 Although systemic deliv-
ery of exosomes is generally considered the easiest approach, bio-
distribution patterns indicate accumulation in the liver, spleen, and
lungs.23 Especially when taking the avascular nature of IVD into ac-
count, local delivery in the sub-endplate region was regarded as a
good alternative choice. Meanwhile, sub-endplate injection can avoid
repeated puncture in tail disc tissues. The perichondrium region adja-
cent to the epiphyseal plate and the outer zone of the AF has been sug-
gested to be the IVD stem cell niche.24,25 Sub-endplate injection also
simulated bioinspired endogenous repair strategies.

In our results, MSC-exosomes reduced the apoptosis and calcification
of EPCs, thereby inhibiting degeneration of CEP. Meanwhile, MSC-
exosomes alleviated IVDD in vivo. Previous evidence in vivo and
in vitro indicates that oxidation products are extensively presented
in IVDD.26,27 Previous research evidence indicated that oxidative
stress products elevated the formation of cardiovascular cell calcifica-
tion.28,29 Recent studies indicated that oxidative stress also induced
apoptosis and calcification in EPCs.4,30,31 These studies implied that
oxidative stress was a frequent pathological condition for apoptosis
and calcification in cells, EPCs included.32 Hence, we examined the
610 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
mechanism of MSC-exosomes on EPCs
apoptosis and calcification in the TBHP-
induced oxidative stress system. In this study,
we found that MSC-exosomes downregulated
the expression of apoptosis-related proteins,
suggesting that MSC-exosomes protected
EPCs from apoptosis induced by oxidative
stress. At the same time, MSC-exosomes also
inhibited calcification induced by oxidative stress. Taken together,
these results indicated that MSC-exosomes inhibited apoptosis as
well as calcification in EPCs under oxidative stress.

As an important mediator of MSC-exosomes, miRNAs provide
enduring therapeutic effects and basic changes in the local micro-
environment.33 In recent years, many studies have reported
different miRNAs and their role in IVDD.34,35 Three downmodu-
lated miRNAs (miR-31-5p, miR-124a, and miR-127-5p) are
frequently reported miRNAs in IVDD tissues.18 In this study, we
reported the high expression of miR-31-5p in MSC-exosomes
and established that miRNA negatively regulates apoptosis and
calcification. After insertion of miR-31-5p into EPCs via transfec-
tion, their apoptosis and calcification were significantly reduced.
We incubated the EPCs with miR-31-5p-deficient MSC-exosomes.
The suppressing impacts of MSC-exosomes on ER-stress-related
apoptosis and calcification were inhibited, implying that MSC-exo-
somes inhibited the ER-stress-related apoptosis and calcification of
EPCs via miR-31-5p.

In our study, we identified ATF6 as the target gene of miR-31-5p,
thereby confirming the mechanism of miR-31-5p in mediating EPC
apoptosis and calcification. When miR-31-5p was upregulated,
ATF6 no longer promoted ER-stress in EPCs, resulting in reduced
EPC apoptosis and calcification. Recently, studies reported that
oxidative stress induced ER-stress in EPCs.36 In addition, previous
studies reported that ATF6 interacted with ER-stress elements to
induce transcription factors to move into the nucleus, which in
turn, led to the upregulation of genes related to unfolded proteins,
such as CHOP, GRP78, and XBP1.37 Herein, we found thatMSC-exo-
somes downregulated the expression of ATF6, CHOP, XBP1, and
GRP78, suggesting that MSC-exosomes had protective effects on
oxidative stress-induced ER-stress in EPCs. Taken together, we pro-
vide insights into the beneficial effect of MSC-exosomes on EPCs.
The MSC-exosome-mediated transfer of miR-31-5p had the advanta-
geous effect on EPCs, possibly though ATF6-related ER-stress
inhibition.
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Previous studies also showed that the NP cells were preserved in the
MSC-exosome-treated group compared with the untreated group
in vitro studies.20,22 Interestingly, aside from NP cells, the EPCs
were also better preserved in the MSCs-exosome-treated group
in vitro study. These results suggested that MSC-exosomes may
contribute to IVDD therapeutics by targeting both NP and CEP.
Our in vivo results also supported it.

In conclusion, our study indicated that MSC-exosomes prevented
EPCs from apoptosis and calcification, at least partially, through
miR-31-5p (Figure 8). Besides, miR-31-5p disrupted ATF6 and thus
inhibited ER-stress-related apoptosis and calcification in EPCs under
oxidative stress, and sub-injection of MSC-exosomes alleviates IVDD
in vivo. Therefore, we provide a prospective therapeutic strategy for
IVDD.
MATERIALS AND METHODS
Ethics Statement

All animal studies on the surgical intervention, treatment, and post-
surgery animal care were approved by the Fudan University Animal
Care and Use Committee.
Cell Isolation and Culture

The Sprague-Dawley rats (100–150 g) were sacrificed after anestheti-
zation using isoflurane gas. We collected the CEP tissues using a dis-
secting microscope. The tissue was digested using 0.2% type II colla-
genase (Sigma-Aldrich) at 37�C for 4 h.38 Next, we incubated the
digested tissue as a monolayer in DMEM (Gibco, Invitrogen, Grand
Island, NY, USA) containing antibiotics (1% penicillin/streptomycin)
and 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA) under
the conditions of 5% CO2 and 37�C. When the cells were 70%–80%
confluent (appropriate density), 0.25% trypsin-EDTA (Gibco, Invi-
trogen) was used to extract the cells. Next, we transferred the EPCs
to a 10-cm new culture plate at an appropriate density. We replaced
the complete medium daily with fresh medium and used the EPCs of
the previous two and three passages in the experiments.
Exosome Isolation

We isolated, cultivated, and characterized of MSCs from the vertebral
body in anterior cervical corpectomy and fusion (ACCF) surgery. Af-
ter 48 h, the culture supernatant was harvested. We harvested the cul-
ture supernatant via centrifugation at 3,000 � g for 10 min, then at
2,000 � g for 30 min, and then ultracentrifuged on an Optima L-
100XP ultracentrifuge (Beckman Coulter, Brea, CA, USA) at
20,000 � g for 30 min. At every step, we transferred the supernatant
into a clean tube and immediately resuspended the pellet in phos-
phate-buffered saline (PBS). The supernatant was filtered through a
0.22-mM filter, aliquoted, stored at �80�C, and then ultracentrifuged
at 4�C for 2 h at 120,000 � g. The final volume was 200 mL. Subse-
quently, we washed the EV pellet in PBS at 120,000 � g for 2 h at
4�C and then resuspended in PBS. We used exosomes from normal
human fibroblasts (Stem Cell Bank, Chinese Academy of Sciences,
Shanghai) as the control.
Exosome Characterization and Uptake by EPCs

The exosome morphology was documented using TEM. The exo-
somes were confirmed based on the expression of signature markers
(TSG101, CD9, and CD63) using western blot assays. We utilized the
Nanosizer instrument (Malvern Instruments, Malvern, UK) in the
DLS analyses. We incubated the purified MSC-exosomes with
PKH26 (Sigma-Aldrich) for 5 min at room temperature. After
washing twice with PBS via 120,000 � g centrifugation for 90 min,
we resuspended the labeled exosomes in the basal medium and sub-
sequently incubated them with EPCs at 37�C for 6 h. The uptake of
labeled particles by EPCs was measured via immunofluorescence
staining.

Alizarin Red Staining and ALP Staining

The EPCs were treated with TBHP (2 h), and then cells were cultured
in routine DMEMmedium (without TBHP) for 6 days. After that, the
EPCs were washed three times with PBS and fixed with 4% parafor-
maldehyde for 15 min and with alizarin red solution (Beyotime,
Shanghai, China) for 30 min at 37�C. The stained cells were observed,
and images were captured with an inverted microscope (Nikon, To-
kyo, Japan). A BCIP/NBT alkaline phosphatase color development
kit (Beyotime, Shanghai, China) was utilized based upon provided di-
rections. Briefly, cells were washed three times by using PBS and fixed
with 4% paraformaldehyde for 15 min. BCIP/NBT substrate was then
used to treat cells for 24 h, the stained cells were observed, and images
were captured with an inverted microscope (Nikon, Tokyo, Japan).

Flow Cytometry

We utilized Annexin V-fluorescein isothiocyanate (FITC) and/or
propidium iodide (PI) double-standard staining to examine cell
apoptosis. We collected the cells 48 h following transfection and
then adjusted the concentration to 1 � 106 cells/mL, followed by
fixing, using 70% ice-cold ethanol solution at 4�C overnight. After
that, we centrifuged a 100-mL cell suspension (no less than 106

cells/mL). We then resuspended the cells in 200 mL of the binding
buffer, followed by subsequent mixing with 10 mL Annexin V-FITC
and 5 mL PI for 15 min in the dark. After that, we added 300 mL of
the binding buffer. Finally, fluorescence (excitation wavelength =
488 nm) was detected by flow cytometry.

miRNA Array and Data Analysis

We considered the miRNAs with more than 2-fold difference and sta-
tistical significance (p < 0.05) between groups as differentially ex-
pressed. Heatmap analyses were performed using MORPHEUS soft-
ware (https://software.broadinstitute.org/morpheus/). Four databases
were used to identify target genes via the Venn analysis.

qRT-PCR Analysis

We suspended the MSC-exosomes in PBS containing 5% Triton. The
MSC-exosomes were added with 0.4 mg/mL RNase A and incubated
at 37�C for 10 min. After that, we added 0.1 mg/mL proteinase K and
incubated at 37�C for 20 min. The miR-31-5p levels were analyzed by
qRT-PCR. The sequences of primer and probe utilized are itemized in
Table S2.
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Western Blot

We lysed tissue or cells on ice using 1% protease suppressor (AD1008;
Aspen, South Africa) and lysis buffer (AS1004; Aspen, South Africa).
We collected and separated the protein fractions via SDS-PAGE and
then embedded onto the nitrocellulose membrane (IPVH00010; Milli-
pore, USA). After that, we blocked the membrane using 5% skimmed
milk, and then primary antibodies were conjugated at 4�C overnight
and then detected using horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies (AS1058; Aspen, South Africa). For protein visuali-
zation, we utilized the chemiluminescence detection system (LiDE110;
Canon, Japan), per the procedure outlined by the manufacturer. The
antibodies used in this study consisted of anti-Runx2 (1:1,000), anti-
BMP-2 (1:500), anti-caspase-3 (1:500), anti-caspase-7 (1:500), anti-cas-
pase-9 (1:500), anti-caspase-12 (1:500), anti-Sox9 (1:500), anti-ATF6
(1:500), anti-CHOP (1:1000), anti-XBP1 (1:500), anti-GRP78
(1:1,000), and anti-glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (1:10,000), all bought from Abcam, USA.

Transfection

Briefly, agomir-31-5p, agomir-negative control (NC), antagomir-31-
5p, and antagomir-NC (GenePharma, Shanghai) were transfected us-
ing Lipofectamine 3000 (L3000001; Thermo Fisher Scientific, USA)
reagent at 200 mM, per the procedure of the manufacturer. Similarly,
we used Lipofectamine 3000 in the transfection of cells with siRNA
oligos. We transfected the cells with ATF6 siRNA (RiboBio, Guangz-
hou, China) at 50 nM.

Luciferase Reporter Assay

Amplification of the rat ATF6 30 UTR region with the binding
sequence of miR-31-5p from the mouse genomic DNA was accom-
plished via PCR. Subsequently, we subcloned the amplicons in the
pGL3 vector (E1741; Promega, USA). The sequence was mutated us-
ing the QuikChange site-directed mutation kit (210518; Stratagene,
USA). Transient transfection of the EPCs (2.5 � 105 cells per well)
was performed using the Lipofectamine 3000 reagent (L3000001;
Thermo Fisher Scientific, USA) in a 24-well plate. We transfected
100 ng luciferase and 10 rng Renilla luciferase (pRL-TK) plasmid
(E2241; Promega, USA) Renilla luciferase plasmid into cells and
then used the dual-luciferase report analysis system (E1910; Promega,
USA), per the instructions outlined. Quantification was performed
using a photometer (GloMax; Promega, USA), and the enzyme activ-
ities of firefly and Renilla luciferases standardized.

RNA FISH

We performed the RNA FISH assay in EPCs. Blue fluorescence (40,6-
diamidino-2-phenylindole [DAPI]) designated cell nucleus, whereas
green fluorescence (Alexa 488) designated ATF6 mRNA, and red
fluorescence (Cy-5) designated miR-31-5p. We utilized the BX53 mi-
croscope (Olympus, Tokyo, Japan) in acquiring the images. The se-
quences of primer and probe utilized are itemized in Table S2.

Immunofluorescence Staining

With the use of PBS, we washed the EPCs thrice. After that, they were
fixed using 4% paraformaldehyde for 15 min and infiltrated using
612 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
0.5% Triton X-100 for 20 min. We then blocked the cells using 1%
goat serum albumin for 1 h, followed by overnight incubation at
4�C with the primary antibodies (caspase-12, dilution 1:200; Runx2,
dilution 1:200; ATF6, dilution 1:200; CHOP, dilution 1:200; KDEL,
dilution 1:200; all from Abcam, USA). Subsequently, we incubated
the cells with the secondary antibodies for 1 h. We then used the
DAPI reagent to stain the nuclei for 5 min. Finally, the BX53 micro-
scope (Olympus, Tokyo, Japan) was utilized to acquire the images of
the sections or cells.
Sub-Endplate Injection ofMSC-Exosomes in RatModels of IVDD

We obtained 40 adult female Sprague-Dawley rats (200–250 g) from
the Laboratory Animal Research Institute of Fudan University and
kept them in a controlled environment with standard conditions,
temperature, and 12 h light and dark cycles. We randomly divided
the rats into 5 groups: control group, IVDD (no injection) group,
MSC-exosome group, antagomir-31-5p MSC-exosome group, and
the antagomir-NCMSC-exosome group. All of the rats were anesthe-
tized using isoflurane gas. We established the model of IVDD, as pre-
viously described.We chose Co7–8 coccyx intervertebral space for the
operation.With the use of the 18G needles, we punctured the tail discs
of the rats, followed by retaining the needles in the discs for 1 min.
The rats in the MSC-exosome group, antagomir-31-5p MSC-exo-
some group, and antagomir-NC MSC-exosome group were sub-end-
plate injected with MSC-exosome, antagomir-31-5p MSC-exosome,
or antagomir-NC MSC-exosome, once a week, up to 9 weeks, when
they were sacrificed.
MRI Examination

Following 9 weeks of surgery and injections, we anaesthetized all of
the rats using isoflurane gas. We selected the sagittal T2-weighted im-
ages using a 7.0-T MR (MRBioSpec70/20USR). Three orthopedic re-
searchers assessed the MRI images. We used a 5-scale grading system
in the MRI grading, per the Pfirrmann grade.
Histological Evaluation

We collected the tails of rats from five groups. After that, fixation of
the tissues in 10% neutral-buffered formalin for 1 week was conduct-
ed, followed by decalcification in EDTA for 21 days, and then they
were embedded in paraffin. Subsequently, we cut the tissues into
5 mm sections. With the use of H&E, Alcian blue, and Safranin-O
methods, we stained these sections.
Immunohistochemistry Staining

We incubated the sections with 3% hydrogen peroxide for 10 min.
Then, we washed them thrice using PBS. Next, we incubated the sec-
tions in 0.1% trypsin for 20 min, followed by washing thrice using
PBS. With the use of 1% goat serum albumin, we blocked the sections
at 37�C for 1 h, and then the primary antibodies of Runx2 (1:800 dilu-
tion; Abcam, USA) conjugated via incubation. The control group was
incubated with nonspecific immunoglobulin G (IgG). Subsequently,
we washed them thrice with PBS, and then the HRP-conjugated sec-
ondary antibody conjugated via incubation at 37�C for 1 h. Finally,
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the images of the sections were obtained using a BX53 microscope
(Olympus, Tokyo, Japan).

In Situ Apoptosis Analysis

We used the In Situ Apoptosis Detection Kit (Abcam, USA) to eval-
uate apoptosis. First, the dewaxing of the paraffin sections in xylene
was performed. Then, rehydration of the sections in graded alcohols
was done, followed by incubation with proteinase K. After that, we
added 3% H2O2 to degrade the endogenous peroxidase. With the
use of the terminal deoxynucleotidyl transferase (TdT), we labeled
the apoptotic cells. TdT catalyzed the addition of biotin-labeled deox-
ynucleotides and then incubated streptavidin- HRP conjugated via in-
cubation. We treated the positive control group DNase I and the NC
group with water instead of TdT.We used the DAB substrate to detect
the signal.

Statistical Analysis

The data were designated as the mean ± SD. We utilized the unpaired
two-tailed Student’s t test to conduct statistical analysis between two
groups. In the multiple group comparisons, we conducted one-way
analysis of variance (ANOVAs). All data were analyzed using Prism
version 8.0 (La Jolla, CA, USA) software or SPSS software version
21.0 (IBM, Armonk, NY, USA). For all analyses, p <0.05 indicated sta-
tistical significance.
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Figure S1 

 

Figure S1. Analysis of expression patterns of CD44, CD105, CD73, and CD90, and deficiency of 

CD45 and CD34 surface molecules on MSCs using Immunofluorescence or flow cytometry. 

 

Figure S2 



 

Figure S2. KEGG pathway showed that the direct effect of ATF6 was ER stress activation and 

related apoptosis pathway. 

 

Table S1. MSCs and Endplate donors used for this study. 

Donor 
ID 

Sex Age Surgery Site Site of vertebral body 
for MSCs 

Site of intervertebral disc 
for EPCs 

#1 Female 19 C4/5, C5/6  C5/6 
#2 Male 27 C4/5, C5/6, 

C6/7 
 C5/6 

#3 Male 25 C4/5, C5/6, 
C6/7 

 C5/6 

#4 Male 28 C4/5, C5/6  C4/5 
#5 Male 20 C4/5, C5/6, 

C6/7 
 C4/5 

#6 Male 23 C4/5, C5/6  C4/5 
#7 Male 21 C4/5, C5/6  C4/5 
#8 Male 21 C4/5, C5/6, 

C6/7 
 C4/5 

#9 Female 45 C4/5, C5, 
C5/6 

C5 C4/5 

#10 Female 53 C4/5, C5, C5 C5/6 



C5/6 
#11 Male 49 C3/4, C4, 

C4/5 
C4 C4/5 

#12 Female 48 C4/5, C5/6  C4/5 
#13 Male 49 C4/5, C5, 

C5/6 
C5 C4/5 

#14 Male 47 C3/4, C4, 
C4/5 

C4 C4/5 

#15 Female 47 C4/5, C5/6  C4/5 
#16 Female 59 C4/5, C5/6  C4/5 

MSCs, mesenchymal stem cells; EPCs, Endplate Chondrocytes; C, cervical vertebral body; 

 

Table S2. Sequence used in this study. 

 Sequences 
U6 Forward 5'-CTCGCTTCGGCAGCACA-3' 
U6 Reversed 5'-ACGCTTCACGAATTTGCGT-3' 
miR-31-5p Forward 5'-CGGCGGAGGCAAGATGCTGGCA-3' 
miR-31-5p Reversed 5'-CAACTGGTGTCGTGGAGTCGG-3' 
agomiR-31-5p AGGCAAGAUGCUGGCAUAGCU 
agomiR-NC UUUGUACUACACAAAAGUACU 
antagomiR-31-5p CAGCUAUGCCAGCAUCUUGCCU 
Antagomir-NC AAACAUGAUGUGUUUUCAUGAC 
ATF6-siRNA 
Sense 

AGTCGCCTTTTAGTCCGGTTC 

ATF6-siRNA 
Antisense 

CTGACTCCCAAGGCATCAAAT 

Scramble siRNA 
Sense 

ACCACAGTCCATGCCATCAC 

Scramble siRNA 
Antisense 

TCCACCACCCTGTTGCTGTA 
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