SUPPLEMENTARY MATERIAL Supplementary Table 1. Clinical outcomes and infusion parameters in published trials of gene therapy in Parkinson's disease | | Therapeutic
rationale | Trial phase,
N | Dates of inclusion | Target | | Cannula
design | Delivery
parameters
(per
hemisphere) | Maximum vector dose | Volume per
target | Infusion
rate | Clinical
outcome | References | |--------------------|---|--|---|----------------------|--|--|--|--|----------------------|---------------------------------------|---|------------| | AAV2-GAD | Correct
pathological
overactivity in
STN by
synthesis of
GABA | Phase 1,
N=12 | August
2003–August
2005
(clinicaltrials.
gov) | | Awake MAC
(MER) | Rigid glass | Single tract,
single point
fusion, CED
infusion | 5×10 ¹⁰ vg | 50 μL | 0.5 μL/min | Improved
UPDRS motor
scores (on
and off
medication) at
12 months | 17 | | | | Phase 2,
N=45 (n=22
active
treatment) | August
2008–
December
2010
(clinicaltrials.
gov) | STN bilateral | Awake MAC
(MER) | Flexible | Single tract,
single point
fusion, CED
infusion | 3.45×10 ¹⁰ vg
per STN | 34.5 μL per
STN | 0.23 μL/min | Improved
UPDRS motor
scores off
medication vs
sham surgery
at 6 and 12
months | 18,19 | | AAV2-
neurturin | Promote
survival of
dopaminergic
neurons
through
expression of
neurotrophic
factor neurturin | Phase 1,
N=12 | May 2005–
March 2007 | Putamen
bilateral | Sedation | Guide tube
with step to
smaller
cannula,
rigid | 4 tracts, 2
points per
track, hand
injection | 2.7×10 ¹¹ vg
per putamen | 40 μL per
putamen | (no rate
given; hand
injection) | Improved
UPDRS motor
scores off
medication vs
baseline; no
significant
change on
medication | 27 | | | | Phase 2,
N=58 (n=38
active
treatment) | December
2006–
November
2008 | bilateral | Deep
sedation/
general
anesthesia | Guide tube
with step to
smaller
cannula,
rigid | 4 tracts, 2
points per
track, hand
injection | 2.7×10 ¹¹ vg
per putamen | | 2 μL/min | No significant
change in
UPDRS motor
scores (on-
and off-
medication) vs
sham surgery
at 12 months | 26 | | | | | September
2009–March
2018
(estimated
completion | and | Deep
sedation/
general
anesthesia | smaller cannula, rigid | point per
tract;
SNc: 1 tract, | per | 150 µL per
putamen;
30 µL per
substantia
nigra | Putamen
3 μL/min;
substantia
nigra
2 μL/min | Trial focused
on safety;
small
decreases in
UPDRS motor
scores off
medication but
minimal
statistical
analysis | 30 | |--------------------------------|---|------------------|---|-----|--|------------------------|--|---|--|---|--|-------| | | | | as per
clinicaltrials.
gov – same
NCT# for
both trials) | | General
anesthesia | smaller cannula, rigid | SNc: 1 tract, | per putamen;
2×10 ¹¹ vg
per | 150 µL per
putamen;
30 µL per
substantia
nigra | Putamen
3 µL/min;
substantia
nigra 2
µL/min | No significant
difference vs
sham surgery
in UPDRS
motor score
(off
medication) at
minimum 15-
month follow-
up | 31 | | Lentiviral
TH, AADC,
CH1 | Expression of
rate-limiting
enzymes for
local dopamine
synthesis from
tyrosine in
putamen | | January
2008–August
2011 | , | General
anesthesia | stainless
steel | All putamen; cohort 1: 4 tracts, multiple points/tract; cohort 2a: 5 tracts, multiple points/tract; cohort 2b/3: 3 tracts, 1 point/tract | 5×10 ⁷ transducing units per putamen | Not stated | 1–3 μL/min | Significant improvement in UPDRS motor scores off medication at 6 and 12 months, but no dose-dependent effect between cohorts with different dosing levels | 23,24 | | AAV2-
hAADC | | Phase 1,
N=10 | November
2004–March
2013 | | Sedation | rigid | 2 tracts,
single
point/tract,
CED infusion | per putamen | 100 μL per
putamen | 1 μL/min | Improved
UPDRS motor
scores off
medication
(but not on
medication) at
6 months | 20,21 | | | • | Phase 1,
N=6 | Unknown
(not listed in
article and | , | Unknown | Step design, rigid | 2 tracts,
single | 1.5×10 ¹¹ vg
per putamen | 100 µL per
putamen | 1 μL/min | Improved
UPDRS motor
scores off | 22 | | | | | not listed in
clinicaltrials.
gov;
Japanese
trial) | | | | point/tract,
CED infusion | | | | medication
(but not on
medication) at
6 months | | |---------------|--|-------------------------------------|---|-----------------------|-----------------------|--------------------------------------|--|--|-------------------------|------------|---|----| | VY-
AADC01 | | Phase 1
(PD-1101),
N=15 | October
2013–
(ongoing) | Putamen,
bilateral | General
anesthesia | rigid | single or | 2.3×10 ¹² vg
per putamen | | ≤30 µL/min | Dose-
dependent
improvements
in UPDRS
motor scores
(on and off
medication) up
to 36 months | 46 | | | | Phase 1
(PD-1102),
N=8 | May 2017–
(ongoing) | Putamen,
bilateral | General
anesthesia | rigid | Single tract,
continuous
iMRI CED
infusion with
progressive
advancement | | ≤1800 µL
per putamen | ≤30 µL/min | Outcomes
data not yet
available | 54 | | AAV2-
GDNF | Promote
survival of
dopaminergic
neurons
through
expression of
neurotrophic
factor GDNF | Phase 1,
N=13 (early
closure) | May, 2012–
(ongoing;
enrollment
halted but
follow-up
continuing) | Putamen,
bilateral | General
anesthesia | Step design,
rigid
(SmartFlow) | 2 trajectories,
single point
iMRI CED
infusion | 9×10 ¹¹ vg
per putamen | 450 µL per
putamen | 1–5 μL/min | No changes in
UPDRS motor
scores | 45 | AADC, L-amino acid decarboxylase; AAV2, AAV serotype 2; CED, convection-enhanced delivery; CH1, cyclohydrolase 1; GABA, γ-aminobutyric acid; GAD, glutamic acid decarboxylase; GDNF, glial cell line-derived neurotrophic factor; hAADC, human AADC; iMRI, intraoperative magnetic resonance imaging; MAC, monitored anesthesia care; MER, microelectrode recording; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; TH, tyrosine hydroxylase; UPDRS, Unified Parkinson's Disease Rating Scale; vg, vector genome.