

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users – Protocol for a randomized controlled trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040727
Article Type:	Protocol
Date Submitted by the Author:	20-May-2020
Complete List of Authors:	Hansen, Rasmus; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology; Professionshojskolen University College Nordjylland, Research and Innovation Samani, Afshin; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology Laessoe, Uffe; Professionshojskolen University College Nordjylland, Physiotherapy; Professionshojskolen University College Nordjylland, Research and Innovation Handberg, Aase; Aalborg University Hospital, Clinical Biochemistry; Aalborg Universitet, Clinical Medicine Larsen, Ryan; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology
Keywords:	REHABILITATION MEDICINE, Physiology < NATURAL SCIENCE DISCIPLINES, Coronary heart disease < CARDIOLOGY, Neurological injury < NEUROLOGY, PUBLIC HEALTH, ULTRASONOGRAPHY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3						
4	1	Cover Letter				
5 6						
7	2	Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured				
8 9	3	wheelchair users – Protocol for a randomized controlled trial				
10 11	4	Version: 1.0. Date: 20.05.2020.				
12 13 14	5	Dear Madam/Sir,				
15	6	We hereby submit this protocol manuscript for consideration for publication in BMJ Open because we think				
16 17	7	this study protocol is relevant to the focus of your journal.				
18	8	This research will determine if upper-body rowing, complying with the new exercise training guidelines (30				
19 20	9	minutes of moderate-to-vigorous intensity aerobic exercise, three times a week), is feasible and effective in				
21	10	reducing cardiometabolic risk in the spinal cord injured population. The results from this study will therefore				
22 23	11	provide novel information that can inform future intervention studies in spinal cord injured individuals.				
24 25	12	Recruitment of participants are planned to be commenced in September 2020.				
26 27	13	On behalf of all authors, I, as a corresponding author, hereby declare that 1) the submitted manuscript have				
28	14	not been published elsewhere or are not being considered for publication elsewhere; and 2) the research				
29 30	15	reported will not be submitted for publication elsewhere until a final decision has been made as to its				
31	16	acceptability in the BMJ Open.				
32 33						
34	17					
35 36	18	Yours sincerely				
37 38	19	acceptability in the BMJ Open. Yours sincerely Rasmus Kopp Hansen, PhD student, MSc				
39 40	20					
41 42	21	Rasmus Kopp Hansen, MSc ^{1,2} rkopp@hst.aau.dk, https://orcid.org/0000-0001-8515-8779				
43 44	22	Afshin Samani, PhD ¹ afsamani@hst.aau.dk, https://orcid.org/0000-0001-6119-8231				
44 45	23	Uffe Laessoe, PhD ² <u>ufl@ucn.dk</u> , <u>https://orcid.org/0000-0001-5388-1671</u>				
46 47	24	Aase Handberg, DMSc, MD ^{3,4} aaha@rn.dk, https://orcid.org/0000-0001-5719-203X				
48	25	Ryan Godsk Larsen, PhD ¹ rl@hst.aau.dk, https://orcid.org/0000-0002-4622-1453				
49 50	26					
51 52	27	¹ Department of Health Science and Technology, Sport Sciences – Performance and Technology, Aalborg				
53	28	University, Aalborg, Denmark				
54 55	29	² Department of Physiotherapy / Research and Innovation, University College of Northern Denmark,				
56	30	Aalborg, Denmark				
57 58	31	³ Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark				
59 60						

2 3		
4 5	32	⁴ Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
6 7	33	
8 9	34	Keywords
10 11	35	Spinal cord injuries; Exercise; Rowing; Cardiovascular; Risk factors; Metabolic health; Shoulder pain;
12	36	Physical activity; Inflammation; Aerobic capacity
13 14 15	37	
16 17	38	
18 19	39	Type of article: Protocol
20 21	40	Word count main text: 5881
22 23 24	41	Number of tables and figures: 1 figure.
24 25 26	42	Number of references: 104
27 28 20	43	Number of references: 104
29 30	44	
31 32 33	45	
34 35	46	
36 37	47	
38 39 40	48	
41 42	49	
43 44 45	50	
46 47	51	
48 49	52	
50 51 52	53	
52 53 54	54	
55 56	55	
57 58		
59		
60		

2 3							
4 5	56	Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord					
6 7	57	injured wheelchair users – Protocol for a randomized controlled trial					
8 9	58	Rasmus Kopp Hansen, MSc ^{1,2} , Afshin Samani, PhD ¹ , Uffe Laessoe, PhD ² , Aase Handberg, DMSc, MD ^{3,4} ,					
10 11	59	Ryan Godsk Larsen, PhD ¹					
11 12 13 14 15 16	60						
	61	¹ Department of Health Science and Technology, Sport Sciences – Performance and Technology, Aalborg					
	62	University, Aalborg, Denmark					
17 18	63	² Department of Physiotherapy / Research and Innovation, University College of Northern Denmark,					
19	64	Aalborg, Denmark					
20 21	65	³ Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark					
22 23	66	⁴ Department of Clinical Medicine, Aalborg University, Aalborg, Denmark					
24	67	Corresponding author:					
25 26	68	Rasmus Kopp Hansen, MSc.					
27 28	69	Department of Health Science and Technology, Sports Sciences – Performance and Technology					
29	70	Aalborg University					
30 31	71	Niels Jernes Vej 12, A5-209					
32	72	DK-9220 Aalborg					
33 34	73	Denmark					
35 36	74	Aalborg University Niels Jernes Vej 12, A5-209 DK-9220 Aalborg Denmark Telephone: +4520892317					
37 38	75						
39 40	76						
	77						
45 46 47 48 49 50 51 52	78						
	79						
	80						
	83						
58 59 60	84						

52 113

ABSTRACT

Introduction

Cardiovascular and metabolic diseases are a growing concern for spinal cord injured (SCI) individuals. Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in SCI individuals. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 minutes of moderate-to-vigorous intensity aerobic exercise, three times a week, for improvement in cardiometabolic health in SCI individuals. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12-weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (e.g. vascular structure and function) cardiometabolic risk factors in SCI manual wheelchair users.

Methods and analysis

A randomized controlled trial will compare 12-weeks of upper-body rowing exercise, 30 minutes three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 12 weeks of training (post), and 6 months after the termination of the 31 101 intervention period (follow up). Outcomes will include inflammatory and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood 34 103 pressure, cardiorespiratory fitness level, brachial artery vascular structure and function, and autonomic ₃₆ 104 nervous system function.

Ethics and dissemination 38 105

This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the 41 107 Committees on Health Research Ethics in The North Denmark Region (Journal-nr. N-20190053). The 43 108 principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication. 46 110

48 111 **Trial registration number**

₅₀ 112 NCT04390087.

⁵⁴ 114 **ARTICLE SUMMARY**

56 115 Strengths and limitations of this study

1 2		
3 4 116 5 117	• The frequency, duration and intensity of the exercise intervention follows recently published exercise recommendations for SCI individuals.	
7	 This study uses a randomized controlled design to examine the effects of a novel exercise modali 	4 -
8 118 9 119	• This study uses a randomized controlled design to examine the effects of a novel exercise modal on both traditional and novel cardiometabolic risk factors.	ιy
10		
11 120 12 121	• The exercise modality (upper-body rowing) includes not only an aerobic component, but also an	
12 13	element of resistance training for the posterior shoulder region, potentially ameliorating shoulder	
14 122 15	pain.	
16 123	• Lack of control of food intake is a study limitation.	
17 18 124		
19		
20 125		
21 22 126		
23		
24 127 25		
²⁶ 128		
27 28 130		
29 129		
30 31 130		
32		
33 131 34		
³⁵ 132		
36		
37 38 133		
39 40 134		
41		
42 135 43		
⁴⁴ 136		
45		
46 47 137		
48 49 138		
50		
51 139 52		
53 140		
54		
55 56 141		
57 58 142		
58 ±+2 59		
60		

5 6

7 8

9

27

40

143 **INTRODUCTION**

Spinal cord injured (SCI) wheelchair users are placed at the lowest end of the fitness continuum¹. Thus 144 cardiovascular disease and metabolic dysfunction is a growing concern in this population ^{2,3}. In recent years, 145 10 146 cardiovascular disease has emerged as the leading cause of mortality in chronic SCI individuals ⁴. Factors 11 147 contributing to high cardiometabolic morbidity and mortality in the SCI population are sedentary lifestyle 12 and low physical activity level 5, and the ensuing negative influence on body composition, reflected by lower 13 148 14 15 149 fat-free mass and larger amount of adipose tissue ⁶. Explanations for the adoption of a sedentary lifestyle are 16 150 multifactorial, but studies have identified intrapersonal and socio-environmental physical activity barriers in 17 18 ¹⁵¹ SCI wheelchair users ^{7–9}. Some barriers such as the intrapersonal barriers of lack of time¹⁰ or energy¹¹ ¹⁹ 152 identified by individuals with mobility disabilities are consistent with those reported in the non-disabled 20 21 153 population. Other barriers are specific to the mobility disabled individuals, such as organizational or ²² 154 structural barriers (e.g. lack of accessible fitness centers7 and adaptive exercise equipment8) and community 23 24 155 built environment barriers¹². Consequently, new approaches to support the initiation and perseverance of 25 26 156 physical activity in this population are required.

The majority of previous exercise intervention studies have used isolated aerobic exercise, often in the form 28 157 ²⁹ 158 30 of arm-cranking exercise ¹³. These studies have demonstrated improvements in traditional risk factors for cardiometabolic diseases, such as high-density cholesterol (HDL-C)¹⁴, fasting insulin¹⁵, and indices of 31 159 32 160 insulin resistance ¹⁶, whereas the effects on arterial blood pressure ¹⁷, blood lipids (e.g. low-density 33 34 161 cholesterol (LDL-C) and triacylglycerol) are inconclusive ^{15,18,17}. Moreover, the effects of exercise 35 ₃₆ 162 interventions on body composition are generally lacking ¹⁹. The explanation for the lack of an exercise effect ³⁷ 163 on some of these risk factors is not clear, but could be related to insufficient volume ^{15,17} or intensity ¹⁹ of 38 exercise, performed with limited amount of skeletal muscle mass. 39 164

41 165 Notably, in able-bodied individuals, the exercise-induced risk reduction in cardiovascular diseases cannot be 42 43¹⁶⁶ fully explained by traditional risk factors (i.e. there is a risk factor gap)²⁰. As a consequence, studies have ⁴⁴ 167 started to focus on the effects of exercise on changes in the vascular wall ²⁰. It is known that dysfunction of 45 46 168 the vascular endothelium occurs at the very early phases of atherosclerosis ²¹. For instance, flow-mediated 47 48 169 dilation (FMD), a non-invasive measure of nitric oxide (NO) dependent endothelial function ²², is a strong predictor of future cardiovascular events ²³. In addition, carotid intima media thickness (IMT), a measure of 49 170 50 50 51 171 vessel wall thickness ²⁴ has shown to be associated with future vascular events, such as the occurrence of 52 172 stroke and myocardial infarction ²⁴. Accumulating evidence in able-bodied demonstrates beneficial effects of 53 54 173 exercise on structural and functional adaptations of the vasculature ²⁵. However, little is known about the ⁵⁵ 174 56 effects of exercise on the vasculature in the SCI population.

57 175 Reductions in femoral artery (lower body) diameter occurs rapidly in response to extreme inactivity, as 58 59 176 59 observed within three weeks off acquiring a SCI ²⁶. De Groot et al. ²⁷ found similar FMD in the brachial

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 artery among untrained SCI when compared to able-bodied individuals, however when FMD was normalized 177 5 178 to the shear stress stimulus, the dilation response was reduced in the SCI group, indicating some degree of 6 7 endothelial dysfunction in this population ²⁸. Other observational studies have demonstrated both larger 179 8 9 conduit artery diameter and blood flow in the subclavian artery ²⁹, and larger brachial diameter ²⁷ in 180 10 ₁₁ 181 wheelchair athletes compared to non-athlete able-bodied controls. Together these findings indicate that ¹² 182 remodeling of the vasculature also occurs in response to regular exercise in SCI wheelchair users. However, 13 the causal link between adaptations of the upper body arteries and repetitive exercise stimulus in SCI is not 14 183 15 184 fully established. Therefore, the relationship between exercise and vascular remodeling in wheelchair users 16 17 185 needs to be determined through controlled exercise studies. A recent experimental study consisting of 18 .3 19 186 supervised aerobic exercise (20min, twice per week), adhering to the earlier exercise guidelines for SCI 20 187 adults ³⁰, was successful in improving measures of cardiorespiratory fitness and muscle strength ³¹. Yet, 21 ₂₂ 188 Zepetnek et al.¹⁷ demonstrated that this exercise paradigm (20min, twice per week) did not improve markers ²³ 189 of cardiovascular disease risk, including carotid IMT and brachial FMD. Recent guidelines recommend at 24 25 190 least 30 min of moderate-to-vigorous intensity aerobic exercise, three times per week in order to improve 26 27 191 cardiometabolic health in SCI wheelchair users ³², suggesting that insufficient exercise stimuli may explain 28 192 the lack of vascular adaptations in the study by Zepetnek et al. ¹⁷. Notably, to date, no studies have examined 29 ₃₀ 193 the effects of the updated exercise guidelines (30 min of moderate-to-vigorous intensity aerobic exercise, ³¹ 194 three times per week) on vascular adaptations in SCI manual wheelchair users. 32

33 195 While isolated aerobic exercise, via arm-cranking or wheelchair ergometry, evokes positive effect on 34 35 196 cardiorespiratory fitness, these modalities/types of exercises fail to address the importance of strengthening 36 37 197 the posterior shoulder musculature of the upper-extremity ³³. In addition, these modalities use repetitive ³⁸ 198 contractions of the shoulder musculature engaged in daily wheelchair propulsion activities, thereby 39 increasing the risk of developing shoulder pain ^{34–36}. Studies have reported high prevalence of shoulder pain 40 199 41 200 in long-term wheelchair users ^{37,38}, which prevents these individuals from engaging in physical activity ³⁹. As 42 wheelchair users rely on their upper-extremities for most daily activities, upper-extremity pain must be 43 201 44 45 202 prevented or limited to preserve function, independence and quality of life (QOL)^{16,40}. Indeed, health related 46 203 QOL is lower in SCI adults compared with the able-bodied population ^{41,42}. The development of shoulder 47 48 204 pain has been suggested to occur due to chronic overuse, shoulder strength imbalances between anterior and ⁴⁹ 205 posterior musculature, postural changes and impingement syndrome ^{43–45}. Considering the general need for 50 51 206 strong upper extremities to bear weight during different transfer tasks ⁴⁶, to propel wheelchair ⁴⁷, and to reach ⁵² 207 overhead levels ⁴⁸, the inclusion of resistance training in exercise training paradigms seems prudent. One 53 54 208 modality that combines aerobic and resistance components is rowing ⁴⁹. Specifically, it has been shown that 55 56 209 wheelchair user-modified upper-body rowing ergometry challenges the cardiovascular system comparable to 57 210 arm-cranking ³⁴. Additionally, upper-body rowing mirrors the muscle activation observed during traditional 58 59 211 resistance training for the scapular retractors ⁵⁰. Earlier research has demonstrated beneficial effects of

60

Page 9 of 39

BMJ Open

1	
2	
3	
4	
5	21
6	21
7	
	21
8	
9	21
10	21
11	
12	21
13	
14	21
15	
16	21
17	
18	22
19	22
20	
21	22
21 22 23 24 25 26 27 28 29 30 31 32 33	
22	22
2J 74	22
24 25	
25	22
20	
27	าา
28	22
29	
30	22
31	
32	22
33	22
34	22
35	23
36	
37	23
	23
38 39	25
40	23
41	
42	23
42 43	23
	23
44	23
45	
46	23
47	23
48	25
49	23
50	
51	_
52	24
53	24
54	24
55	24
56	24

resistance training of the posterior shoulder and scapular retractor musculature on shoulder pain ^{40,48,51}. Thus, 2 the use of upper-body rowing ergometry may evoke positive effects on both cardiometabolic health and .3

.4 shoulder pain, the latter through alterations in posterior vs. anterior upper-body muscle strength balance.

However, to date, no studies have implemented upper-body rowing ergometry as exercise modality in .5

6 manual wheelchair users.

7

Objectives .8

9 The primary objective of this study is to determine the effects of 12-weeks of wheelchair user-modified 0 upper-body rowing on both traditional (insulin resistance, obesity, dyslipidemia (including low HDL-C and 1 elevated triglycerides, and blood pressure) and novel (inflammatory status, autonomic nervous system 2 function, vascular structure and function, and cardiorespiratory fitness level) cardiometabolic risk factors in 3 SCI manual wheelchair users. As secondary objectives, we will investigate the effects of the exercise .4 intervention on free-living physical activity, shoulder pain, indices of QOL, and feasibility of the 25 intervention.

METHODS AND ANALYSIS 6

27 Study design

8 A randomized controlled trial designed to determine the effects of 12 weeks of exercise training on 9 cardiometabolic risk, indices of QOL, and shoulder pain, will be conducted in accordance with the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement ⁵². The trial is registered as a 0 1 controlled trial (NCT04390087). The study overview is presented in Figure 1. After giving written informed 2 consent to participate in the study, participants will undergo baseline testing, after which they will be 3 randomly assigned to either a control group or an exercise group (allocation ratio, 1:1), stratified for age and 4 gender. Randomization will be conducted using a computer-generated random number sequence 5 (https://www.randomizer.org/). Outcome measurements will be performed immediately before (baseline), 6 after 12 weeks of training (post), and 6 months after the termination of the intervention period (follow up). 57 This approach allows for assessment of the short term effects of exercise training as well as any residual 8 effects from the training intervention on cardiometabolic risk, shoulder pain, indices of QOL, and free-living 9 physical activity (i.e. leisure-time physical activity and activities of daily living ⁵³).

0 **Participants**

1 Inclusion criteria

Men and women; aged 18-65 years; chronic SCI (≥ 1 year since injury); individuals with sufficient sparing of 2 57 243 arm function to participate in upper-body rowing (i.e. as a minimum excluding individuals with complete 58 244 SCI at or above C5); using a manual wheelchair as a primary tool for mobility. Volunteers will be asked to 59 60

self-report SCI level and completeness and to provide a copy of the part of their medical records that confirm 245 injury level and American Spinal Injury Association (ASIA) impairment scale classification before any 246 247 measurements are commenced. As part of the screening, participants will also be asked to indicate smoking 248 habits, known medical issues, diseases or use of medication that could affect metabolism (e.g. statins or ₁₁ 249 metformin) or the cardiovascular system (e.g. diuretics, beta blockers, or angiotensin-converting enzyme 250 inhibitors).

251 Exclusion criteria

5

6 7

8 9

10

12

13 14

15 16

18

19

21

22

24

26

₁₇ 252 Individuals who regularly engage in >150 min/week of moderate-to-vigorous intensity physical activity; 253 have received a cortisone injection in the shoulder within the last four months; have had shoulder injury within the previous year; known medical issues (urinary tract infections, cardiovascular contraindications for 20 254 255 exercise testing, and pressure sores); diagnosed diabetes or any other disease that may limit the ability to 23 256 perform exercise.

²⁵ 257 Recruitment

27 258 Participants will be recruited through notices at Aalborg University, websites seeking volunteers for research 28 259 studies (e.g., www.forsog.dk), organizations related to disability and SCI, including the Spinal Cord Injured 29 30 260 in Denmark organization, physician clinics, wheelchair manufacturing company (Wolturnus A/S) and local 31 32[']261 community groups. Information on websites, social media, posters, flyers will be used to reach potential ³³ 262 participants. This kind of participant recruitment can be considered passive since the participants have to 34 35 263 choose to react on the study information⁵⁴. This approach increases the risk of over representing individuals 36 264 who are interested in the research area⁵⁴. Considering this risk of selection bias, physician clinic visits from 37 38 265 the principal investigator (i.e. active recruitment) will be used as an additional strategy to reach potential 39 40 266 39 participants. For this study, 30 participants will be recruited. The sample size is based on the effect size 41 267 (Cohen d: -0.69) for changes in fasting insulin after 6 weeks of arm-cycling exercise ¹⁵. With a power of 0.9, 42 43²268 and an alpha level of 0.05, 20 participants in total are required to detect a significant change. To account for ⁴⁴ 269 drop-outs during the 12 week intervention, as well as potential drop-outs in the control group, 30 participants 45 will be included in the project, with n=15 allocated to the control and exercise group, respectively. 46 270

48 271 Intervention 49

₅₀ 272 Exercise group

52 273 Volume, intensity and frequency of the intervention is based on recent exercise recommendations for SCI 53 54 274 individuals ³². Consequently, the training will be performed for 30 min, 3 times per week with moderate-to-55 275 vigorous intensity, with at least one rest day between sessions. Low compliance rate is a general issue in SCI 56 ₅₇ 276 exercise studies ⁵⁵. Compared with continuous exercise, interval-based exercise have been reported to elicit ⁵⁸ 277 higher enjoyment in SCI individuals ⁵⁶, which may increase exercise compliance. Considering this difference 59

47

BMJ Open

60

between continuous and interval-based exercise, the target duration of 30 min will be reached through 278 279 accumulation of 5-min bouts (up to 6 bouts), with 1-2 min of rest between each bout. Due to the training 280 status of the participants, it is expected that some participants will not be able to exercise for 30 min with the 281 intended intensity. Accordingly, exercise duration will be tailored to each participant's physical capacity ⁵⁷ by gradually increasing the duration (i.e. the number of 5-min bouts) over the weeks towards the targeted 30 min (i.e. six * 5-min bouts). Exercise intensity will be prescribed based on rating of perceived exertion (RPE) corresponding to 12-15 on the 'Borg 6-20 RPE Scale ^{58,59}. The validity of using RPE to control 285 moderate and vigorous exercise intensity has been demonstrated in SCI individuals ⁶⁰. During the first visit, participants will be familiarized with the RPE scale ⁶¹ and receive detailed instructions on the use of RPE and 287 how to rate the overall exertion based on an integration of central and peripheral sensations of effort ⁶⁰. Some controversy exists about the validity of using overall RPE to monitor exercise intensity ^{61,62}, as the relationships between overall RPE and objective physiological markers such as oxygen consumption (VO₂), heart rate (HR) and ventilation (VE) in SCI individuals have been questioned ⁶². This have led some researchers to use a differentiated RPE scale that distinguishes between central (cardiorespiratory sensations) and peripheral (peripheral working limbs) sensations ⁶³. However, the current evidence does not indicate greater validity for differentiated RPE compared with overall RPE ⁶¹, and therefore overall RPE will be used to guide exercise intensity.

Each training session will consist of aerobic exercise performed on a wheelchair-modified upper-body
rowing ergometer (Concept 2, Morrisville, Vermont, USA). Due to the pulling motion of the upper-body
during rowing, this modality also includes a component of resistance exercise ⁴⁹. The modification of the
ergometer is made by separating it into two parts using an Adapt2row¹, allowing the participants to sit in
their wheelchair while performing upper-body rowing. Wedges will be positioned under the rear wheels to
keep the wheelchair in place. Further, in case of SCI related insufficient innervation of torso musculature,
straps will be wrapped around the back of the wheelchair and around the trunk of the participant, thereby
securing the participant to the wheelchair. A pilot study ³⁴ has provided promising results regarding the
feasibility of using adaptive upper-body rowing exercise in the SCI population. Participants will be asked to
empty their bladder before each training session. Average power output (W) will be recorded during each
exercise session to monitor training load and quantify progress in work capacity.

All exercise sessions will be supervised by the principal investigator, who is an exercise physiologist, or by sport science students to ensure proper assistance and guidance of the participants. Everyone involved in supervision will be thoroughly instructed in how to supervise correct exercise technique, and they will receive general knowledge about SCI and wheelchair use. To allow for some flexibility regarding scheduling conflicts, participants will have opportunity to exercise 2-4 days per week, with a target of 3 days per week.

¹ <u>http://www.adapt2row.com/</u>

That is, in case of a missing session one week, an additional training session can be included the following 311 week. However, to secure adequate recovery, no more than four training days per week will be allowed. The 312 intervention will be terminated after 12 weeks, irrespective of any missing training sessions. 313

10 314 *Control group*

5

6 7

8 9

11

13

14

16

19 20

21

23

28

31

33

34

39

⁴¹ 333 42

The participants allocated to the control group will be asked to maintain their normal lifestyle throughout the 12 315 316 intervention period. When the 6-months follow-up testing has been terminated, the control group will receive 15 317 information about the exercise guidelines and the benefits of physical activity. Additionally, if requested, the ₁₇ 318 principal investigator will organize contact to facilities where participants in the control group can perform ¹⁸ 319 adapted rowing.

320 Main trial day protocol

²² 321 The experimental procedures will be similar at baseline, post intervention, and at follow-up 6 months later. 24 322 To account for within-day variation, the procedures will be performed at the same time of day for each 25 26 323 participant. Participants will arrive at the exercise laboratory at Aalborg University for testing. Participants 27 324 will be asked to refrain from any strenuous exercise (>24 h), caffeine, alcohol, polyphenols, vitamin C, and 29 325 supplements known to affect the cardiovascular system (>12 h), and attend in a fasted (>6 h) state. 64 Any ³⁰ 326 smokers must abstain from smoking for >6 h prior to each visit ⁶⁴. If participants are taking medication, a 32 327 wash-out period of at least 4-5 times the half-life of the drug (typically 24-48 h) will be used. If a drug 328 cannot be withdrawn due to health issues, testing will be performed after a consistent time period after intake, as recommended for studies examining vascular function ^{64,65}. On trial days, participants will receive 35 329 30 37 330 a standardized snack (energy bar) after completion of the FMD measurement. Participants will be asked to 38 331 empty their bladder before any testing is commenced, and are allowed to drink water ad libitum during the 40 332 test days.

43 334 **INSERT FIGURE 1**

44 335 **Blood collection procedure** 45

⁴⁶ 336 After an overnight fast (i.e. \geq 10 hours of fasting), participants will have approximately 20 mL blood drawn 47 from a peripheral vein. Blood samples will be aliquoted and stored at -80° at the Department of Clinical 48 337 49 338 Biochemistry, Aalborg University Hospital, until analyses. Blood samples will be analyzed for indicators of 50 51 339 cardiometabolic health (markers of glucose homeostasis, dyslipidemia, non-alcoholic fatty liver disease 52 52 53 340 (NAFLD), and prothrombotic risk) as well as inflammatory markers (pro- and anti-inflammatory markers). ⁵⁴ 341 Blood sampling will be conducted within a week prior to commencing the intervention (baseline), between 55 56 342 36 and 60 hours after the last exercise session (post) to minimize any effects from the last exercise session, ⁵⁷ 343 and 6 month after the termination of the intervention (6-months follow-up). 58

1 2 3 4 344 5 6 345 7 8 346 9 10 347 11 12 348 13 14 349 15 16 ₁₇ 350 18 351 19 20 352 21 353 22 23 ₂₄ 354 25 26 355 27 28 356 29 357 30 ₃₁ 358 ³² 359 33 34 360 35 361 36 37 362 30 39 363 38 40 364 41 42 365 43 366 44 45 367 46 ⁴⁷ 368 48 49 369 50 51 370 50 52 371 53 ₅₄ 372 ⁵⁵ 373 56 57 374 58

344 Outcome measures

345 Primary outcome

The primary outcome is fasting insulin, since it is one of the hallmarks of the metabolic syndrome ^{66,67}, and has shown to be modifiable with exercise training in SCI individuals ¹⁵.

² 348 Secondary key outcomes

349 Arterial blood pressure (BP) and resting heart rate (HR)

After resting for 10 min, participants will have their resting systolic and diastolic BP and HR measured with an automated BP monitoring device (OMRON M6, OMRON Healthcare, Hoofddorp, Netherlands). Measurements will be performed twice, with participants in sitting position. The lowest values will be used for further analyses.

354 Body composition

Participants will have their body mass measured while sitting in their wheelchair (wearing light clothing) using a platform wheelchair scale (Detecto ® 6550 wheelchair scale, Webb City, MO, USA). Body mass will be derived by subtracting the weight of the wheelchair from the total mass and rounded to the nearest 0.1 kg ⁶⁸. Supine height (cm) will be measured in supine position using non-elastic tape. For participants with contractures precluding stretching of the legs, length will be measured in segments from heel to top of the skull ⁶⁹. Body mass index (BMI) will be calculated as weight (kg) divided by height squared (m²). Waist circumference and waist-to-hip circumference ratio will be used as a surrogate for visceral adiposity ^{68–70}. Participants will have their waist and hip circumference measured in supine position following a deep expiration. Waist and hip circumference will be measured immediately below the lowest rib ⁶⁹ and widest part of the trochanters ⁷⁰, respectively. For all circumference measurements, the tape will be placed directly on the skin with the participants arms by the side ⁶⁹. Anthropometric measures will be taken in duplicate (height, waist and hip circumference), rounded to the nearest 0.1 cm and reported as the mean. If the difference between the first and second measure is >0.1 cm, a third measure will be obtained. ⁶⁹

⁷ 368 *Autonomic nervous system function*

Increasing evidence suggest that autonomic dysfunction accentuates the risk for adverse cardiovascular events ⁷¹. Individuals with SCI are prone to autonomic disturbances as a consequence of disruption to the spinal cord ⁷², placing them at increased risk for autonomic related cardiovascular diseases. Participants will be equipped with a 4-lead surface electrodes on their chest and have their electrocardiogram (ECG) recorded during 5 min of quiet rest. Heart rate variability analyses of the ECG will be used to assess autonomic function ^{71,73}..

59 375 Vascular structure and function60

3 4 376 After a rest period of 10-15 min in a quiet and darkened room, vascular structure and function will be 5 evaluated non-invasively using ultrasonography (LOGIQ S8 XDclear, GE Healthcare) following recent 377 6 7 guidelines on assessment of conduit ^{64,74} and resistance ⁶⁵ vessel function. Conduit artery structure will be 378 8 9 determined in the common carotid artery (CCA) and brachial artery (BA) with B-mode echoes using a 10 379 10 ₁₁ 380 MHz multifrequency linear assay ultrasound probe. Measures of CCA and BA structure will be reported as 12 381 intima media thickness (IMT) (mm), lumen diameter (mm), and wall-to-lumen ratio. The B-mode image will 13 14 382 be optimized by changing depth and resolution, and will be kept constant between study visits. 15 383 To assess BA and resistance vessel function, endothelial dependent flow-mediated dilation (FMD) and 16 17 384 reactive hyperemia will be determined by cuff occlusion followed by re-perfusion ²². First, participants will 18 19 385 have their baseline BA diameter measured for a period of 30 s. Then, a cuff placed distally on the forearm 20 386 (i.e. distal to the ultrasound probe) will be inflated for 5 min up to a pressure that exceeds systolic BP by >5021 ₂₂ 387 mmHg. After 5 min, the cuff will be deflated and post-deflation diameter and blood velocity will be ²³ 388 continuously recorded for 3 min ⁶⁴. For determination of FMD, both absolute (mm) and relative (%) change 24 25 389 in diameter from baseline to post-deflation will be calculated. Given the importance of shear stress as the 26 27 390 stimulus for the FMD response ⁷⁵, continuous and simultaneous measurement of pulse-wave velocity 28 391 (Doppler) and diameter (B-mode) using duplex ultrasound will be performed. This allows for an estimation 29 29 30 392 of the shear stress stimuli through the calculation of shear rate, which then can be used to normalize the 31 393 FMD response ⁷⁶. Because the error of the insonation estimation increases exponentially with angles $>60^{\circ 77}$, 32 33 394 an insonation angle of $<60^{\circ}$ will be used, with the sample volume adjusted to cover the total width of the 34 395 vessel. 35

Resistance vessel function will be determined by the magnitude of the reactive hyperemic response to cuffinduced ischemia. Several measures obtained from the reactive hyperemic response will be reported, including absolute blood flow (calculated based on the diameter derived cross sectional area and blood velocity) and velocity, peak change in blood flow, and blood flow area under the curve (AUC) across the post-deflation time period.

Although related, the measure of reactive hyperemia mirrors the magnitude of downstream resistance artery
 dilation, whereas FMD represent conduit artery dilation ⁶⁵.

49 403 To ensure that the same part of the CCA and BA will be insonated across study visits, anatomical landmarks
50 51 404 will be identified and recorded together with a photo of the insonation sites. All insonation settings
52 405 (including sample volume, insonation angle, and recording time) and occlusion procedure (including cuff53 406 position, pressure and duration) will be held consistent within participants across study visits. For
55 407 standardization, the same investigator will perform all measurements and all analyses (blinded to the identity
57 408 of the data).

59 409 *Metabolic and inflammatory profile*60

1 2

44

48

Page 15 of 39

BMJ Open

⁴ 410 The metabolic and inflammatory profile will be assessed via measures of glycemic control (fasting glucose,
⁶ 411 long-term blood glucose (HbA1c, glycosylated hemoglobin), homeostatic model assessment of insulin
⁷ 412 resistance (HOMA-IR)), lipid profile (HDL-c, LDL-c, total cholesterol and triglycerides (TG)), pro⁹ 413 inflammatory (C-reactive protein (CRP), interleukin (IL) 6, tumor necrosis factor-alpha), anti-inflammatory
¹⁰ (IL-10, IL1RA)), prothrombotic (PAI-1), markers of NAFLD (hepatic enzymes (alanine-aminotransferase
¹² 415 (ALT) and aspartate-aminotransferase (AST)), growth differentiation factor 15 (GDF15) and fibroblast

14 416 growth factor 21 (FGF21)).

16 417 *Cardiorespiratory fitness level*

18 418 Cardiorespiratory fitness level will be determined through an incremental arm-cranking test to exhaustion, 19 419 with peak oxygen consumption (VO_{2peak}) as the outcome measure. The placement of the ergometer (Monark 20 21 420 881E, Vansbro, Sverige) will be adjusted such that the participants shoulder joint is aligned with the crank 22 22 23 421 axis with the elbows slightly bend. Participants will be equipped with a HR monitoring belt (Suunto Ambit3 ²⁴ 422 Run; Suunto, Vantaa, Finland) and a face mask, connected to an online open-circuit metabolic cart. The cart 25 ₂₆ 423 (JAEGER, Vyntus CPX, Carefusion) will be calibrated to known volumes and gas concentrations according ²⁷ 424 28 to manufactural guidelines. After a 1-min warm-up with zero resistance, the test begins with an individualized starting load (5-90W)⁷⁸ with increases in work load (5 or 10W) every minute⁷⁹ until 29 425 30 30 31 426 volitional fatigue, defined as an inability to maintain cadence above 55 rounds per minute (rpm) ⁷⁸. The 32 427 individual starting load and increment size will be chosen based on training history and anticipated physical 33 ₃₄ 428 capacity, with the aim of reaching exhaustion within 8-12 minutes at a cadence of 60-70 rpm ^{79,80}. Breath-by-³⁵ 429 breath VO₂ and carbon dioxide output (VCO₂), and HR will be measured continuously throughout the test. 36 VO_{2peak} will be reported in both absolute (1 O₂·min⁻¹) and relative (ml O₂·kg⁻¹·min⁻¹) terms, and defined as 37 430 ³⁸ 39</sub> 431 the highest 30-s average during the test, with the corresponding HR reported as HR_{peak}. The highest workload 40 432 that is achieved for \geq 30-s will be reported as PO_{neak}. Participants will be asked to indicate RPE (Borg 6-20) 41 42 433 scale) during the last 15-s of each minute. On test cessation, participants will gradually cool-down for 5-min, 43 434 while their BP will be measured immediately before and after this recovery period. 44

45 435 *Other secondary outcomes*

48 436 Shoulder pain

The prevalence and severity of shoulder pain will be assessed using the Danish version ⁸¹ of the Wheelchair Users Shoulder Pain Index (WUSPI)) ⁸². WUSPI is a valid and reliable measure of shoulder pain in manual wheelchair users ⁴⁴ The questionnaire utilizes a series of visual analog scales (VAS) ranging from "no pain" to "worst pain ever experienced", and it is a self-reported measure of the prevalence and severity of shoulder pain during different activities such as dressing, bathing, transfer, wheeling up, sleeping etc. ⁸². Some participants may not perform all of the 15 activities. To account for that, a performance-corrected shoulder

46 47

pain score (PC-WUSPI) will be calculated by dividing the raw total WUSPI score by the number of
performed activities, multiplied by 15⁸³.

8 445 *Health-related quality of life (HRQOL)* 9

5

6 7

HROOL will be monitored using the Danish translated version of the Short Form-36 (SF-36)⁸⁴, which is a 10 446 . -12 447 11 reliable and validated questionnaire to assess HRQOL within both a physical and mental health domain ⁸⁵. 13 448 Certain questions of the SF-36 will be adapted to wheelchair use. Specifically, the questions referring to 14 15 ⁴⁴⁹ 'walk' and 'stair-climbing' is substituted by the words 'climb' and 'go up', as previously recommended ⁸⁶. ¹⁶ 450 Construct validity stays acceptable with this modification ⁸⁶. Data will be scored using the RAND 36-item 17 Health survey 1.0 method ⁸⁷, in which original responses is transformed into a score from 0-100, with 100 18 451 19 452 representing the best possible health. Individual item scores is then averaged within domains to create eight 20 21 453 subscales, four representing physical OOL and four representing mental OOL. For reporting of HROOL, a 22 23 454 physical component summary score (PCS) and a mental component summary score (MCS) will be created 24 455 based on the average of each component subscales ⁸⁸. 25

26
27456Free-living physical activity

28 29 457 To determine the effects of the exercise intervention on short-term (12-weeks follow-up) and long-term (6-³⁰ 458 months follow-up) habitual physical activity, free-living physical activity levels will be monitored 31 32 459 objectively via accelerometry. Participants will be fitted with a triaxial wrist-worn accelerometer (Axivity, 33 460 AX3. Newcastle, UK) placed on the non-dominant wrist using a standard rubber wristband, as recommended 34 ⁸⁹. Participants will be asked to wear the accelerometer for the 7 days ⁹⁰ preceding baseline and follow-up 35 461 36 37 462 (12-weeks and 6-months) visits. The accelerometer (23 x 32.5 x 7.6 (mm)) will be worn continuously 38 463 through this period (24 hours a day). To be considered a valid day, at least 80% of data for that 24-hour 39 40 464 period is required ⁹⁰. The AX3 sensor records accelerations within the dynamic range of ± 8 g. Physical ⁴¹ 465 activity levels are derived by aggregating the raw acceleration (expressed as g¹·min⁻¹) using either Euclidian 42 norm minus one (ENMO – expressed in mg), mean average deviation (MAD – expressed in mg), activity 43 466 44 45 467 index (AI – expressed in mg) or Actigraph Counts (AG – expressed in counts) ^{91–94}. The most optimal 46 468 aggregation, time interval or epoch, and data band-pass filtering to reduce noise has not been evaluated 47 ., 48 469 thoroughly in any previous study. Thus, the final selection of aggregation method, epoch length and band-⁴⁹ 470 pass filtering to be used is determined using the same study conducted to estimate the light, moderate and 50 51 471 vigorous intensity thresholds (see below).

For determination of physical activity (min ·day⁻¹) with different intensities (i.e. light, moderate and vigorous physical activity), individual accelerometer cut-off points will be calculated. Individual calibration of wristworn accelerometers is recommended for valid estimates of physical activity level ⁹⁵. Previous studies ^{96,97} have established high internal-validity of wrist-worn accelerometer output when compared with energy set activity with energy ⁵⁹

60

476 expenditure measured at fixed speeds during wheelchair propulsion on a motorized treadmill ^{96,97}. However,
6477 this approach may not have high external validity because physical activities outside the laboratory rarely
6478 occurs at fixed intensities. Indeed, SCI individuals perform a multitude of leisure-time physical activities and
activities of daily living with varying intensity ⁹⁸. Therefore, AX3 sensor output will be individually
calibrated based on five different standardized "real-life" mimicking activities, each performed for 6 min.
Activities will include a folding clothes task, continuous wheelchair propulsion at three different self-paced
tempi, and an intermittent wheelchair propulsion with wheeling and stopping at a self-paced tempo.

16 483 *Feasibility and acceptability of the exercise intervention*

¹⁸ 484 Satisfaction with the exercise intervention will be evaluated with the Feasibility and Acceptability Questionnaire ⁹⁹. In brief, participants will be asked to rate how feasible and acceptable they consider the 20 485 486 rowing exercise to be on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The 23 487 questionnaire consists of six questions addressing issues such as how fun the exercise was perceived; the 25⁴⁸⁸ difficulty level of the exercise; and whether they received appropriate guidance in how to perform the 26 ₄₈₉ exercise. A mean score of \geq 3.0 will be used as a criterion to indicate that the intervention is acceptable ⁹⁹. 28 490 Additionally, compliance to the exercise intervention will be recorded and presented as compliance rate (% ²⁹ 491 participation). Compliance is defined as the number of exercise sessions completed out of the total number 31 492 (36) of sessions.

³³ 493 **Statistics** 34

32

The between group difference in changes of outcome variables will be examined from baseline to post intervention (12-weeks follow-up) (primary endpoint) and again from post intervention to follow-up 6months later (secondary endpoint).

₄₀ 497 Primary and secondary endpoint data are ratio and interval data and will therefore be treated as continuous ⁴¹ 498 variables. Between group comparisons on primary and secondary endpoint will be dependent on data 42 43 499 distribution. We anticipate data to be approximately normally distributed, however before any analysis are 44 45 500 commenced, distribution of the data will be assessed through visual inspection of Q-Q-plots and histograms, 46 501 complemented by test of deviation from normality (Shapiro Wilk test). Assuming normality, descriptive data 47 48 502 will be presented as mean ± standard deviation (SD), and a two-way analysis of variance (ANOVA) with ⁴⁹ 503 repeated measurements will be used to evaluate any significant changes in outcomes between (control and 50 51 504 exercise) and within (baseline and follow-up) groups from baseline to immediately after the 12-weeks ⁵² 505 intervention period. Same procedure will be done for secondary endpoint (factor 1: group (control and 53 54 506 exercise), factor 2: time (follow-up at 12-weeks and 6-months)). Interactions between the factors will be 507 56 55 included in the model. In case of significant F-values, post-hoc testing will be used for multiple comparisons. 57 508 Effect size of change scores (Cohen's d) will be calculated in order to determine the magnitude of difference 58

between groups. P-values and 95% confidence intervals will be reported to facilitate interpretation of the 509 510 results. Statistical significance will be accepted at P < 0.05.

511 Patient and public involvement

5

6 7 8

9

12

16 516 17

₁₀ 512 Neither participants nor public were involved with the conception of the research question, study design, or ¹¹ 513 outcome measures, nor will they be involved with study conduction. The recruitment plan was partially 13 514 planned based on feedback from the patient population. Each of the participants will receive a written 14 15 515 summary of the study results after publication.

18 517 Ethics and dissemination

19 20 518 Considerations are made regarding the regulation of arterial BP in the participants ¹⁰⁰ ¹⁰¹. BP instability does 21 519 occur in cervical injured individuals (tetraplegics), who may suffer from pronounced autonomic disturbances 22 ^{∠∠} 23 520 ^{100,101}. During the VO_{2peak} test and exercise sessions, special attention is devoted towards potential symptoms ²⁴ 521 of autonomic dysreflexia (AD) ¹⁰² in individuals with SCI \geq T6. Participants will be asked to empty their 25 ₂₆ 522 bladder before any testing or training is commenced. In case of AD, the exercise is stopped and the pertinent 27 28 523 actions are made. Occurrences of post exercise hypotension ¹⁰¹ and orthostatic hypotension ¹⁰⁰ are rather 29 524 uncommon in individuals with thoracic injury (paraplegics). According to the inclusion criteria of the study, 30 30 31 525 only individuals with a sparing of arm function (i.e. excluding individuals with a complete cervical injury 32 526 \geq C5 participants) will be included in the study, presumably reducing the number of included individuals with 33 ₃₄ 527 impaired BP regulation. Nevertheless, in addition to reduced vasoconstrictor drive, the ability to increase ³⁵ 528 cardiac output is limited in individuals with SCI \geq T5-T6 with interrupted cardiac sympathetic innervation, 36 37 529 which could affect arterial BP stabilization during conditions in which peripheral vascular resistance is ³⁸ 39</sub> 530 further reduced (i.e. during exercise). Therefore, to identify any participants that may be prone to 40 531 experiencing post exercise hypotension, brachial artery BP will be monitored immediately after, and again 5 41 42 532 min after the first VO_{2peak} test. In such cases, and assuming the hypotension is well tolerated, the participants 43 533 will be reminded to drink appropriately during and prior any future training and testing. Further, these 44 45 534 participants will have their BP measured every second interval (i.e. every 10th min) during the training ⁴⁶ 535 sessions. If hypotension develops, the training will be interrupted and hypotensive countermaneuvres 47 48 536 (placement in a supine position, or legs up) will be applied. If the hypotension is not tolerated, such as if the 50 537 participants exhibit signs of nausea, light-headedness, fatigue or presyncobal symptoms in response to either the VO_{2peak} test or the training, they will be excluded from further participation in the study. 51 538 52

⁵³ 539 Another consideration is that individuals with SCI suffer from impaired thermoregulation ¹⁰³. Although 54 55 540 prolonged (60 min) moderate intensity exercise in warm conditions (>31°C) have been shown sustainable for 56 57 541 some paraplegic and tetraplegic individuals ¹⁰⁴, impaired thermoregulation makes SCI individuals more 58 542 vulnerable to overheating compared to able-bodied ¹⁰³. This is especially the case during conditions of 59

60

increased environmental temperatures and metabolic heat production (such as when exercising in the heat). 543 The degree of thermoregulatory impairment is closely related to the injury level, such that individuals with 544 545 higher injury (tetraplegics) exhibit higher core temperatures during exercise compared to lower injury individuals (paraplegics) ¹⁰⁴. To diminish the risk for overheating during testing and training, a fan will be 546 11 ⁵⁴⁷ available for cooling of the participants and the room temperature and humidity will be continuously monitored to facilitate the conditions for dry and evaporative heat loss. Moreover, the participants will be asked to pay attention to proper hydration before and throughout each training session. However, if the 550 participants demonstrate signs of any adverse response, the exercise session will be terminated immediately and further participation in the study will be reconsidered. Any adverse responses from the intervention will 10 19 552 be reported to the regional health research committee. The trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406), registered at Clinicaltrials.org, and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (Journal-nr. N-20190053). Results will be submitted to scientific journals related to exercise and SCI for publication irrespective of study outcomes.

557 Data statement section

All participant data will be stored in a secure web-based database (Redcap) with restricted access and ID code, in accordance with data protection rules. Source documents including date, visit# and participant ID will be scanned and saved as electronic copies. Participant data will be transferred directly or by use of an encrypted USB stick. Each participant will be assigned an unique identification number, which will be the only identifier exported from Redcap upon data analysis. Except for the blood samples, which will be stored until analysis, or no more than 5 years, data will be stored for 5 years after the termination of the trial. After this period, paper material is shredded, data files are erased and the Redcap database is no longer accessible. The principal investigator will have access to all trial data.

666 Acknowledgement

The authors would like to thank Dr. Rachel E. Cowan for valuable discussions regarding the study protocol,and Dr. Jan Christian Brønd for assistance with the section related to accelerometer data.

569 Author Contributions

RKH and RGL conceptualized the study. RKH, AS, UL, AH and RGL contributed to the study protocol
 design. RKH drafted the manuscript. RKH, AS, UL, AH and RGL commented and edited the manuscript and
 approved the final version.

56 574 Funding

⁵⁴ 573

This work is supported by Aage and Johanne Louis-Hansens Fond, grant number 20-2B-5947, and by
Wolturnus A/S. Aage and Johanne Louis-Hansens Fond and Wolturnus A/S will have no influence on any

577 part of the project design, data collection, data analysis, data interpretation or the disclosure of the results.

578 Thus, their support is solely economical.

579 **Competing interests**

- ₁₀ 580 None declared.
- 11 581 12

5

6 7 8

9

13 582 **Patient consent** 14

583 Not required. 15

16 17 584 License statement

¹⁸ 585 I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined 19 in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from 20 586 21 587 authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) 22 23 588 in accordance with the terms applicable for US Federal Government officers or employees acting as part of 24 25 589 their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd 26 590 ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to 27 28 591 publish the Work in BMJ Open and any other BMJ products and to exploit all rights, as set out in ²⁹ 592 our licence. 30

31 32 593 **Figure 1.** Study overview. PA = physical activity; INT = intervention; RPE = rating of perceived exertion; Tez oni ³³ 594 CON = control.34

1 2 3					
3 4 606 5	REFERENCES				
6 7 607					
8 9 608 10 609	1.	LaPorte, R. <i>et al.</i> The Spectrum of Physical Activity, Cardiovascular Disease and Health: An Epidemiologic Perspective. <i>Am J Epidemiol.</i> 120 , 507–517 (1984).			
11 12 610 13 611	2.	Myers, J., Lee, M. & Kiratli, J. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. <i>Am. J. Phys. Med. Rehabil.</i> 86 , 142–152 (2007).			
$^{14}_{15} 612 \\ 15 613 \\ 16$	3.	Nash, M. & Cowan, R. Cardiovascular disease, SCI and exercise: unique risks and focused countermeasures. <i>Disabil. Rehabil.</i> 32 , 2228–2236 (2010).			
¹⁷ 614 ¹⁸ 615 19	4.	Garshick, E. <i>et al.</i> A prospective assessment of mortality in chronic spinal cord injury. <i>Spinal Cord</i> 43 , 408–416 (2005).			
20 616 21 617	5.	Buchholz, A. C. <i>et al.</i> Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. <i>Appl. Physiol. Nutr. Metab.</i> 34 , 640–647 (2009).			
22 23 618 24 619	6.	Gorgey, A., Dolbow, D., Dolbow, J., Khalil, R. & Gater, D. Effects of spinal cord injury on body composition and metabolic profile – Part I. <i>J. Spinal Cord Med.</i> 37 , 693–702 (2014).			
25 26 27 621	7.	Kehn, M. & Kroll, T. Staying physically active after spinal cord injury: A qualitative exploration of barriers and facilitators to exercise participation. <i>BMC Public Health</i> 9 , 1–11 (2009).			
²⁸ 622 ²⁹ 623 30	8.	Rimmer, J. H., Riley, B., Wang, E., Rauworth, A. & Jurkowski, J. Physical activity participation among persons with disabilities: Barriers and facilitators. <i>Am. J. Prev. Med.</i> 26 , 419–425 (2004).			
31 624 32 625	9.	Hansen, R. K., Larsen, R. G., Læssøe, U., Samani, A. & Cowan, R. E. Perceived Physical Activity Barriers in Danish Manual Wheelchair Users. <i>Submitt. Manuscr.</i> (2020).			
33 34 626 35 627 36 628	10.	Cowan, R. E., Nash, M. S. & Anderson, K. D. Exercise participation barrier prevalence and association with exercise participation status in individuals with spinal cord injury. 27–32 (2013) doi:10.1038/sc.2012.53.			
37 38 629 39 630	11.	Rimmer, J. H., Rubin, S. S. & Braddock, D. Barriers to exercise in African American women with physical disabilities. <i>Arch. Phys. Med. Rehabil.</i> 81 , 182–188 (2000).			
⁴⁰ 631 41 632 42 632	12.	Rimmer, J. H., Wang, E. & Smith, D. Barriers associated with exercise and community access for individuals with stroke. <i>J. Rehabil. Res. Dev.</i> 45 , 315–322 (2008).			
43 633 44 634 45	13.	Van Der Scheer, J. W. <i>et al.</i> Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review. <i>Neurology</i> 89 , 736–745 (2017).			
46 635 47 636	14.	El-Sayed, M. S. & Younesian, A. Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. <i>Spinal Cord</i> 43 , 299–305 (2005).			
48 49 637 50 638 51 639	15.	Nightingale, T. E., Walhin, J. P., Thompson, D. & Bilzon, J. L. J. Impact of Exercise on Cardiometabolic Component Risks in Spinal Cord-injured Humans. <i>Med. Sci. Sports Exerc.</i> 49 , 2469–2477 (2017).			
52 53 640 54 641 55 642	16.	Kim, D. Il, Lee, H., Lee, B. S., Kim, J. & Jeon, J. Y. Effects of a 6-Week Indoor Hand-Bike Exercise Program on Health and Fitness Levels in People With Spinal Cord Injury: A Randomized Controlled Trial Study. <i>Arch. Phys. Med. Rehabil.</i> 96 , 2033–2040 (2015).			
56 643 57 644 58 645 59 645 60	17.	Totosy de Zepetnek, J. O., Pelletier, C. A., Hicks, A. L. & MacDonald, M. J. Following the Physical Activity Guidelines for Adults With Spinal Cord Injury for 16 Weeks Does Not Improve Vascular Health: A Randomized Controlled Trial. <i>Arch. Phys. Med. Rehabil.</i> 96 , 1566–1575 (2015).			

- ⁴ 646 18. Wilt, T. J. *et al.* Carbohydrate and lipid disorders and relevant considerations in persons with spinal cord injury (Structured abstract). *Database Abstr. Rev. Eff.* 171 (2008).
- 7 648 19. Nightingale, T. E., Metcalfe, R. S., Vollaard, N. B. & Bilzon, J. L. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity? *Arch. Phys.*9 650 *Med. Rehabil.* 98, 1693–1704 (2017).
- 11 65120.Green, D. J., Driscoll, G. O., Joyner, M. J. & Cable, N. T. Exercise and cardiovascular risk reduction :12 652Time to update the rationale for exercise ? Exercise and cardiovascular risk reduction : Time to update13 653the rationale for exercise ? 766–768 (2013) doi:10.1152/japplphysiol.01028.2007.
- 14
 15 654 21. Gielen, S., Schuler, G. & Hambrecht, M. Exercise Training in Coronary Artery Disease and Coronary Vasomotion. *Circulation* 103, 1–6 (2001).
- Celermajer, D. *et al.* Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis Endothelial. *Lancet* 340, 1111–1115 (1992).
- ²⁰ 658
 ²³ 23. J., Y. *et al.* Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. *Circulation* 120, 502–509 (2009).
- 23 660
 24. Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M. & Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. *Circulation* 115, 459–467 (2007).
- 27 663 25. Green, D. J., Hopman, M. T. E., Padilla, J., Laughlin, M. H. & Thijssen, D. H. J. Vascular adaptation to exercise in humans: Role of hemodynamic stimuli. *Physiol. Rev.* 97, 495–528 (2017).
- 29
 30 665
 31 666
 32 667
 26. de Groot, P. C., Bleeker, M. W., van Kuppevelt, D. H., van der Woude, L. H. & Hopman, M. T. Rapid and Extensive Arterial Adaptations After Spinal Cord Injury. *Arch. Phys. Med. Rehabil.* 87, 688–696 (2006).
- Rowley, N. J. *et al.* Conduit diameter and wall remodeling in elite athletes and spinal cord injury. *Med. Sci. Sports Exerc.* 44, 844–849 (2012).
- de Groot, P. C. E., Poelkens, F., Kooijman, M. & Hopman, M. T. E. Preserved flow-mediated dilation in the inactive legs of spinal cord-injured individuals. *Am J Physiol Hear. Circ Physiol* 287, 374–380 (2004).
- 40 673 29. Huonker, M., Schmid, A., Schmidt-Trucksäß, A., Grathwohl, D. & Keul, J. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. *J. Appl. Physiol.*43 95, 685–691 (2003).
- 44 67630.Ginis, K. A. M. *et al.* The development of evidence-informed physical activity guidelines for adults45 677with spinal cord injury. *Spinal Cord* 49, 1088–1096 (2011).
- Pelletier, C. A., Totosy De Zepetnek, J. O., Macdonald, M. J. & Hicks, A. L. A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. *Spinal Cord* 53, 363–367 (2015).
- Solution 50
 Solution 51
 Solution 52
 Solution 52
 Solution 53
 Martin Ginis, K. A. *et al.* Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. *Spinal Cord* 56, 308–321 (2018).
- ⁵³ 683
 ⁵⁴ 684
 ⁵⁵ 684
 ⁵³ Cratsenberg, K. A. *et al.* Effectiveness of exercise programs for management of shoulder pain in manual wheelchair users with spinal cord injury. *J. Neurol. Phys. Ther.* **39**, 197–203 (2015).
- Troy, K., Munce, T. & Longworth, J. An exercise trial targeting posterior shoulder strength in manual wheelchair users: Pilot results and lessons learned. *Disabil. Rehabil. Assist. Technol.* 10, 415–420 (2015).
- 60

1 2						
3 4 688 5 689 6	35.	Nash, M. S. <i>et al.</i> A comparison of 2 circuit exercise training techniques for eliciting matched metabolic responses in persons with paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 83 , 201–209 (2002).				
7 690 8 691 9	36.	Curtis, K. <i>et al.</i> Effect of a standard exercise protocol on shoulder pain in long-term wheelchair use <i>Spinal Cord</i> 37 , 421–429 (1999).				
10 692 11 693 12 694	37.	Ballinger, D. A., Rintala, D. H. & Hart, K. A. The relation of shoulder pain and range-of-motion problems to functional limitations, disability, and perceived health of men with spinal cord injury: A multifaceted longitudinal study. <i>Arch. Phys. Med. Rehabil.</i> 81 , 1575–1581 (2000).				
13 14 695 15 696	38.	Nichols, P., Norman, P. & Ennis, J. Wheelchair user's shoulder? <i>Scand J Rehab Med</i> 11 , 29–32 (1979).				
16 17 697 18 698 19 699	39.	Gutierrez, D., Thompson, L., Kemp, B. & Mulroy, S. The relationship of shoulder pain intensity to quality of life, physical activity, and community participation in persons with paraplegia. <i>J. Spinal Cord Med.</i> 30 , 251–255 (2007).				
²⁰ 700 21 701 22 702 23	40.	Nash, M. S., van de Ven, I., van Elk, N. & Johnson, B. M. Effects of Circuit Resistance Training on Fitness Attributes and Upper-Extremity Pain in Middle-Aged Men With Paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 88 , 70–75 (2007).				
24 703 25 704 26	41.	Leduc, B. & Lepage, Y. Health-related quality of life after spinal cord injury. <i>Disabil. Rehabil.</i> 24, 196–202 (2002).				
27 705 28 706	42.	Lidal, I., Veenstra, M., Hjeltnes, N. & Biering-Sørensen, F. Health-related quality of life in persons with long-standing spinal cord injury. <i>Spinal Cord</i> 46 , 710–715 (2008).				
29 30 707 31 708	43.	Ambrosio, F. <i>et al.</i> Biomechanics and strength of manual wheelchair users. <i>J. Spinal Cord Med.</i> 28 , 407–414 (2005).				
³² 33 34 710	44.	Curtis, K. <i>et al.</i> Reliability and validity of the Wheelchair User's Shoulder Pain Index (WUSPI). <i>Paraplegia</i> 33 , 595–601 (1995).				
³⁵ 711 ³⁶ 712 37	45.	Burnham, R. S., May, L., Nelson, E., Steadward, R. & Reid, D. C. Shoulder pain in wheelchair athletes: The role of muscle imbalance. <i>Am. J. Sports Med.</i> 21 , 238–242 (1993).				
38 713 39 714	46.	Bayley, J., Cochran, T. & Sledge, C. The weight-bearing shoulder. The impingement syndrome in paraplegics. <i>J. Bone Jt. Surg.</i> 69 , 676–678 (1987).				
42 716Multisite Study of Persons With Paraplegia. Arch43 44 71748.Mulroy, S. J. et al. Strengthening and Optimal M		Collinger, J. L. <i>et al.</i> Shoulder Biomechanics During the Push Phase of Wheelchair Propulsion: A Multisite Study of Persons With Paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 89 , 667–676 (2008).				
		Mulroy, S. J. <i>et al.</i> Strengthening and Optimal Movements for Painful Shoulders (STOMPS) in Chronic Spinal Cord Injury: A Randomized Controlled Trial. <i>Phys. Ther.</i> 91 , 305–324 (2011).				
⁴⁶ 719 47	49.	Secher, N. The Physiology of Rowing. J. Sports Sci. 1, 23-53 (1983).				
47 48 720 49 721 50 722	50.	Olenik, L., Laskin, J., Burnham, R., Wheeler, G. & Steadward, R. Efficacy of rowing, backward wheeling and isolated scapular retractor exercise as remedial strength activities for wheelchair users: Application of electromyography. <i>Paraplegia</i> 33 , 148–152 (1995).				
51 52 723 53 724	51.	Curtis, K. <i>et al.</i> Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. <i>Spinal Cord</i> 37 , 421–429 (1999).				
⁵⁴ 55 725 56 726	52.	Chan, A. <i>et al.</i> SPIRIT 2013 Statement : Defining Standard Protocol Items for Clinical Trials. <i>Ann Intern Med</i> 158 , 200–207 (2013).				
⁵⁷ 727 58 728 59 728 60	53.	Ginis, K. A. M., Phang, S. H., Latimer, A. E. & Arbour-Nicitopoulos, K. P. Reliability and Validity Tests of the Leisure Time Physical Activity Questionnaire for People with Spinal Cord Injury. <i>Arch.</i>				

2 3			
4	729		Phys. Med. Rehabil. 93, 677–682 (2012).
6	730 731	54.	Lee, R. <i>et al.</i> Active vs. passive methods of recruiting ethnic minority women to a health promotion program. <i>Ann. Behav. Med.</i> 19 , 378–384 (1997).
9 10	732 733	55.	Ginis, K. a M. & Hicks, A. L. Exercise research issues in the spinal cord injured population. <i>Exerc. Sport Sci. Rev.</i> 33 , 49–53 (2005).
	734 735	56.	Astorino, T. A. & Thum, Jacob, S. Interval training elicits higher enjoyment versus moderate exercise in persons with spinal cord injury. <i>J. Spinal Cord Med.</i> 41 , 77–84 (2018).
14 15 16	736 737	57.	Powell, K. E., Paluch, A. E. & Blair, S. N. Physical Activity for Health: What Kind? How Much? How Intense? On Top of What? <i>Annu. Rev. Public Health</i> 32 , 349–365 (2011).
17	738	58.	Borg, G. Perceived exertion as an indicator of somatic stress. Scand J Rehab Med 92-98 (1970).
20	739 740	59.	Birk, T. J. & Birk, C. A. Use of Ratings of Perceived Exertion for Exercise Prescription. <i>Sport. Med.</i> 4 , 1–8 (1987).
23	741 742	60.	Goosey-Tolfrey, V. <i>et al.</i> Regulating intensity using perceived exertion in spinal cord-injured participants. <i>Med. Sci. Sports Exerc.</i> 42 , 608–613 (2010).
25	745	61.	van der Scheer, J. W., Hutchinson, M. J., Paulson, T., Martin Ginis, K. A. & Goosey-Tolfrey, V. L. Reliability and Validity of Subjective Measures of Aerobic Intensity in Adults With Spinal Cord Injury: A Systematic Review. <i>PMR</i> 10 , 194–207 (2018).
28 29	746 747	62.	Lewis, J. E., Nash, M. S., Hamm, L. F., Martins, S. C. & Groah, S. L. The Relationship Between Perceived Exertion and Physiologic Indicators of Stress During Graded Arm Exercise in Persons With Spinal Cord Injuries. <i>Arch. Phys. Med. Rehabil.</i> 88 , 1205–1211 (2007).
32 33 34	749 750 751	63.	Noble, B. J., Borg, G. A. V., Jacobs, I., Ceci, R. & Kaiser, P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. <i>Med. Sci. Sport. Exerc.</i> 16 , 523–528 (1983).
37	752 753	64.	Thijssen, D. H. J. <i>et al.</i> Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. <i>Eur. Heart J.</i> 40 , 2534–2547 (2019).
40	754 755 756	65.	Limberg, J. K. <i>et al.</i> Assessment of resistance vessel function in human skeletal muscle : guidelines for experimental design , Doppler ultrasound , and pharmacology. (2020) doi:10.1152/ajpheart.00649.2019.
43 44 45	757 758 759	66.	Grundy, S. <i>et al.</i> Diagnosis and managment of the metabolic syndrome AHA / NHLBI Scientific Statement. An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. <i>Circulation</i> 2735–2752 (2005) doi:10.1161/CIRCULATIONAHA.105.169404.
46 47 48	760 761 762	67.	Nash, M. S. <i>et al.</i> Identification and Management of Cardiometabolic Risk after Spinal Cord Injury: Clinical Practice Guideline for Health Care Providers. <i>Top. Spinal Cord Inj. Rehabil.</i> 24 , 379–423 (2018).
50 51 52	763 764	68.	McCauley, L. S., Sumrell, R. M. & Gorgey, A. S. Anthropometric Prediction of Visceral Adipose Tissue in Persons With Motor Complete Spinal Cord Injury. <i>PM R</i> 10 , 817–825 (2018).
53 54 55	765 766 767	69.	Edwards, L. A., Bugaresti, J. M. & Buchholz, A. C. The amount of visceral adipose tissue and the ratio of visceral to subcutaneous adipose tissue is greater in adults with vs. without spinal cord injury. <i>Faseb J.</i> 21 , A7–A8 (2007).
58	768 769 770	70.	Sumrell, R. M., Nightingale, T. E., McCauley, L. S. & Gorgey, A. S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. <i>PLoS One</i> 13 , e0203049 (2018).

2 3		
4 771 5 772 6	71.	Joyner, M. J. & Green, D. J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. <i>J. Physiol.</i> 587 , 5551–5558 (2009).
7 773	72.	Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Prim. 3, 1-21 (2017).
8 9 774 10 775 11 776	73.	Otsuka, Y., Shima, N., Moritani, T., Okuda, K. & Yabe, K. Orthostatic influence on heart rate and blood pressure variability in trained persons with tetraplegia. <i>Eur. J. Appl. Physiol.</i> 104 , 75–78 (2008).
12 13 777 14 778	74.	Thijssen, D. H. J. <i>et al.</i> Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. <i>Am. J. Physiol Hear. Circ. Physiol.</i> 300 , 2–12 (2011).
¹⁵ 779 16 780 17	75.	Pyke, K. E. & Tschakovsky, M. E. Peak vs. total reactive hyperemia: Which determines the magnitude of flow-mediated dilation? <i>J. Appl. Physiol.</i> 102 , 1510–1519 (2007).
¹⁸ 781 ¹⁹ 782 20	76.	Padilla, J. <i>et al.</i> Normalization of flow-mediated dilation to shear stress area under the curve eliminates the impact of variable hyperemic stimulus. <i>Cardiovasc. Ultrasound</i> 6 , 1–10 (2008).
21 783 22 784	77.	Thrush, A. & Hartshorne, T. Vascular Ultrasound - How, When and Why. Churchill Livingstone (2010). doi:10.1017/CBO9781107415324.004.
23 24 785 25 786	78.	Maher, J. L. & Cowan, R. E. Comparison of 1- Versus 3-Minute Stage Duration During Arm Ergometry in Individuals With Spinal Cord Injury. <i>Arch. Phys. Med. Rehabil.</i> 97 , 1895–1900 (2016).
26 27 787 28 788 29 789	79.	Eerden, S., Dekker, R. & Hettinga, F. J. Maximal and submaximal aerobic tests for wheelchair- dependent persons with spinal cord injury: a systematic review to summarize and identify useful applications for clinical rehabilitation. <i>Disabil. Rehabil.</i> 40 , 497–521 (2018).
³⁰ 790 ³¹ 791 32	80.	Au, J. S., De Zepetnek, J. O. T. & MacDonald, M. J. Modeling perceived exertion during graded arm cycling exercise in spinal cord injury. <i>Med. Sci. Sports Exerc.</i> 49 , 1190–1196 (2017).
33 792 34 793 35	81.	Larsen, C., Hansen, S., Hansen, L., P, B. & B, JK. Translation and Cross-Cultural Adaptation of the Danish Version: Wheelchair Users Shoulder Pain Index (WUSPI). in 1 (2015).
36 794 37 795	82.	Curtis, K. <i>et al.</i> Development of the Wheelchair User's Shoulder Pain Index (WUSPI). <i>Paraplegia</i> 33 , 290–293 (1995).
38 39 796 40 797	83.	Curtis, K. A. <i>et al.</i> Shoulder pain in wheelchair users with tetraplegia and paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 80 , 453–457 (1999).
⁴¹ 798 42 799 43 799	84.	Bjorner, J. B., Thunedborg, K., Kristensen, T. S., Modvig, J. & Bech, P. The Danish SF-36 Health Survey: Translation and preliminary validity studies. <i>J. Clin. Epidemiol.</i> 51 , 991–999 (1998).
⁴⁴ 800 ⁴⁵ 801 46	85.	Ware, Jr., J. E. & Sherbourne, C. D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection Author. <i>Med. Care</i> 30 , 473–483 (1992).
47 802 48 803	86.	Tate, D. G., Kalpakjian, C. Z. & Forchheimer, M. B. Quality of life issues in individuals with spinal cord injury. <i>Arch. Phys. Med. Rehabil.</i> 83 , 18–25 (2002).
49 50 804 51 805	87.	RAND, H. C. 36-Item Short Form Survey (SF-36) Scoring Instructions. https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form/scoring.html.
52 53 806 54 807 55 808	88.	Nightingale, T. E., Rouse, P. C., Walhin, J. P., Thompson, D. & Bilzon, J. L. J. Home-Based Exercise Enhances Health-Related Quality of Life in Persons With Spinal Cord Injury: A Randomized Controlled Trial. <i>Arch. Phys. Med. Rehabil.</i> 99 , 1998-2006.e1 (2018).
56 809 57 810 58 811 59 811	89.	Nightingale, T. E., Rouse, P. C., Thompson, D. & Bilzon, J. L. J. Measurement of Physical Activity and Energy Expenditure in Wheelchair Users: Methods, Considerations and Future Directions. <i>Sport. Med Open</i> 3 , (2017).
60		

1 2 3			
4 81 5 81 6 81 7	L3		Nightingale, T. E., Walhin, J. P., Turner, J. E., Thompson, D. & Bilzon, J. L. J. The influence of a home-based exercise intervention on human health indices in individuals with chronic spinal cord injury (HOMEX-SCI): Study protocol for a randomised controlled trial. <i>Trials</i> 17 , 1–12 (2016).
8 81 9 81 10		l.	Brønd, J. C., Andersen, L. B. & Arvidsson, D. Generating ActiGraph Counts from Raw Acceleration Recorded by an Alternative Monitor. <i>Med. Sci. Sports Exerc.</i> 49 , 2351–2360 (2017).
11 81 12 81			van Hees, V. T. <i>et al.</i> Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. <i>PLoS One</i> 8 , 1–10 (2013).
13 14 81 15 82 16 82	20		Aittasalo, M. <i>et al.</i> Mean amplitude deviation calculated from raw acceleration data: a novel method for classifying the intensity of adolescents' physical activity irrespective of accelerometer brand. <i>BMC Sports Sci. Med. Rehabil.</i> 7 , 1–7 (2015).
17 18 82 19 82	23	1.	Bai, J. <i>et al.</i> An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics. <i>PLoS One</i> 11 , 1–14 (2016).
²⁰ 82 21 82 22 82 23	25		McCracken, L. A. <i>et al.</i> Wrist Accelerometry for Physical Activity Measurement in Individuals with Spinal Cord Injury - A Need for Individually Calibrated Cut-Points. <i>Arch. Phys. Med. Rehabil.</i> 99 , 684–689 (2018).
24 82 25 82 26 82 27	28		Learmonth, Y. C., Kinnett-Hopkins, D., Rice, I. M., Dysterheft, J. L. & Motl, R. W. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion. <i>Spinal Cord</i> 54 , 110–114 (2016).
28 83 29 83 30 83	31		Nightingale, T. E., Walhin, J. P., Thompson, D. & Bilzon, J. L. J. Influence of accelerometer type and placement on physical activity energy expenditure prediction in manual wheelchair users. <i>PLoS One</i> 10 , 1–15 (2015).
31 32 83 33 83 34 83	34		Hetz, S. P., Latimer, A. E. & Martin Ginis, K. A. Activities of daily living performed by individuals with SCI: Relationships with physical fitness and leisure time physical activity. <i>Spinal Cord</i> 47 , 550–554 (2009).
35 36 83 37 83	37).	Visovsky, C. & Corripio, J. Feasibility and Acceptability of a Resistance Exercise Intervention: For Women Undergoing Chemotherapy for Breast Cancer. <i>Nurs. Heal.</i> 3 , 110–119 (2015).
³⁸ 83 39 83 40	88 10 89		Claydon, V. E. & Krassioukov, A. V. Orthostatic Hypotension and Autonomic Pathways after Spinal Cord Injury. <i>J. Neurotrauma</i> 23, 1713–1725 (2006).
41 84 42 84 43 84 44	40 10 41		Claydon, V. E., Hol, A. T., Eng, J. J. & Krassioukov, A. V. Cardiovascular Responses and Postexercise Hypotension After Arm Cycling Exercise in Subjects With Spinal Cord Injury. <i>Arch.</i> <i>Phys. Med. Rehabil.</i> 87 , 1106–1114 (2006).
45 84 46 84 47			Phillips, A. A. & Krassioukov, A. V. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. <i>J. Neurotrauma</i> 32 , 1927–1942 (2015).
48 84 49 84)3.	Sawka, M., Latzka, W. & Pandolf, K. Temperature Regulation During Upper Body Exercise: Able Bodied And Spinal Cord Injured. <i>Med. Eng. Phys.</i> 21 , 132–40 (1989).
50 51 84 52 84	18		Price, M. & Campbell, I. Effects of spinal cord lesion level upon thermoregulation during exercise in the heat. <i>Med. Sci. Sports Exerc.</i> 35 , 1100–1107 (2003).
53 54 55 56 57 58 59 60	19		

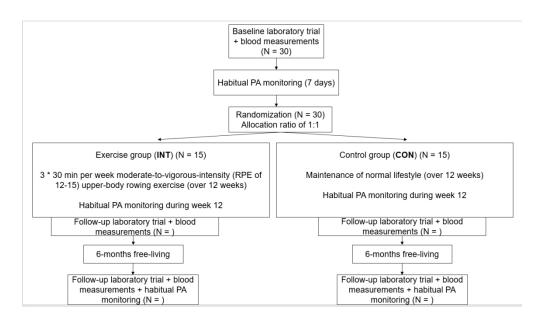


Figure 1. Study overview. PA = physical activity; INT = intervention; RPE = rating of perceived exertion; CON = control.

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to

include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 Statement: Defining standard protocol items for clinical trials.

Ann Intern Med. 2013;158(3):200-207

Reporting Item

Page Number

Administrative

information

Title

<u>#1</u> Descriptive title identifying the study 1,3
 design, population, interventions, and, if
 applicable, trial acronym

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 29 of 39

1 2	Trial registration	<u>#2a</u>	Trial identifier and registry name. If not	4,8
3 4			yet registered, name of intended	
5 6			registry	
7 8				
9 10	Trial registration:	<u>#2b</u>	All items from the World Health	n/a. The trial has been
11 12	data set		Organization Trial Registration Data	registered with details
13 14			Set	provided at Clinicaltrials.gov
15 16				
17 18	Protocol version	<u>#3</u>	Date and version identifier	1
19 20	Funding	<u>#4</u>	Sources and types of financial,	18
21 22 23 24			material, and other support	
24 25 26	Roles and	<u>#5a</u>	Names, affiliations, and roles of	1,2,18
26 27 28 29 30 31 32 33 34 35	responsibilities:		protocol contributors	
	contributorship			
	Roles and	#5b	Name and contact information for the	18
	responsibilities:		trial sponsor	
36 37				
38	sponsor contact			
39 40 41	information			
42 43	Roles and	<u>#5c</u>	Role of study sponsor and funders, if	18
44 45	responsibilities:		any, in study design; collection,	
46 47 48	sponsor and		management, analysis, and	
49 50	funder		interpretation of data; writing of the	
50 51 52			report; and the decision to submit the	
53 54			report for publication, including whether	
55 56				
57 58				
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1			they will have ultimate authority over	
1 2 3			any of these activities	
3 4 5			any of these activities	
6 7	Roles and	<u>#5d</u>	Composition, roles, and responsibilities	n/a. No such committee has
8 9 10 11	responsibilities:		of the coordinating centre, steering	been established.
	committees		committee, endpoint adjudication	
12 13 14			committee, data management team,	
14 15 16			and other individuals or groups	
17 18 19 20			overseeing the trial, if applicable (see	
			Item 21a for data monitoring	
21 22 23			committee)	
23 24 25	Introduction			
26 27				
28 29 30 31 32 33 34	Background and	<u>#6a</u>	Description of research question and	6-8
	rationale		justification for undertaking the trial,	
			including summary of relevant studies	
35 36			(published and unpublished) examining	
37 38			benefits and harms for each	
39 40			intervention	
41 42 43	Background and	<u>#6b</u>	Explanation for choice of comparators	6-8
44 45	rationale: choice			
46 47	of comparators			
48 49				
50 51 52	Objectives	<u>#7</u>	Specific objectives or hypotheses	8
52 53 54	Trial design	<u>#8</u>	Description of trial design including type	8
55 56			of trial (eg, parallel group, crossover,	
57 58			factorial, single group), allocation ratio,	
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	iidelines.xhtml

Page 31 of 39

			and framowork (og suppriority		
1 2			and framework (eg, superiority,		
3 4 5			equivalence, non-inferiority,		
5 6 7			exploratory)		
, 8 9	Methods:				
10 11	Participants,				
12 13 14 15 16	interventions, and				
	outcomes				
17 18 19	Study setting	<u>#9</u>	Description of study settings (eg,	9,11	
20 21			community clinic, academic hospital)		
22 23			and list of countries where data will be		
24 25 26			collected. Reference to where list of		
27 28			study sites can be obtained		
29 30 31	Eligibility criteria	<u>#10</u>	Inclusion and exclusion criteria for	8,9	
32 33			participants. If applicable, eligibility		
34 35			criteria for study centres and individuals		
36 37 38			who will perform the interventions (eg,		
39 40			surgeons, psychotherapists)		
41 42 43	Interventions:	<u>#11a</u>	Interventions for each group with	9-11	
44 45	description		sufficient detail to allow replication,		
46 47 48			including how and when they will be		
49 50			administered		
51 52 53	Interventions:	<u>#11b</u>	Criteria for discontinuing or modifying	9-11, 17,18	
54 55	modifications		allocated interventions for a given trial		
56 57 58			participant (eg, drug dose change in		
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml	

1 2 3			response to harms, participant request, or improving / worsening disease)	
4 5 6	Interventions:	#11c	Strategies to improve adherence to	16
7 8	adherance		intervention protocols, and any	
9 10			procedures for monitoring adherence	
11 12			(eg, drug tablet return; laboratory tests)	
13 14				
15 16 17	Interventions:	<u>#11d</u>	Relevant concomitant care and	9-11
18 19	concomitant care		interventions that are permitted or	
20 21 22			prohibited during the trial	
23 24	Outcomes	<u>#12</u>	Primary, secondary, and other	12-17
25 26			outcomes, including the specific	
27 28			measurement variable (eg, systolic	
29 30 31			blood pressure), analysis metric (eg,	
32 33			change from baseline, final value, time	
34 35			to event), method of aggregation (eg,	
36 37			median, proportion), and time point for	
38 39			each outcome. Explanation of the	
40 41 42			clinical relevance of chosen efficacy	
43 44			and harm outcomes is strongly	
45 46			recommended	
47 48				
49 50	Participant	<u>#13</u>	Time schedule of enrolment,	11
51 52 53	timeline		interventions (including any run-ins and	
53 54 55			washouts), assessments, and visits for	
56 57			participants. A schematic diagram is	
58 59 60		For peer	highly recommended (see Figure) review only - http://bmjopen.bmj.com/site/about/gui	delines.xhtml

1 2 3 4	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and	9
5 6			how it was determined, including	
7 8			clinical and statistical assumptions	
9 10 11			supporting any sample size calculations	
12 13 14	Recruitment	<u>#15</u>	Strategies for achieving adequate	9
15 16			participant enrolment to reach target	
17 18 19			sample size	
20 21	Methods:			
22 23 24	Assignment of			
25 26	interventions (for			
27 28 29	controlled trials)			
30 31	Allocation:	<u>#16a</u>	Method of generating the allocation	8
32 33 34	sequence		sequence (eg, computer-generated	
35 36	generation		random numbers), and list of any	
37 38			factors for stratification. To reduce	
39 40 41			predictability of a random sequence,	
42 43			details of any planned restriction (eg,	
44 45			blocking) should be provided in a	
46 47 48			separate document that is unavailable	
49 50			to those who enrol participants or	
51 52			assign interventions	
53 54				
55 56 57				
58 59		_		
60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1 2	Allocation	<u>#16b</u>	Mechanism of implementing the	8
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	concealment		allocation sequence (eg, central	
	mechanism		telephone; sequentially numbered,	
			opaque, sealed envelopes), describing	
			any steps to conceal the sequence until	
			interventions are assigned	
	Allocation:	<u>#16c</u>	Who will generate the allocation	8-9
	implementation		sequence, who will enrol participants,	
20 21			and who will assign participants to	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36			interventions	
	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to	13
			interventions (eg, trial participants, care	
			providers, outcome assessors, data	
			analysts), and how	
	Blinding	<u>#17b</u>	If blinded, circumstances under which	n/a. Participants allocated to
37 38 39	(masking):		unblinding is permissible, and	the exercise and control
40 41	emergency		procedure for revealing a participant's	group cannot be blinded to
42 43	unblinding		allocated intervention during the trial	the PI, because PI is
44 45 46 47 48 49 50 51 52 53 54 55 56 57				responsible for conducting
				the study. Parts of data
				analysis will be blinded to the
				PI.
	Methods: Data			
	collection,			
58 59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gui	delines.xhtml

1 2	management, and						
3 4	analysis						
5 6 7	Data collection	<u>#18a</u>	Plans for assessment and collection of	10-16			
, 8 9	plan		outcome, baseline, and other trial data,				
10 11			including any related processes to				
12 13 14			promote data quality (eg, duplicate				
14 15 16			measurements, training of assessors)				
17 18			and a description of study instruments				
19 20			(eg, questionnaires, laboratory tests)				
21 22 23			along with their reliability and validity, if				
23 24 25			known. Reference to where data				
26 27			collection forms can be found, if not in				
28 29 30			the protocol				
31 32 33	Data collection	<u>#18b</u>	Plans to promote participant retention	16			
33 34 35	plan: retention		and complete follow-up, including list of				
36 37			any outcome data to be collected for				
38 39			participants who discontinue or deviate				
40 41 42			from intervention protocols				
43 44 45	Data management	<u>#19</u>	Plans for data entry, coding, security,	18			
46 47			and storage, including any related				
48 49			processes to promote data quality (eg,				
50 51 52			double data entry; range checks for				
52 53 54			data values). Reference to where				
55 56			details of data management procedures				
57 58			can be found, if not in the protocol				
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml			

1 2	Statistics:	<u>#20a</u>	Statistical methods for analysing	16
3 4	outcomes		primary and secondary outcomes.	
5 6 7			Reference to where other details of the	
7 8 9			statistical analysis plan can be found, if	
10 11			not in the protocol	
12 13 14	Statistics:	<u>#20b</u>	Methods for any additional analyses	16
15 16 17	additional		(eg, subgroup and adjusted analyses)	
17 18 19 20	analyses			
20 21 22	Statistics: analysis	<u>#20c</u>	Definition of analysis population relating	16
23 24	population and		to protocol non-adherence (eg, as	
25 26	missing data		randomised analysis), and any	
27 28 29			statistical methods to handle missing	
30 31			data (eg, multiple imputation)	
32 33	Methods:			
34 35	Monitoring			
36 37 38	Worntoning			
39 40	Data monitoring:	<u>#21a</u>	Composition of data monitoring	n/a
41 42	formal committee		committee (DMC); summary of its role	
43 44			and reporting structure; statement of	
45 46			whether it is independent from the	
47 48 49			sponsor and competing interests; and	
50 51			reference to where further details about	
52 53			its charter can be found, if not in the	
54 55			protocol. Alternatively, an explanation	
56 57 58			of why a DMC is not needed	
58 59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gui	delines.xhtm

1	Data monitoring:	#21b	Description of any interim analyses and	n/a
2 3 4 5 6	interim analysis	<u></u>	stopping guidelines, including who will	
			have access to these interim results	
7 8				
9 10			and make the final decision to	
11 12			terminate the trial	
13 14	Harms	<u>#22</u>	Plans for collecting, assessing,	17-18
15 16			reporting, and managing solicited and	
17 18 19			spontaneously reported adverse events	
20 21			and other unintended effects of trial	
22 23			interventions or trial conduct	
24 25				
26 27	Auditing	<u>#23</u>	Frequency and procedures for auditing	17-18
28 29			trial conduct, if any, and whether the	
30 31			process will be independent from	
32 33			investigators and the sponsor	
34 35 26	Ethics and			
36 37 38	dissemination			
38 39 40	dissemination			
41 42	Research ethics	<u>#24</u>	Plans for seeking research ethics	18
43 44	approval		committee / institutional review board	
45 46			(REC / IRB) approval	
47 48	Drotocol	#05	Diana for communicating important	10
49 50	Protocol	<u>#25</u>	Plans for communicating important	18
51 52	amendments		protocol modifications (eg, changes to	
53 54			eligibility criteria, outcomes, analyses)	
55 56 57			to relevant parties (eg, investigators,	
57 58 59				
60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1 2 3 4			REC / IRBs, trial participants, trial registries, journals, regulators)	
5 6 7 8 9 10 11 12 13 14 15 16 17	Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants	8
			or authorised surrogates, and how (see	
			Item 32)	
	Consent or	<u>#26b</u>	Additional consent provisions for	n/a
18 19	assent: ancillary		collection and use of participant data	
20 21	studies		and biological specimens in ancillary	
22 23 24			studies, if applicable	
25 26 27	Confidentiality	<u>#27</u>	How personal information about	18
27 28 29			potential and enrolled participants will	
30 31			be collected, shared, and maintained in	
32 33			order to protect confidentiality before,	
34 35 36 37 38			during, and after the trial	
	Declaration of	<u>#28</u>	Financial and other competing interests	18
39 40 41	interests		for principal investigators for the overall	
41 42 43			trial and each study site	
44 45 46	Data access	<u>#29</u>	Statement of who will have access to	18
47 48			the final trial dataset, and disclosure of	
49 50 51			contractual agreements that limit such	
52 53			access for investigators	
54 55 56	Ancillary and post	<u>#30</u>	Provisions, if any, for ancillary and	n/a
57 58	trial care		post-trial care, and for compensation to	
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	delines.xhtml

		those who suffer harm from trial	
		participation	
Dissemination	<u>#31a</u>	Plans for investigators and sponsor to	18
policy: trial results		communicate trial results to	
		participants, healthcare professionals,	
		the public, and other relevant groups	
		(eg, via publication, reporting in results	
		databases, or other data sharing	
		arrangements), including any	
		publication restrictions	
Dissemination	<u>#31b</u>	Authorship eligibility guidelines and any	18
policy: authorship		intended use of professional writers	
Dissemination	<u>#31c</u>	Plans, if any, for granting public access	n/a
policy:		to the full protocol, participant-level	
reproducible		dataset, and statistical code	
research			
Appendices			
Informed consent	<u>#32</u>	Model consent form and other related	
materials		documentation given to participants	
		and authorised surrogates	
Biological	<u>#33</u>	Plans for collection, laboratory	11
specimens		evaluation, and storage of biological	
		specimens for genetic or molecular	
		analysis in the current trial and for	
	For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

future use in ancillary studies, if

applicable

None The SPIRIT checklist is distributed under the terms of the Creative Commons Attribution

License CC-BY-ND 3.0. This checklist can be completed online using https://www.goodreports.org/, a

tool made by the EQUATOR Network in collaboration with Penelope.ai

<text>

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users – Protocol for a randomized controlled trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040727.R1
Article Type:	Protocol
Date Submitted by the Author:	09-Sep-2020
Complete List of Authors:	Hansen, Rasmus; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology; Professionshojskolen University College Nordjylland, Research and Innovation Samani, Afshin; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology Laessoe, Uffe; Professionshojskolen University College Nordjylland, Physiotherapy; Professionshojskolen University College Nordjylland, Research and Innovation Handberg, Aase; Aalborg University Hospital, Clinical Biochemistry; Aalborg Universitet, Clinical Medicine Larsen, Ryan; Aalborg Universitet, Health Science and Technology, Sport Sciences – Performance and Technology
Primary Subject Heading :	Rehabilitation medicine
Secondary Subject Heading:	Cardiovascular medicine, Sports and exercise medicine, Public health
Keywords:	REHABILITATION MEDICINE, Physiology < NATURAL SCIENCE DISCIPLINES, Coronary heart disease < CARDIOLOGY, Neurological injury < NEUROLOGY, PUBLIC HEALTH, ULTRASONOGRAPHY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	1	Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord
5 6 7	2	injured wheelchair users – Protocol for a randomized controlled trial
, 8 9	3	Rasmus Kopp Hansen, MSc ^{1,2} , Afshin Samani, PhD ¹ , Uffe Laessoe, PhD ² , Aase Handberg, DMSc, MD ^{3,4} ,
10	4	Ryan Godsk Larsen, PhD ¹
11 12 13	5	
14	6	¹ Department of Health Science and Technology, Sport Sciences – Performance and Technology, Aalborg
15 16 17	7	University, Aalborg, Denmark
	8	² Department of Physiotherapy / Research and Innovation, University College of Northern Denmark,
18 19	9	Aalborg, Denmark
20	10	³ Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
21 22 23	11	⁴ Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
24 25	12	Corresponding author:
25 26	13	Rasmus Kopp Hansen, MSc.
27 28	14	Department of Health Science and Technology, Sports Sciences – Performance and Technology
29	15	Aalborg University
30 31	16	Niels Jernes Vej 12, A5-209
32	17	DK-9220 Aalborg
33 34	18	Aalborg University Niels Jernes Vej 12, A5-209 DK-9220 Aalborg Denmark Telephone: +4520892317 Email <u>rkopp@hst.aau.dk</u>
35	19	Telephone: +4520892317
36 37	20	Email <u>rkopp@hst.aau.dk</u>
38	24	
39 40 41	21 22	
42 43		
44	23	
45 46	24	
47 48	25	
49 50	26	
51 52 53	27	
53 54 55	28	
56	20	
57 58 59 60	29	

ABSTRACT

Introduction

Cardiovascular and metabolic diseases are a growing concern for individuals with spinal cord injury (SCI). Physical inactivity contributes to cardiometabolic morbidity and mortality in the SCI population. However, previous studies have shown mixed results regarding the effects of exercise on cardiometabolic risk factors in individuals with SCI. This discrepancy could be influenced by insufficient exercise stimuli. Recent guidelines recommend 30 minutes of moderate-to-vigorous intensity aerobic exercise, three times a week, for improvement in cardiometabolic health in individuals with SCI. However, to date, no studies have implemented an exercise intervention matching the new recommendations to examine the effects on cardiometabolic risk factors. Therefore, the primary objective of this study is to determine the effects of 12-weeks of wheelchair user-modified upper-body rowing exercise on both traditional (constituents of the metabolic syndrome) and novel (e.g. vascular structure and function) cardiometabolic risk factors in manual wheelchair users with SCI.

Methods and analysis

A randomized controlled trial will compare 12-weeks of upper-body rowing exercise, 30 minutes three times per week, with a control group continuing their normal lifestyle. Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks of training (post), and 6 months after the termination of the intervention period (follow up). Outcomes will include inflammatory (e.g. C-reactive protein) and metabolic biomarkers determined from venous blood (with serum fasting insulin as primary outcome), body composition, arterial blood pressure, cardiorespiratory fitness level, brachial artery vascular structure and function, and autonomic nervous system function.

Ethics and dissemination

This trial is reported to the Danish Data Protection Agency (J.nr. 2019-899/10-0406) and approved by the Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (Journal-nr. N-20190053). The principal investigator will collect written informed consent from all participants prior to inclusion. Irrespective of study outcomes, the results will be submitted to peer-reviewed scientific journals for publication.

Trial registration number

NCT04390087.

ARTICLE SUMMARY

Strengths and limitations of this study

3			
4 5	62	٠	The frequency, duration and intensity of the exercise intervention follows recently published
6	63		exercise recommendations for individuals with SCI.
7 8	64	•	This study uses a randomized controlled design to examine the effects of a novel exercise modality
9	65		on both traditional and novel cardiometabolic risk factors.
10 11	66	٠	The exercise modality (upper-body rowing) includes not only an aerobic component, but also an
12 13	67		element of resistance training for the posterior shoulder region, potentially ameliorating shoulder
14	68		pain.
15 16	69	•	Lack of control of food intake is a study limitation as altered energy intake could influence the
17 18	70		interpretation of the effects of exercise on body mass and body composition
19 20	71		
21 22	72		
22 23 24	73		
25 26 27	74		interpretation of the effects of exercise on body mass and body composition
27 28 29	75		
30 31	76		
32 33	77		
34	70		
35 36	78		
37	79		
38 39	80		
40 41	04		
42	81		
43 44	82		
45 46	83		
47			
48 49	84		
50 51	85		
52	86		
53 54	00		
55 56	87		
57	88		
58 59			
60			

89 INTRODUCTION

Individuals with spinal cord injury (SCI) are placed at the lowest end of the fitness continuum ¹. Thus
 cardiovascular disease and metabolic dysfunction is a growing concern in this population ^{2,3}. In recent years,
 cardiovascular disease has emerged as the leading cause of mortality in individuals with chronic SCI ⁴.
 Factors contributing to high cardiometabolic morbidity and mortality in individuals with SCI are sedentary
 lifestyle and low physical activity level ⁵, and the ensuing negative influence on body composition, reflected
 by lower fat-free mass and larger amount of adipose tissue ⁶.

The clinical manifestations of SCI rely on the level of neurological injury and the completeness of injury 7. 96 97 SCI can result in complete or partial loss of sensorimotor function below the level of injury. In general, a cervical injury leads to impairment of all four extremities (i.e. both arms and legs) as well as the trunk and 98 99 pelvic organs (tetraplegia), whereas an injury to the thoracic, lumbar or sacral spine preserves functioning of 23 100 the arms (paraplegia)⁸. In addition to the impairment of sensorimotor function, SCI can disrupt sympathetic 25¹101 nervous system function as preganglionic sympathetic neurons are located between the T1 and L2 spinal ²⁶ 102 segment ⁷. Due to an increased amount of paralyzed muscle mass and larger disruption of the autonomic 28 103 nervous system, lower physical capacity ⁹ and heightened cardiovascular risk ¹⁰ are generally observed 104 among individuals with a high (tetraplegic) and complete SCI. The loss of sensorimotor function in the lower 31 105 extremities forces many individuals with SCI to rely on a wheelchair for mobility. For those wheelchair users 106 with sufficient strength and movement control in the arms, a manual wheelchair (i.e. a wheelchair that can be 34 107 propelled by the user) is typical used for mobility ¹¹.

108 Besides the obvious limitation to physical activities requiring ambulation, explanations for the adoption of a 38 109 sedentary lifestyle are multifactorial, but studies have identified intrapersonal and socio-environmental 40 110 physical activity barriers in manual wheelchair users with SCI ^{12–14}. Some barriers such as the intrapersonal 41 111 barriers of lack of time¹⁵ or energy¹⁶ identified by individuals with mobility disabilities are consistent with 43⁴²112 those reported in the non-disabled population. Other barriers are specific to the mobility of individuals with ⁴⁴ 113 disability, such as organizational or structural barriers (e.g. lack of accessible fitness centers¹² and adaptive 46 114 exercise equipment¹³) and community built environment barriers¹⁷. Consequently, new approaches to support 47 48 115 the initiation and perseverance of physical activity in this population are required.

The majority of previous exercise intervention studies have used isolated aerobic exercise, often in the form of arm-cranking exercise ¹⁸. These studies have demonstrated improvements in traditional risk factors for cardiometabolic diseases, such as high-density cholesterol (HDL-C) ¹⁹, fasting insulin ²⁰, and indices of insulin resistance ²¹, whereas the effects on arterial blood pressure ²², blood lipids (e.g. low-density cholesterol (LDL-C) and triacylglycerol) are inconclusive ^{20,23,22}. Moreover, although evidence from crosssectional studies suggests an association between increased participation in moderate-to-vigorous intensity leisure time physical activity and a reduction in visceral adipose tissue ²⁴, there is insufficient evidence for

123 the effects of upper-body aerobic exercise on changes in body mass and body composition, such as a reduction in total and visceral adipose tissue ^{18,25,26}. The explanation for the lack of an exercise effect on 124 some of these above mentioned risk factors is not clear, but could be related to insufficient volume 20,22 or 125 intensity ²⁵ of exercise, performed with limited amount of skeletal muscle mass. 126 10

11 127 Notably, in able-bodied individuals, the exercise-induced risk reduction in cardiovascular diseases cannot be 12 13 128 fully explained by traditional risk factors (constituents of the metabolic syndrome), i.e. there is a risk factor 14 129 gap ²⁷. As a consequence, studies have started to focus on the effects of exercise on changes in the vascular 15 wall ²⁷. It is known that dysfunction of the vascular endothelium occurs at the very early phases of 16 130 17 18 ¹³¹ atherosclerosis ²⁸. For instance, flow-mediated dilation (FMD), a non-invasive measure of nitric oxide (NO) ¹⁹ 132 dependent endothelial function²⁹, is a strong predictor of future cardiovascular events³⁰. In addition, carotid 20 21 133 intima media thickness (IMT), a measure of vessel wall thickness ³¹ has shown to be associated with future ²² 134 vascular events, such as the occurrence of stroke and myocardial infarction ³¹. Accumulating evidence in 23 24 135 able-bodied individuals demonstrates beneficial effects of exercise on structural and functional adaptations 25 26 136 of the vasculature ³². However, little is known about the effects of exercise on the vasculature in individuals 27 137 with SCI. 28

29¹³⁸ Reductions in femoral artery (lower body) diameter occurs rapidly in response to extreme inactivity, as ³⁰ 139 observed within three weeks off acquiring a SCI ³³. De Groot et al. ³⁴ found similar FMD in the brachial 31 32 140 artery among untrained SCI when compared to able-bodied individuals, however when FMD was normalized 33 34 141 to the shear stress stimulus, the dilation response was reduced in the SCI group, indicating some degree of 35 142 endothelial dysfunction in this population ³⁵. Other observational studies have demonstrated both larger 36 37 143 conduit artery diameter and blood flow in the subclavian artery $\frac{36}{5}$, and larger brachial diameter $\frac{34}{10}$ in 38 144 wheelchair athletes compared to non-athlete able-bodied controls. Together these findings indicate that 39 40 145 remodeling of the vasculature also occurs in response to regular exercise in wheelchair users with SCI. 41 42 146 However, the causal link between adaptations of the upper body arteries and repetitive exercise stimulus in 43 147 SCI is not fully established. Therefore, the relationship between exercise and vascular remodeling in manual 44 45 148 wheelchair users needs to be determined through controlled exercise studies. A recent experimental study 46 149 consisting of supervised aerobic exercise (20min, twice per week), adhering to the earlier (2011) exercise 47 ₄₈ 150 guidelines for adults with SCI ³⁷, was successful in improving measures of cardiorespiratory fitness and ⁴⁹ 151 muscle strength ³⁸. Yet, Zepetnek et al. ²² demonstrated that this exercise paradigm (20min, twice per week) 50 51 152 did not improve markers of cardiovascular disease risk, including carotid IMT and brachial FMD. Recent 52 53 153 (2018) guidelines recommend at least 30 min of moderate-to-vigorous intensity aerobic exercise, three times 54 154 per week in order to improve cardiometabolic health in individuals with SCI ³⁹, suggesting that insufficient 55 56 155 exercise stimuli may explain the lack of vascular adaptations in the study by Zepetnek et al.²². Notably, to 57 156 date, no studies have examined the effects of the updated exercise guidelines (30 min of moderate-to-58

59 60

5

6 7

vigorous intensity aerobic exercise, three times per week) on vascular adaptations in manual wheelchair 157 158 users with SCI.

While isolated aerobic exercise, via arm-cranking or wheelchair ergometry, evokes positive effects on 159 10 160 cardiorespiratory fitness, these modalities/types of exercises fail to address the importance of strengthening 161 the posterior shoulder musculature of the upper-extremity for individuals with SCI relying on a manual wheelchair for mobility ⁴⁰. In addition, these modalities use repetitive contractions of the shoulder 13 162 14 15 163 musculature engaged in daily wheelchair propulsion activities, thereby increasing the risk of developing shoulder pain ^{41–43}. Studies have reported high prevalence of shoulder pain in long-term wheelchair users 16 164 ^{44,45}, which prevents these individuals from engaging in physical activity ⁴⁶. As wheelchair users rely on their 18 165 ¹⁹ 166 upper-extremities for most daily activities, upper-extremity pain must be prevented or limited to preserve 21 167 function, independence and quality of life (QOL)^{21,47}. Indeed, health related QOL is lower in adults with SCI ²² 168 compared with the able-bodied population ^{48,49}. The development of shoulder pain has been suggested to occur due to chronic overuse, shoulder strength imbalances between anterior and posterior musculature, 24 169 25 26 170 postural changes and impingement syndrome ^{50–52}. Considering the general need for strong upper extremities 27 171 to bear weight during different transfer tasks ⁵³, to propel wheelchair ⁵⁴, and to reach overhead levels ⁵⁵, the 28 29 172 inclusion of resistance training in exercise training paradigms seems prudent. One modality that combines ³⁰ 173 aerobic and resistance components is rowing 56. Specifically, it has been shown that wheelchair user-31 modified upper-body rowing ergometry challenges the cardiovascular system comparable to arm-cranking ⁴¹. 32 174 33 34 175 Additionally, upper-body rowing mirrors the muscle activation observed during traditional resistance training for the scapular retractors ⁵⁷. Earlier research has demonstrated beneficial effects of resistance 35 176 36 30 37 177 training of the posterior shoulder and scapular retractor musculature on shoulder pain ^{47,55,58}. Thus, the use of ³⁸ 178 upper-body rowing ergometry may evoke positive effects on both cardiometabolic health and shoulder pain 39 40 179 in manual wheelchair users, the latter through alterations in posterior vs. anterior upper-body muscle strength 41 42 180 balance. However, to date, no studies have implemented upper-body rowing ergometry as exercise modality 43 181 in this population. 44 45 182

46 183 **Objectives**

⁴⁸ 184 The primary objective of this study is to determine the effects of 12-weeks of wheelchair user-modified 49 upper-body rowing on both traditional (insulin resistance, obesity, dyslipidemia (including low HDL-C and 50 185 51 52 186 51 elevated triglycerides, and blood pressure) and novel (inflammatory status, autonomic nervous system 53 187 function, vascular structure and function, and cardiorespiratory fitness level) cardiometabolic risk factors in 54 55 188 manual wheelchair users with SCI. As secondary objectives, we will investigate the effects of the exercise ⁵⁶ 189 intervention on leisure time physical activity, shoulder pain, indices of QOL, and feasibility of the 57 58 190 intervention.

59 60

47

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

191 **METHODS AND ANALYSIS**

Study design 192

5 6

7 8

9

A randomized controlled trial designed to determine the effects of 12 weeks of exercise training on 193 cardiometabolic risk, indices of OOL, and shoulder pain, will be conducted in accordance with the Standard 10 194 11 195 Protocol Items: Recommendations for Interventional Trials (SPIRIT) statement ⁵⁹. The trial is registered as a 12 13 196 controlled trial on 15 May 2020 (NCT04390087) with first enrolment beginning in November 2020. The 14 ₁₅ 197 study overview is presented in Figure 1. After giving written informed consent to participate in the study (see 16 198 online supplementary appendix for details about the model consent form), participants will undergo baseline 17 18 199 testing, after which they will be randomly assigned to either a control group or an exercise group (allocation 19 200 ratio, 1:1), stratified for age, self-reported leisure time physical activity level, and SCI level. Randomization 20 21 201 will be conducted using a computer-generated random number sequence (https://www.randomizer.org/). 22 23²202 Outcome measurements will be performed immediately before (baseline), after 6 weeks (halfway), 12 weeks ²⁴ 203 of training (post), and 6 months after the termination of the intervention period (follow up). This approach 25 26 204 allows for assessment of the short term effects of exercise training as well as any residual effects from the ²⁷ 205 training intervention on cardiometabolic risk, shoulder pain, indices of OOL, and self-reported leisure time 28 29 206 physical activity. Participants will be asked to maintain their normal dietary habits throughout the study 30 207 period. 31

33 208 **Participants**

32

34 35⁻209 Inclusion criteria

³⁶ 37 210 Men and women; aged 18-65 years; chronic SCI (≥ 1 year since injury); individuals with sufficient sparing of 38 211 arm flexor function to participate in upper-body rowing (i.e. as a minimum excluding individuals with 39 40²¹² complete SCI at or above C5); using a manual wheelchair as a primary tool for mobility. Volunteers will be ⁴¹ 213 asked to self-report SCI level and completeness and to provide a copy of the part of their medical records 42 43 214 that confirm injury level and American Spinal Injury Association (ASIA) impairment scale classification 44 215 before any measurements are commenced. In addition, volunteers will be asked to briefly perform the rowing 45 46 216 exercise during the first laboratory visit to ensure that the individual is able to perform the exercise 48 217 47 intervention. As part of the screening, volunteers will also be asked to indicate smoking habits, known 49 218 medical issues, diseases or use of medication that could affect metabolism (e.g. statins or metformin) or the 50 ₅₁ 219 cardiovascular system (e.g. diuretics, beta blockers, or angiotensin-converting enzyme inhibitors).

53 220 Exclusion criteria

⁵⁵ 221 Individuals who regularly engage in >90 min/week of moderate-to-vigorous intensity physical activity; have 56 57 222 received a cortisone injection in the shoulder within the last four months; have had shoulder injury within the 58 223 previous year; known medical issues (urinary tract infections, cardiovascular contraindications for exercise 59

60

52

BMJ Open

8 226 **Recruitment**

₁₀ 227 Starting from September 2020, participants will be recruited through notices at Aalborg University, websites 11 228 seeking volunteers for research studies (e.g., www.forsog.dk), organizations related to disability and SCI, 12 13 229 including the Spinal Cord Injured in Denmark organization, physician clinics, wheelchair manufacturing 14 230 company (Wolturnus A/S) and local community groups. Information on websites, social media, posters, 15 16 231 flyers will be used to reach potential participants. This kind of participant recruitment can be considered 17 18 232 passive since the participants have to choose to react on the study information⁶⁰. This approach increases the ¹⁹ 233 risk of over representing individuals who are interested in the research area⁶⁰. Considering this risk of 20 21 234 selection bias, physician clinic visits from the principal investigator (i.e. active recruitment) will be used as ²² 235 an additional strategy to reach potential participants. For this study, 30 participants will be recruited. The 23 24 236 sample size is based on the effect size (Cohen d: -0.69) for changes in fasting insulin after 6 weeks of arm-25 26 237 cycling exercise ²⁰. With a power of 0.9, and an alpha level of 0.05, 20 participants in total are required to 27 238 detect a significant change. To account for drop-outs during the 12 week intervention, as well as potential 28 29 239 drop-outs in the control group, 30 participants will be included in the project, with n=15 allocated to the ³⁰ 240 control and exercise group, respectively. 31

241 Intervention

32

33

35

34 242 Exercise group

³⁶ 243 Volume, intensity and frequency of the intervention is based on recent exercise recommendations for 37 38 244 individuals with SCI³⁹. Consequently, the training will be performed for 30 min, 3 times per week with 39 40 245 moderate-to-vigorous intensity, with at least one rest day between sessions. Low compliance rate is a general 41 246 issue in SCI exercise studies ⁶¹. Compared with continuous exercise, interval-based exercise have been 42 ^{⊣∠} 43 247 reported to elicit higher enjoyment in individuals with SCI 62, which may increase exercise compliance. ⁴⁴ 248 Considering this difference between continuous and interval-based exercise, the target duration of 30 min 45 will be reached through accumulation of 5-min bouts (up to 6 bouts), with 1-2 min of rest between each bout. 46 249 47 250 It is possible that some participants will not be able to exercise for 30 min with the intended intensity. 48 49 251 Accordingly, exercise duration will be tailored to each participant's physical capacity ⁶³ by gradually 50 50 51 252 increasing the duration (i.e. the number of 5-min bouts) over the weeks towards the targeted 30 min (i.e. six 52 253 * 5-min bouts). Exercise intensity will be prescribed based on rating of perceived exertion (RPE) 53 54 254 corresponding to 12-15 on the 'Borg 6-20 RPE Scale 64,65. The validity of using RPE to control moderate and ⁵⁵ 255 vigorous exercise intensity has been demonstrated in individuals with SCI 66. During the first visit, 56 57 256 participants will be familiarized with the RPE scale ⁶⁷ and receive detailed instructions on the use of RPE and 50 59 257 58 how to rate the overall exertion based on an integration of central and peripheral sensations of effort ⁶⁶. Some 60

2 3 4 controversy exists about the validity of using overall RPE to monitor exercise intensity 67,68, as the 258 5 relationships between overall RPE and objective physiological markers such as oxygen consumption (VO₂), 259 6 7 260 heart rate (HR) and ventilation (VE) in individuals with SCI have been questioned ⁶⁸. This have led some 8 9 261 researchers to use a differentiated RPE scale that distinguishes between central (cardiorespiratory sensations) 10 ₁₁ 262 and peripheral (peripheral working limbs) sensations ⁶⁹. However, the current evidence does not indicate 12 263 greater validity for differentiated RPE compared with overall RPE 67, and therefore overall RPE will be used 13 14 264 to guide exercise intensity. 15

16 265 Each training session will consist of aerobic exercise performed on a wheelchair-modified upper-body 17 18 266 rowing ergometer (Concept 2, Morrisville, Vermont, USA). Due to the pulling motion of the upper-body 19 267 during rowing, this modality also includes a component of resistance exercise ⁵⁶. The modification of the 20 21 268 ergometer is made by separating it into two parts using an Adapt2row¹, allowing the participants to sit in 22 269 their wheelchair while performing upper-body rowing. Wedges will be positioned under the rear wheels to 23 24 270 keep the wheelchair in place. Further, in case of SCI related insufficient innervation of torso musculature, 25 25 26 271 straps will be wrapped around the back of the wheelchair and around the trunk of the participant, thereby ²⁷ 272 securing the participant to the wheelchair. A pilot study ⁴¹ has provided promising results regarding the 28 29 273 feasibility of using adaptive upper-body rowing exercise in the SCI population. Participants will be asked to 30 274 empty their bladder before each training session. Average power output (W) will be recorded during each 31 32 275 exercise session to monitor training load and quantify progress in work capacity.

³⁴ 276 All exercise sessions will be supervised by the principal investigator, who is an exercise physiologist, or by 35 36 277 sport science students to ensure proper assistance and guidance of the participants. Everyone involved in ³⁷ 278 supervision will be thoroughly instructed in how to supervise correct exercise technique, and they will 38 39 279 receive general knowledge about SCI and wheelchair use. To allow for some flexibility regarding scheduling 40 41⁴⁰ 280 conflicts, participants will have opportunity to exercise 2-4 days per week, with a target of 3 days per week. ⁴² 281 That is, in case of a missing session one week, an additional training session can be included the following 43 44 282 week. However, to secure adequate recovery, no more than four training days per week will be allowed. The 45 283 intervention will be terminated after 12 weeks, irrespective of any missing training sessions. An adherence 46 rate threshold of 75% will be used (\geq 27 exercise sessions out of the maximum 36)⁷⁰. However, there are no 47 284 48 285 previous reports of adherence rates for this type of exercise intervention (12 weeks of wheelchair-modified 49 ⁵⁰ 286 rowing) in individuals with SCI. Therefore, if some participants show low (<75%) adherence rates, we 51 ₅₂ 287 intend to do a sensitivity analyses in order to determine how sensitive the exercise responses are to reaching ⁵³ 288 $(\geq 75\%)$ or not reaching (< 75%) the *a priori* set adherence rate. If adherence rate influences the exercise 54 55 289 response, we will consider to include adherence rate as a covariate in the statistical analyses. 56

58 59 60

57

33

¹ <u>http://www.adapt2row.com/</u>

5 6

7 8

9

14

36 309

40

290 Control group

The participants allocated to the control group will be asked to maintain their normal lifestyle throughout the 291 intervention period. When the 6-months follow-up testing has been terminated, the control group will receive 292 ₁₀ 293 information about the exercise guidelines and the benefits of physical activity. Additionally, if requested, the 11 294 principal investigator will organize contact to facilities where participants in the control group can perform 12 13 295 adapted rowing.

15 296 Main trial day protocol 16

The experimental procedures will be similar at baseline, halfway, post intervention, and at follow-up 6 17 297 18 298 months later. To account for within-day variation, the procedures will be performed at the same time of day 19 20 299 for each participant. Participants will arrive at the exercise laboratory at Aalborg University for testing. 21 ₂₂ 300 Participants will be asked to refrain from any strenuous exercise (>24 h), caffeine, alcohol, polyphenols, ²³ 301 vitamin C, and supplements known to affect the cardiovascular system (>12 h), and attend in a fasted (>6 h) 24 25 302 state. ⁷¹ Any smokers must abstain from smoking for >6 h prior to each visit ⁷¹. If participants are taking 26 27 303 medication, a wash-out period of at least 4-5 times the half-life of the drug (typically 24-48 h) will be used. 28 304 If a drug cannot be withdrawn due to health issues, testing will be performed after a consistent time period 29 29 30 305 after intake, as recommended for studies examining vascular function ^{71,72}. On trial days, participants will 31 306 receive a standardized snack (energy bar) after completion of the FMD measurement. Participants will be 32 33 307 asked to empty their bladder before any testing is commenced, and are allowed to drink water ad libitum 34 308 during the test days. 35

37 38 310 **INSERT FIGURE 1**

39 311 **Blood collection procedure**

41 312 On a separate day, after an overnight fast (i.e. ≥ 10 hours of fasting), participants will have approximately 20 42 43 313 mL blood drawn from a peripheral vein. Blood samples will be aliquoted and stored at -80° at the 44 314 Department of Clinical Biochemistry, Aalborg University Hospital, until analyses. Blood samples will be 45 46 315 analyzed for indicators of cardiometabolic health (markers of glucose homeostasis, dyslipidemia, non-⁴⁷ 316 alcoholic fatty liver disease (NAFLD), and prothrombotic risk) as well as inflammatory markers (pro- and 48 49 317 anti-inflammatory markers). Blood sampling will be conducted within a week prior to commencing the ⁵⁰ 318 intervention (baseline), between 36 and 60 hours after the last exercise session in week 6 (halfway) and week 51 52 319 12 (post) to minimize any effects from the last exercise session, and 6 months after the termination of the 53 54 320 intervention (6-months follow-up).

55 56 321 **Outcome measures**

58 322 **Primary outcome**

59 60

The primary outcome is fasting insulin, since it is one of the hallmarks of the metabolic syndrome ^{73,74}, and 323 has shown to be modifiable with exercise training in individuals with SCI 20. 324

325 Secondary key outcomes

5

6 7 8

9 10

11 12

14

15

17

18 19

21

29

31

34

37

44

326 Arterial blood pressure (BP) and resting heart rate (HR)

13 327 After resting for 10 min, participants will have their resting systolic and diastolic BP and HR measured with 328 an automated BP monitoring device (OMRON M3, OMRON Healthcare, Hoofddorp, Netherlands). 16 329 Measurements will be performed twice, with participants in sitting position. If these measurements deviate 330 >5 %, a third measurement will be performed. The lowest values will be used for further analyses.

₂₀ 331 Body composition

Participants will have their body mass measured while sitting in their wheelchair (wearing light clothing) 22 332 23 24 333 using a platform wheelchair scale (Detecto ® 6550 wheelchair scale, Webb City, MO, USA). Body mass will 25 334 be derived by subtracting the weight of the wheelchair from the total mass and rounded to the nearest 0.1 kg ∠o 27 335 26 ⁷⁵. Supine height (cm) will be measured in supine position using non-elastic tape. For participants with ²⁸ 336 contractures precluding stretching of the legs, length will be measured in segments from heel to top of the 30 337 skull ⁷⁶. Body mass index (BMI) will be calculated as weight (kg) divided by height squared (m²). Waist 338 circumference and waist-to-hip circumference ratio will be used as a surrogate for visceral adiposity ^{75–77}. 32 33 339 Participants will have their waist and hip circumference measured in supine position following a deep 34 35 340 expiration. Waist and hip circumference will be measured immediately below the lowest rib ⁷⁶ and widest 36 341 part of the trochanters ⁷⁷, respectively. For all circumference measurements, the tape will be placed directly ₃₈ 342 on the skin with the participants arms by the side ⁷⁶. Anthropometric measures will be taken in duplicate ³⁹ 343 (height, waist and hip circumference), rounded to the nearest 0.1 cm and reported as the mean. If the 40 41 344 difference between the first and second measure is >0.1 cm, a third measure will be obtained. ⁷⁶ 42

43 345 Autonomic nervous system function

⁴⁵ 346 Increasing evidence suggest that autonomic dysfunction accentuates the risk for adverse cardiovascular 46 47 347 events ⁷⁸. Individuals with SCI are prone to autonomic disturbances as a consequence of disruption to the 40 49 348 spinal cord⁷, placing them at increased risk for autonomic related cardiovascular diseases. It is generally 50 349 accepted that the heart in individuals with SCI below T6 is innervated by both sympathetic and 51 51 52 350 parasympathetic neurons. In contrast, due to disruption of sympathetic outflow, parasympathetic innervation ⁵³ 351 dominates in individuals with complete cervical and upper thoracic injuries, thereby resulting in bradycardia, 54 55 352 reduced cardiac output and arterial BP⁷. Recently, it has been shown, however, that sympathetic control can ⁵⁶ 353 57 be partially preserved in athletes with a cervical motor complete injury, with the degree of preservation being 58 354 an important determinant of exercise performance ⁷⁹. Yet, whether exercise training can alter autonomic 59

nervous system function (e.g. balance between sympathetic and parasympathetic activity) in individuals with 355 SCI is uncertain. Thus, as assessment of autonomic nervous system function, HR variability (HRV) 78,80 and 356 arterial BP changes in response to an orthostatic challenge (sit-up tilt test) ⁷⁹ will be measured as exploratory 357 358 aims. For HRV measurements, participants will be equipped with a 4-lead surface electrodes on their chest and have their electrocardiogram (ECG) recorded (LabScribe v4, iWorx, Dover, NH, US) during 5 min of 360 quiet rest. ECG data will be exported to dedicated software (Kubios HRV Standard 3.2.0; Kuopio, Finland) for analyses of frequency-domain parameters (low frequency power, high frequency power and total power) 362 and time-domain parameters (HR and the root mean square of successive RR interval differences) in accordance with guidelines from The European Society of Cardiology and Heart Rhythm Society 81,82. For 364 the sit-up tilt test, participants will be equipped with a finger plethysmograph (Finometer, Finapres Medical Systems BV, Enschede, the Nederlands) for continuous and non-invasive measurement of arterial BP and HR during a 10 min orthostatic challenge (sit-up test). Briefly, after 10-15 min of supine rest with baseline recordings, participants will be moved (i.e. without assistance from the participant) to an upright seating position with their legs hanging free of the bed at an angle of 90° 79. Changes in systolic BP and diastolic BP will be calculated as the difference between mean seated and supine BPs⁸³. The presence of orthostatic hypotension will be defined as a ≥ 20 mm Hg drop in systolic BP or a ≥ 10 mm Hg drop in diastolic BP when moving to an upright position ⁸⁴.

372 Vascular structure and function

After a rest period of 10-15 min in a quiet and darkened room, vascular structure and function will be evaluated non-invasively using ultrasonography (LOGIQ S8 XDclear, GE Healthcare) following recent guidelines on assessment of conduit ^{71,85} and resistance ⁷² vessel function. Conduit artery structure will be determined in the common carotid artery (CCA) and brachial artery (BA) with B-mode echoes using a 10 MHz multifrequency linear assay ultrasound probe. Measures of CCA and BA structure will be reported as intima media thickness (IMT) (mm), lumen diameter (mm), and wall-to-lumen ratio. The B-mode image will be optimized by changing depth and resolution, and will be kept constant between study visits. To assess BA and resistance vessel function, endothelial dependent flow-mediated dilation (FMD) and reactive hyperemia will be determined by cuff occlusion followed by re-perfusion ²⁹. First, participants will 382 have their baseline BA diameter measured for a period of 30 s. Then, a cuff placed distally on the forearm (i.e. distal to the ultrasound probe) will be inflated for 5 min up to a pressure that exceeds systolic BP by >50 mmHg. After 5 min, the cuff will be deflated and post-deflation diameter and blood velocity will be continuously recorded for 3 min⁷¹. For determination of FMD, both absolute (mm) and relative (%) change 55 386 in diameter from baseline to post-deflation will be calculated. Given the importance of shear stress as the ⁵⁶ 387 stimulus for the FMD response ⁸⁶, continuous and simultaneous measurement of pulse-wave velocity 57 58 388 (Doppler) and diameter (B-mode) using duplex ultrasound will be performed. This allows for an estimation

of the shear stress stimuli through the calculation of shear rate, which then can be used to normalize the 389 FMD response ⁸⁷. Because the error of the insonation estimation increases exponentially with angles >60° ⁸⁸, 390 an insonation angle of $\leq 60^{\circ}$ will be used, with the sample volume adjusted to cover the total width of the 391 392 vessel.

393 Resistance vessel function will be determined by the magnitude of the reactive hyperemic response to cuffinduced ischemia. Several measures obtained from the reactive hyperemic response will be reported, 13 394 395 including absolute blood flow (calculated based on the diameter derived cross sectional area and blood 16 396 velocity) and velocity, peak change in blood flow, and blood flow area under the curve (AUC) across the . 18 397 post-deflation time period.

Although related, the measure of reactive hyperemia mirrors the magnitude of downstream resistance artery 20 398 21 399 dilation, whereas FMD represents conduit artery dilation ⁷². 22

24 400 To ensure that the same part of the CCA and BA will be insonated across study visits, anatomical landmarks ²⁵ 401 will be identified and recorded together with a photo of the insonation sites. All insonation settings 26 27 402 (including sample volume, insonation angle, and recording time) and occlusion procedure (including cuff-28 403 position, pressure and duration) will be held consistent within participants across study visits. For 29 30 404 standardization, the same investigator will perform all measurements and all analyses (blinded to the identity 31 32 405 of the data).

34 406 Metabolic and inflammatory profile

5

6 7

8 9

10 11

12

14

15

17

19

23

33

35

47

36 407 The metabolic and inflammatory profile will be assessed via measures of glycemic control (fasting glucose, 37 ₃₈ 408 long-term blood glucose (HbA1c, glycosylated hemoglobin), homeostatic model assessment of insulin ³⁹ 409 resistance (HOMA-IR)), lipid profile (HDL-c, LDL-c, total cholesterol and triglycerides (TG)), pro-40 41 410 inflammatory (C-reactive protein (CRP), interleukin (IL) 6, tumor necrosis factor-alpha), anti-inflammatory 42 43 411 (IL-10, IL1RA)), prothrombotic (PAI-1), markers of NAFLD (hepatic enzymes (alanine-aminotransferase 44 412 (ALT) and aspartate-aminotransferase (AST)), growth differentiation factor 15 (GDF15) and fibroblast 45 46 413 growth factor 21 (FGF21)).

48 414 Cardiorespiratory fitness level

49 50 415 Cardiorespiratory fitness level will be determined through an incremental arm-cranking test to exhaustion, 51 416 with peak oxygen consumption (VO_{2peak}) and ventilatory thresholds as the outcome measures. The placement 52 53 417 of the ergometer (Monark 881E, Vansbro, Sverige) will be adjusted such that the participants shoulder joint ⁵⁴ 418 55 is aligned with the crank axis with the elbows slightly bend. Participants will be equipped with a HR 56 419 monitoring belt (Suunto Ambit3 Run; Suunto, Vantaa, Finland) and a face mask, connected to an online 57 58 420 open-circuit metabolic cart. The cart (JAEGER, Vyntus CPX, Carefusion) will be calibrated to known 59 421 volumes and gas concentrations according to manufactural guidelines. After a 1-min warm-up with zero 60

1	
2	
3	
4 5	422
6	423
7 8	424
9	425
10 11	426
12	427
13 14	428
15	429
16 17	430
18	431
19 20	432
21	
22 23	433
24	434
25 26	435
20 27	436
28	437
29 30	438
31	439
32 33	440
34	441
35 36	442
37	443
38 39	444
40	
41 42	445
43	446
44 45	440
46	447
47 48	448
49	449
50 51	450
52	451
53 54	452
-	

58

resistance, the test begins with an individualized starting load (5-90W)⁸⁹ with increases in work load (5 or 2 10W) every minute ⁹⁰ until volitional fatigue, defined as an inability to maintain cadence above 55 rounds 3 per minute (rpm)⁸⁹. The individual starting load and increment size will be chosen based on training history 4 and anticipated physical capacity, with the aim of reaching exhaustion within 8-12 minutes at a cadence of 5 60-70 rpm ^{90,91}. Breath-by-breath VO₂ and carbon dioxide output (VCO₂), and HR will be measured 6 7 continuously throughout the test. VO_{2peak} will be reported in both absolute (1 O₂·min⁻¹) and relative (ml $O_2 \cdot kg^{-1} \cdot min^{-1}$) terms, and defined as the highest 30-s average during the test, with the corresponding HR 8 reported as HR_{peak}. The highest workload that is achieved for \geq 30-s will be reported as PO_{peak}. Participants 9 0 will be asked to indicate RPE (Borg 6-20 scale) during the last 15-s of each minute. On test cessation, 1 participants will gradually cool-down for 5-min, while their BP will be measured immediately before and 2 after this recovery period.

3 As part of the cardiorespiratory fitness assessment, the first ventilatory threshold (VT1) and the second ventilatory threshold (VT2) will be determined during the incremental arm-cranking test. V1 and V2 4 represents distinct physiological events, but are both related to an increase in blood lactate and a subsequent 5 increase in VCO₂ in response to increased exercise intensity ⁹². Each VT will be defined according to the V-6 slope method or the ventilatory equivalent method, depending on which plot most clearly illustrates the 7 particular VT ⁹². In addition, a plot showing the respiratory exchange ratio (RER) will be used as extra 8 9 reference in order to support the recognition of individual thresholds ⁹². Thresholds will be determined independently by two researchers, with the average value used for analysis 93 . In case of deviation of >5 % 0 for individual thresholds, the disparity will be discussed and a mutual agreement will be found ⁹³. Although 1 2 1-min stages seems short for the attainment of steady state, the usage of 1-min stages have previously shown to be efficient for the detection of VTs on a group level, especially in paraplegics ⁹². 3

45 *Other secondary outcomes*

46 Shoulder pain

The prevalence and severity of shoulder pain will be assessed using the Danish version ⁹⁴ of the Wheelchair 7 Users Shoulder Pain Index (WUSPI)) ⁹⁵. WUSPI is a valid and reliable measure of shoulder pain in manual 8 wheelchair users ⁵¹ The questionnaire utilizes a series of visual analog scales (VAS) ranging from "no pain" 9 to "worst pain ever experienced", and it is a self-reported measure of the prevalence and severity of shoulder 0 pain during different activities such as dressing, bathing, transfer, wheeling up, sleeping etc. 95. Some 1 2 participants may not perform all of the 15 activities. To account for that, a performance-corrected shoulder 55 pain score (PC-WUSPI) will be calculated by dividing the raw total WUSPI score by the number of 453 56 57 454 performed activities, multiplied by 15 %.

59 455 *Health-related quality of life (HRQOL)*60

HRQOL will be monitored using the Danish translated version of the Short Form-36 (SF-36) 97, which is a 456 reliable and validated questionnaire to assess HRQOL within both a physical and mental health domain ⁹⁸. 457 Certain questions of the SF-36 will be adapted to wheelchair use. Specifically, the questions referring to 458 'walk' and 'stair-climbing' is substituted by the words 'climb' and 'go up', as previously recommended ⁹⁹. 459 10 11 460 Construct validity stays acceptable with this modification ⁹⁹. Data will be scored using the RAND 36-item 12 461 Health survey 1.0 method ¹⁰⁰, in which original responses is transformed into a score from 0-100, with 100 13 14 462 representing the best possible health. Individual item scores is then averaged within domains to create eight 15 463 subscales, four representing physical QOL and four representing mental QOL. For reporting of HRQOL, a 16 17 464 physical component summary score (PCS) and a mental component summary score (MCS) will be created 18 .0 19 465 based on the average of each component subscales ¹⁰¹.

21 466 Leisure time physical activity

5

6 7

8 9

20

22

40

42

23 467 To determine the effects of the exercise intervention on short-term (6 and 12-weeks follow-up) and long-24 25⁴⁶⁸ term (6-months follow-up) habitual physical activity, leisure time physical activity levels will be monitored ²⁶ 469 using the Leisure Time Physical Activity Questionnaire for People with Spinal Cord Injury (LTPAQ-SCI) 27 28 470 ¹⁰². In brief, the LTPAQ-SCI is a valid and reliable self-reported measure of leisure time physical activity ²⁹ 471 that assesses minutes of mild, moderate, and heavy intensity leisure time physical activity performed over the 30 previous 7 days ¹⁰². Participants in both the intervention and the control group will be asked to complete the 31 472 32 33 473 32 LTPAQ-SCI once every week throughout the 12-weeks intervention period and again once during the week 34 474 leading up to the 6-months follow-up. In addition, completion of the LTPAQ-SCI will work as a training 35 ₃₆ 475 diary for the intervention group, allowing us to monitor leisure time physical activity performed beyond the ³⁷ 476 amount related to the exercise intervention, which will strengthen our ability to interpret the results from the 38 39 477 intervention.

41 478 Feasibility and acceptability of the exercise intervention

⁴³ 479 Satisfaction with the exercise intervention will be evaluated with the Feasibility and Acceptability 44 45 480 Questionnaire ¹⁰³. In brief, participants will be asked to rate how feasible and acceptable they consider the 47 481 rowing exercise to be on a Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The 48 482 questionnaire consists of six questions addressing issues such as how fun the exercise was perceived; the 49 .) 50 483 difficulty level of the exercise; and whether they received appropriate guidance in how to perform the ⁵¹ 484 exercise. A mean score of \geq 3.0 will be used as a criterion to indicate that the intervention is acceptable ¹⁰³. 52 53 485 Additionally, compliance to the exercise intervention will be recorded and presented as compliance rate (% 54 55 486 participation). Compliance is defined as the number of exercise sessions completed out of the total number 56 487 (36) of sessions. 57

- ⁵⁸ 488 **Statistics** 59
- 60

42

The between group difference in changes of outcome variables will be examined from baseline to 6-weeks 489 490 follow-up (secondary endpoint), from baseline to post intervention (12-weeks follow-up; primary endpoint) 491 and again from post intervention to follow-up 6-months later (secondary endpoint). 492 Primary and secondary endpoint data are ratio and interval data and will therefore be treated as continuous 11 493 variables. Between group comparisons on primary and secondary endpoint will be dependent on data 12 494 distribution. We anticipate data to be approximately normally distributed, however before any analysis are 14 495 commenced, distribution of the data will be assessed through visual inspection of Q-Q-plots and histograms, 496 complemented by test of deviation from normality (Shapiro Wilk test). Assuming normality, descriptive data 17 497 will be presented as mean ± standard deviation (SD), and a two-way analysis of variance (ANOVA) with .0 19 ⁴⁹⁸ repeated measurements will be used to evaluate any significant changes in outcomes between (control and 20 499 exercise) and within (baseline, 6-weeks, and 12-weeks follow-up) groups from baseline to immediately after ₂₂ 500 the 12-weeks intervention period. Same procedure will be done for the 6-months follow-up (factor 1: group ²³ 501 (control and exercise), factor 2: time (baseline, 12-weeks and 6-months follow-up). Interactions between the

factors will be included in the model. In case of significant F-values, post-hoc testing will be used for multiple comparisons. Effect size of change scores (Cohen's d) will be calculated in order to determine the magnitude of difference between groups. P-values and 95% confidence intervals will be reported to facilitate interpretation of the results. Statistical significance will be accepted at P < 0.05.

Patient and public involvement 32 506

Neither participants nor public were involved with the conception of the research question, study design, or outcome measures, nor will they be involved with study conduction. The recruitment plan was partially planned based on feedback from the patient population. Each of the participants will receive a written summary of the study results after publication.

Ethics and dissemination

⁴³ 513 Considerations are made regarding the regulation of arterial BP in the participants ¹⁰⁴ ¹⁰⁵. BP instability does 44 45 514 occur in cervical injured individuals (tetraplegics), who may suffer from pronounced autonomic disturbances ⁴⁶ 515 ^{104,105}. During the VO_{2peak} test and exercise sessions, special attention is devoted towards potential symptoms 47 48 516 of autonomic dysreflexia (AD) ¹⁰⁶ in individuals with SCI \geq T6. Participants will be asked to empty their 50 517 bladder before any testing or training is commenced. In case of AD, the exercise is stopped and the pertinent 51 518 actions are made. Occurrences of post exercise hypotension ¹⁰⁵ and orthostatic hypotension ¹⁰⁴ are rather 52 53 519 uncommon in individuals with thoracic injury (paraplegics). According to the inclusion criteria of the study, ⁵⁴ 520 only individuals with a sparing of arm flexor function (i.e. excluding individuals with a complete cervical 55 56 521 injury \geq C5 participants) will be included in the study, presumably reducing the number of included ⁵⁷ 522 58 individuals with impaired BP regulation. Nevertheless, in addition to reduced vasoconstrictor drive, the ability to increase cardiac output is limited in individuals with SCI ≥T5-T6 with interrupted cardiac 59 523 60

sympathetic innervation, which could affect arterial BP stabilization during conditions in which peripheral 524 525 vascular resistance is further reduced (i.e. during exercise). Therefore, to identify any participants that may 526 be prone to experiencing post exercise hypotension, brachial artery BP will be monitored immediately after, 527 and again 5 min after the first VO_{2peak} test. In such cases, and assuming the hypotension is well tolerated, the 10 ₁₁ 528 participants will be reminded to drink appropriately during and prior any future training and testing. Further, 12 529 these participants will have their BP measured every second interval (i.e. every 10th min) during the training 13 14 530 sessions. If hypotension develops, the training will be interrupted and hypotensive countermaneuvres 15 531 (placement in a supine position, or legs up) will be applied. If the hypotension is not tolerated, such as if the 16 17 532 participants exhibit signs of nausea, light-headedness, fatigue or presyncobal symptoms in response to either 18 19⁵³³ the VO_{2peak} test or the training, they will be excluded from further participation in the study.

Another consideration is that individuals with SCI suffer from impaired thermoregulation ¹⁰⁷. Although 21 534 ²² 535 prolonged (60 min) moderate intensity exercise in warm conditions (>31°C) have been shown sustainable for 23 24 536 some paraplegic and tetraplegic individuals ¹⁰⁸, impaired thermoregulation makes individuals with SCI more 25 26 537 vulnerable to overheating compared to able-bodied ¹⁰⁷. This is especially the case during conditions of 27 538 increased environmental temperatures and metabolic heat production (such as when exercising in the heat). 28 29 539 The degree of thermoregulatory impairment is closely related to the injury level, such that individuals with ³⁰ 540 higher injury (tetraplegics) exhibit higher core temperatures during exercise compared to lower injury 31 individuals (paraplegics)¹⁰⁸. To diminish the risk for overheating during testing and training, a fan will be 32 541 33 34 542 available for cooling of the participants and the room temperature and humidity will be continuously 35 543 monitored to facilitate the conditions for dry and evaporative heat loss. Moreover, the participants will be 30 37 544 36 asked to pay attention to proper hydration before and throughout each training session. However, if the 38 545 participants demonstrate signs of any adverse response, the exercise session will be terminated immediately 39 40 546 and further participation in the study will be reconsidered. Any adverse responses from the intervention will 41 42 547 be reported to the regional health research committee. The trial is reported to the Danish Data Protection 43 548 Agency (J.nr. 2019-899/10-0406), registered at ClinicalTrials.gov on 15 May 2020, and approved by the 44 45 549 Committees on Health Research Ethics in The North Denmark Region on 12 December 2019 (Journal-nr. N-46 550 20190053). Results will be submitted to scientific journals related to exercise and SCI for publication 47 ₄₈ 551 irrespective of study outcomes.

50 552 **Data statement section**

52 553 All participant data will be stored in a secure web-based database (Redcap) with restricted access and ID 53 54 554 code, in accordance with data protection rules. Source documents including date, visit# and participant ID ⁵⁵ 555 will be scanned and saved as electronic copies. Participant data will be transferred directly or by use of an 56 57 556 encrypted USB stick. Each participant will be assigned an unique identification number, which will be the 59 557 58 only identifier exported from Redcap upon data analysis. Except for the blood samples, which will be stored

60

49

51

5

6 7

8 9

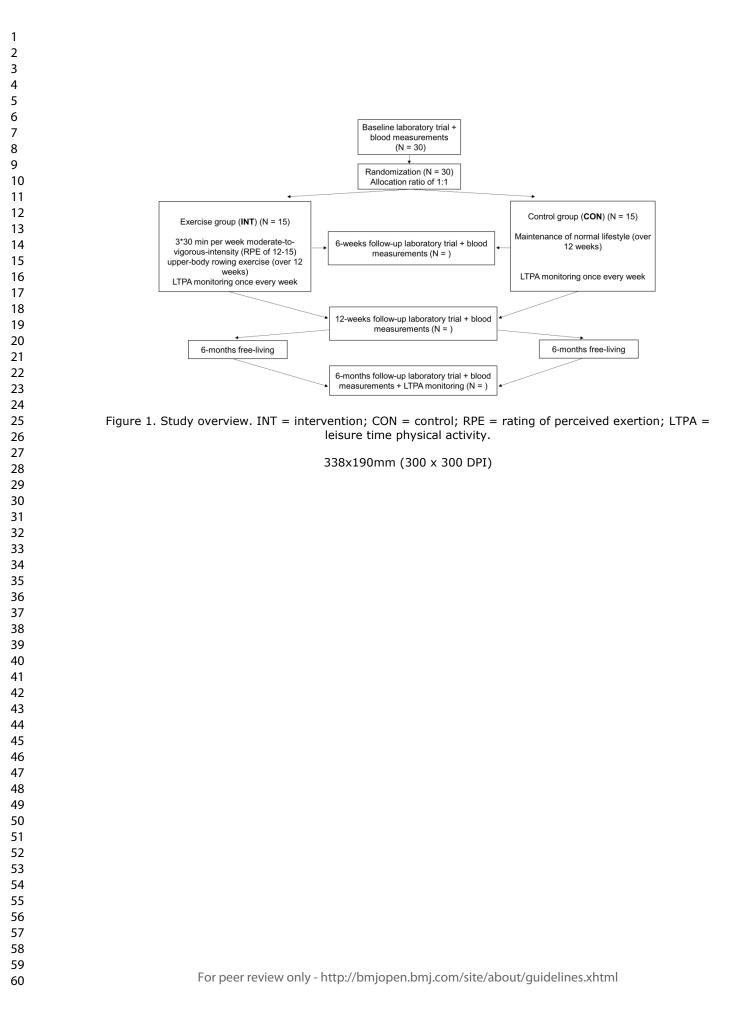
1 2	
3	
4 558 5	until analysis, or no more than 5 years, data will be stored for 5 years after the termination of the trial. After
6 559 7	this period, paper material is shredded, data files are erased and the Redcap database is no longer accessible.
7 8 560	The principal investigator will have access to all trial data.
9 10 561	Acknowledgement
¹¹ 562 12	The authors would like to thank Dr. Rachel E. Cowan for valuable discussions regarding the study protocol,
13 563	Dr. Jan Christian Brønd for discussions regarding assessment of leisure time physical activity level, and
¹⁴ 15 ⁵⁶⁴	Wolturnus A/S for lending of arm ergometer and wheelchair weight
16 17 565	Author Contributions
¹⁸ 566 19	RKH and RGL conceptualized the study. RKH, AS, UL, AH and RGL contributed to the study protocol
20 567	design. RKH drafted the manuscript. RKH, AS, UL, AH and RGL commented and edited the manuscript and
21 22 568	approved the final version.
23 569	
24 25 570	Funding
²⁶ 571	This work is supported by Aage and Johanne Louis-Hansens Fond, grant number 20-2B-5947. Aage and
27 28 572	Johanne Louis-Hansens Fond will have no influence on any part of the project design, data collection, data
²⁹ 573 30	analysis, data interpretation or the disclosure of the results. Thus, their support is solely economical.
31 32 574	Competing interests None declared. Patient consent
33 575	None declared.
34 35 576	
³⁶ 577	Patient consent
37 38 578	Not required.
39 40 579	License statement
41 42 580	I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined
43 581	in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from
44 45 582	authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii)
46 47 583	in accordance with the terms applicable for US Federal Government officers or employees acting as part of
47 48 584	their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd
49 50 585	("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to
⁵¹ 586	publish the Work in BMJ Open and any other BMJ products and to exploit all rights, as set out in
52 53 587	our <u>licence</u> .
54	
55 588 56	Figure 1. Study overview. INT = intervention; CON = control; RPE = rating of perceived exertion; LTPA =
57 589	leisure time physical activity.
58 59 590	
60	

591 **REFERENCES**

6 7 592

- 8
 9 593 1. LaPorte, R. *et al.* The Spectrum of Physical Activity, Cardiovascular Disease and Health: An Epidemiologic Perspective. *Am J Epidemiol.* 120, 507–517 (1984).
- Myers, J., Lee, M. & Kiratli, J. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. *Am. J. Phys. Med. Rehabil.* 86, 142–152 (2007).
- ¹⁴ 597
 ¹⁵ 598
 ¹⁶ Nash, M. & Cowan, R. Cardiovascular disease, SCI and exercise: unique risks and focused countermeasures. *Disabil. Rehabil.* 32, 2228–2236 (2010).
- 17 599
 18 600
 19
 4. Garshick, E. *et al.* A prospective assessment of mortality in chronic spinal cord injury. *Spinal Cord*43, 408–416 (2005).
- 20 6015.Buchholz, A. C. *et al.* Greater daily leisure time physical activity is associated with lower chronic21 602disease risk in adults with spinal cord injury. *Appl. Physiol. Nutr. Metab.* 34, 640–647 (2009).
- Gorgey, A., Dolbow, D., Dolbow, J., Khalil, R. & Gater, D. Effects of spinal cord injury on body composition and metabolic profile Part I. J. Spinal Cord Med. 37, 693–702 (2014).
- ²⁵₂₆ 605 7. Ahuja, C. S. *et al.* Traumatic spinal cord injury. *Nat. Rev. Dis. Prim.* **3**, 1–21 (2017).
- ²⁷ 606
 ²⁸ 607
 ²⁹ Kirshblum, S. C. *et al.* International standards for neurological classification of spinal cord injury (Revised 2011). *J. Spinal Cord Med.* **34**, 535–546 (2011).
- Haisma, J. A. *et al.* Physical capacity in wheelchair-dependent persons with a spinal cord injury: A critical review of the literature. *Spinal Cord* 44, 642–652 (2006).
- Groah, S. L., Weitzenkamp, D., Sett, P., Soni, B. & Savic, G. The relationship between neurological level of injury and symptomatic cardiovascular disease risk in the aging spinal injured. *Spinal Cord* 39, 310–317 (2001).
- Spinal Cord Injury Research Evidence (SCIRE) Community. Manual Wheelchairs. Practitioner www.scireproject.com/community/topic/manual-wheelchairs/%0AManual (2020) doi:10.29085/9781783304509.002.
- 40 616
 41 617
 42 617
 42 Kehn, M. & Kroll, T. Staying physically active after spinal cord injury: A qualitative exploration of barriers and facilitators to exercise participation. *BMC Public Health* 9, 1–11 (2009).
- ⁴³ 618
 ⁴⁴ 619
 ⁴⁵ 13. Rimmer, J. H., Riley, B., Wang, E., Rauworth, A. & Jurkowski, J. Physical activity participation among persons with disabilities: Barriers and facilitators. *Am. J. Prev. Med.* 26, 419–425 (2004).
- 46 620 14. Hansen, R. K., Larsen, R. G., Læssøe, U., Samani, A. & Cowan, R. E. Physical Activity Barriers in Danish Manual Wheelchair Users A Cross-sectional Study. *Submitt. Manuscr.* (2020).
- 48
 49 622 15. Cowan, R. E., Nash, M. S. & Anderson, K. D. Exercise participation barrier prevalence and association with exercise participation status in individuals with spinal cord injury. 27–32 (2013) doi:10.1038/sc.2012.53.
- ⁵² 625
 ⁵³ 626
 ⁵⁴ 626
 ⁵⁵ Rimmer, J. H., Rubin, S. S. & Braddock, D. Barriers to exercise in African American women with physical disabilities. *Arch. Phys. Med. Rehabil.* 81, 182–188 (2000).
- 5562717.Rimmer, J. H., Wang, E. & Smith, D. Barriers associated with exercise and community access for56628individuals with stroke. J. Rehabil. Res. Dev. 45, 315–322 (2008).
- 58 629 18. Van Der Scheer, J. W. *et al.* Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review. *Neurology* 89, 736–745 (2017).

1 2 3		
$ \begin{array}{c} 4 \\ 5 \\ 6 \end{array} $ 631 632 6	19.	El-Sayed, M. S. & Younesian, A. Lipid profiles are influenced by arm cranking exercise and training in individuals with spinal cord injury. <i>Spinal Cord</i> 43 , 299–305 (2005).
7 633 8 634 9 635 10	20.	Nightingale, T. E., Walhin, J. P., Thompson, D. & Bilzon, J. L. J. Impact of Exercise on Cardiometabolic Component Risks in Spinal Cord-injured Humans. <i>Med. Sci. Sports Exerc.</i> 49 , 2469–2477 (2017).
11 636 12 637 13 638	21.	Kim, D. II, Lee, H., Lee, B. S., Kim, J. & Jeon, J. Y. Effects of a 6-Week Indoor Hand-Bike Exercise Program on Health and Fitness Levels in People With Spinal Cord Injury: A Randomized Controlled Trial Study. <i>Arch. Phys. Med. Rehabil.</i> 96 , 2033–2040 (2015).
14 15 639 16 640 17 641	22.	Totosy de Zepetnek, J. O., Pelletier, C. A., Hicks, A. L. & MacDonald, M. J. Following the Physical Activity Guidelines for Adults With Spinal Cord Injury for 16 Weeks Does Not Improve Vascular Health: A Randomized Controlled Trial. <i>Arch. Phys. Med. Rehabil.</i> 96 , 1566–1575 (2015).
18 19 642 20 643	23.	Wilt, T. J. <i>et al.</i> Carbohydrate and lipid disorders and relevant considerations in persons with spinal cord injury (Structured abstract). <i>Database Abstr. Rev. Eff.</i> 171 (2008).
²¹ 644 22 645 23 646 24	24.	Pelletier, C. A., Omidvar, M., Miyatani, M., Giangregorio, L. & Craven, B. C. Participation in moderate-to-vigorous leisure time physical activity is related to decreased visceral adipose tissue in adults with spinal cord injury. <i>Appl. Physiol. Nutr. Metab.</i> 43 , 139–144 (2018).
²⁵ 647 ²⁶ 648 ²⁷ 649 28	25.	Nightingale, T. E., Metcalfe, R. S., Vollaard, N. B. & Bilzon, J. L. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity? <i>Arch. Phys. Med. Rehabil.</i> 98 , 1693–1704 (2017).
29 650 30 651 31 652	26.	Hicks, A. L. <i>et al.</i> The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: A systematic review. <i>Spinal Cord</i> 49 , 1103–1127 (2011).
32 33 653 34 654 35 655	27.	Green, D. J., Driscoll, G. O., Joyner, M. J. & Cable, N. T. Exercise and cardiovascular risk reduction : Time to update the rationale for exercise ? Exercise and cardiovascular risk reduction : Time to update the rationale for exercise ? 766–768 (2013) doi:10.1152/japplphysiol.01028.2007.
36 37 656 38 657	28.	Gielen, S., Schuler, G. & Hambrecht, M. Exercise Training in Coronary Artery Disease and Coronary Vasomotion. <i>Circulation</i> 103 , 1–6 (2001).
³⁹ 658 40 659 41	29.	Celermajer, D. <i>et al.</i> Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis Endothelial. <i>Lancet</i> 340 , 1111–1115 (1992).
42 660 43 661 44 662 45	30.	Yeboah, J. <i>et al.</i> Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. <i>Circulation</i> 120 , 502–509 (2009).
46 663 47 664 48 665 49	31.	Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M. & Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. <i>Circulation</i> 115 , 459–467 (2007).
50 666 51 667	32.	Green, D. J., Hopman, M. T. E., Padilla, J., Laughlin, M. H. & Thijssen, D. H. J. Vascular adaptation to exercise in humans: Role of hemodynamic stimuli. <i>Physiol. Rev.</i> 97 , 495–528 (2017).
52 53 668 54 669 55 670	33.	de Groot, P. C., Bleeker, M. W., van Kuppevelt, D. H., van der Woude, L. H. & Hopman, M. T. Rapid and Extensive Arterial Adaptations After Spinal Cord Injury. <i>Arch. Phys. Med. Rehabil.</i> 87 , 688–696 (2006).
56 57 671 58 672 59	34.	Rowley, N. J. <i>et al.</i> Conduit diameter and wall remodeling in elite athletes and spinal cord injury. <i>Med. Sci. Sports Exerc.</i> 44 , 844–849 (2012).
60		


1 2 3			
5	673 674 675	35.	de Groot, P. C. E., Poelkens, F., Kooijman, M. & Hopman, M. T. E. Preserved flow-mediated dilation in the inactive legs of spinal cord-injured individuals. <i>Am J Physiol Hear. Circ Physiol</i> 287 , 374–380 (2004).
9	676 677 678	36.	Huonker, M., Schmid, A., Schmidt-Trucksäß, A., Grathwohl, D. & Keul, J. Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. <i>J. Appl. Physiol.</i> 95 , 685–691 (2003).
	679 680	37.	Ginis, K. A. M. <i>et al.</i> The development of evidence-informed physical activity guidelines for adults with spinal cord injury. <i>Spinal Cord</i> 49 , 1088–1096 (2011).
15 16 17	681 682 683	38.	Pelletier, C. A., Totosy De Zepetnek, J. O., Macdonald, M. J. & Hicks, A. L. A 16-week randomized controlled trial evaluating the physical activity guidelines for adults with spinal cord injury. <i>Spinal Cord</i> 53 , 363–367 (2015).
18 19 20	684 685	39.	Martin Ginis, K. A. <i>et al.</i> Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. <i>Spinal Cord</i> 56 , 308–321 (2018).
	686 687	40.	Cratsenberg, K. A. <i>et al.</i> Effectiveness of exercise programs for management of shoulder pain in manual wheelchair users with spinal cord injury. <i>J. Neurol. Phys. Ther.</i> 39 , 197–203 (2015).
24 25	688 689 690	41.	Troy, K., Munce, T. & Longworth, J. An exercise trial targeting posterior shoulder strength in manual wheelchair users: Pilot results and lessons learned. <i>Disabil. Rehabil. Assist. Technol.</i> 10 , 415–420 (2015).
28 29	691 692	42.	Nash, M. S. <i>et al.</i> A comparison of 2 circuit exercise training techniques for eliciting matched metabolic responses in persons with paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 83 , 201–209 (2002).
32	693 694	43.	Curtis, K. <i>et al.</i> Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. <i>Spinal Cord</i> 37 , 421–429 (1999).
35 36	695 696 697	44.	Ballinger, D. A., Rintala, D. H. & Hart, K. A. The relation of shoulder pain and range-of-motion problems to functional limitations, disability, and perceived health of men with spinal cord injury: A multifaceted longitudinal study. <i>Arch. Phys. Med. Rehabil.</i> 81 , 1575–1581 (2000).
	698 699	45.	Nichols, P., Norman, P. & Ennis, J. Wheelchair user's shoulder? <i>Scand J Rehab Med</i> 11 , 29–32 (1979).
40 41	700 701 702	46.	Gutierrez, D., Thompson, L., Kemp, B. & Mulroy, S. The relationship of shoulder pain intensity to quality of life, physical activity, and community participation in persons with paraplegia. <i>J. Spinal Cord Med.</i> 30 , 251–255 (2007).
44 45 46	703 704 705	47.	Nash, M. S., van de Ven, I., van Elk, N. & Johnson, B. M. Effects of Circuit Resistance Training on Fitness Attributes and Upper-Extremity Pain in Middle-Aged Men With Paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 88 , 70–75 (2007).
49	706 707	48.	Leduc, B. & Lepage, Y. Health-related quality of life after spinal cord injury. <i>Disabil. Rehabil.</i> 24 , 196–202 (2002).
	708 709	49.	Lidal, I., Veenstra, M., Hjeltnes, N. & Biering-Sørensen, F. Health-related quality of life in persons with long-standing spinal cord injury. <i>Spinal Cord</i> 46 , 710–715 (2008).
53 54 55	710 711	50.	Ambrosio, F. <i>et al.</i> Biomechanics and strength of manual wheelchair users. <i>J. Spinal Cord Med.</i> 28 , 407–414 (2005).
56 57	712 713	51.	Curtis, K. <i>et al.</i> Reliability and validity of the Wheelchair User's Shoulder Pain Index (WUSPI). <i>Paraplegia</i> 33 , 595–601 (1995).
58 59 60	714	52.	Burnham, R. S., May, L., Nelson, E., Steadward, R. & Reid, D. C. Shoulder pain in wheelchair

1 2		
3 4 715		athletes: The role of muscle imbalance. Am. J. Sports Med. 21, 238–242 (1993).
5 6 716 7 717	53.	Bayley, J., Cochran, T. & Sledge, C. The weight-bearing shoulder. The impingement syndrome in paraplegics. <i>J. Bone Jt. Surg.</i> 69 , 676–678 (1987).
8 9 718 10 719	54.	Collinger, J. L. <i>et al.</i> Shoulder Biomechanics During the Push Phase of Wheelchair Propulsion: A Multisite Study of Persons With Paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 89 , 667–676 (2008).
11 12 720 13 721	55.	Mulroy, S. J. <i>et al.</i> Strengthening and Optimal Movements for Painful Shoulders (STOMPS) in Chronic Spinal Cord Injury: A Randomized Controlled Trial. <i>Phys. Ther.</i> 91 , 305–324 (2011).
14 15 722	56.	Secher, N. The Physiology of Rowing. J. Sports Sci. 1, 23-53 (1983).
16 723 17 724 18 725 19	57.	Olenik, L., Laskin, J., Burnham, R., Wheeler, G. & Steadward, R. Efficacy of rowing, backward wheeling and isolated scapular retractor exercise as remedial strength activities for wheelchair users: Application of electromyography. <i>Paraplegia</i> 33 , 148–152 (1995).
20 726 21 727	58.	Curtis, K. <i>et al.</i> Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. <i>Spinal Cord</i> 37 , 421–429 (1999).
22 23 728 24 729	59.	Chan, A. <i>et al.</i> SPIRIT 2013 Statement : Defining Standard Protocol Items for Clinical Trials. <i>Ann Intern Med</i> 158 , 200–207 (2013).
25 26 27 731	60.	Lee, R. <i>et al.</i> Active vs. passive methods of recruiting ethnic minority women to a health promotion program. <i>Ann. Behav. Med.</i> 19 , 378–384 (1997).
²⁸ 732 ²⁹ 733 30	61.	Ginis, K. a M. & Hicks, A. L. Exercise research issues in the spinal cord injured population. <i>Exerc. Sport Sci. Rev.</i> 33 , 49–53 (2005).
31 734 32 735	62.	Astorino, T. A. & Thum, Jacob, S. Interval training elicits higher enjoyment versus moderate exercise in persons with spinal cord injury. <i>J. Spinal Cord Med.</i> 41 , 77–84 (2018).
33 34 736 35 737	63.	Powell, K. E., Paluch, A. E. & Blair, S. N. Physical Activity for Health: What Kind? How Much? How Intense? On Top of What? <i>Annu. Rev. Public Health</i> 32 , 349–365 (2011).
³⁶ 37 738	64.	Borg, G. Perceived exertion as an indicator of somatic stress. Scand J Rehab Med 92-98 (1970).
³⁸ 739 ³⁹ 740 40	65.	Birk, T. J. & Birk, C. A. Use of Ratings of Perceived Exertion for Exercise Prescription. <i>Sport. Med.</i> 4 , 1–8 (1987).
41 741 42 742	66.	Goosey-Tolfrey, V. <i>et al.</i> Regulating intensity using perceived exertion in spinal cord-injured participants. <i>Med. Sci. Sports Exerc.</i> 42 , 608–613 (2010).
43 44 743 45 744 46 745	67.	van der Scheer, J. W., Hutchinson, M. J., Paulson, T., Martin Ginis, K. A. & Goosey-Tolfrey, V. L. Reliability and Validity of Subjective Measures of Aerobic Intensity in Adults With Spinal Cord Injury: A Systematic Review. <i>PM R</i> 10 , 194–207 (2018).
47 48 746 49 747 50 748	68.	Lewis, J. E., Nash, M. S., Hamm, L. F., Martins, S. C. & Groah, S. L. The Relationship Between Perceived Exertion and Physiologic Indicators of Stress During Graded Arm Exercise in Persons With Spinal Cord Injuries. <i>Arch. Phys. Med. Rehabil.</i> 88 , 1205–1211 (2007).
51 52 53 750 54 751	69.	Noble, B. J., Borg, G. A. V., Jacobs, I., Ceci, R. & Kaiser, P. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. <i>Med. Sci. Sport. Exerc.</i> 16 , 523–528 (1983).
55 752 56 753 57 754 58 755 59 755 60	70.	Krassioukov, A. V. <i>et al.</i> Effects of exercise interventions on cardiovascular health in individuals with chronic, motor complete spinal cord injury: protocol for a randomised controlled trial [Cardiovascular Health/Outcomes: Improvements Created by Exercise and education in SCI (C. <i>BMJ Open</i> 9 , (2019).

- ⁴ 756 757
 ⁵ 757
 ^{71.} Thijssen, D. H. J. *et al.* Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. *Eur. Heart J.* 40, 2534–2547 (2019).
- 7 758 72. Limberg, J. K. *et al.* Assessment of resistance vessel function in human skeletal muscle : guidelines for experimental design , Doppler ultrasound , and pharmacology. (2020)
 9 760 doi:10.1152/ajpheart.00649.2019.
- 11 761 73. Grundy, S. *et al.* Diagnosis and managment of the metabolic syndrome AHA / NHLBI Scientific
 12 762 Statement. An American Heart Association/National Heart, Lung, and Blood Institute Scientific
 13 763 Statement. *Circulation* 2735–2752 (2005) doi:10.1161/CIRCULATIONAHA.105.169404.
- Nash, M. S. *et al.* Identification and Management of Cardiometabolic Risk after Spinal Cord Injury: Clinical Practice Guideline for Health Care Providers. *Top. Spinal Cord Inj. Rehabil.* 24, 379–423 (2018).
- ¹⁸/₁₉ 767
 ^{75.} McCauley, L. S., Sumrell, R. M. & Gorgey, A. S. Anthropometric Prediction of Visceral Adipose Tissue in Persons With Motor Complete Spinal Cord Injury. *PM R* 10, 817–825 (2018).
- 769
 769
 760
 770
 770
 771
 761
 762
 763
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
 771
- 772 773 774
 77. Sumrell, R. M., Nightingale, T. E., McCauley, L. S. & Gorgey, A. S. Anthropometric cutoffs and associations with visceral adiposity and metabolic biomarkers after spinal cord injury. *PLoS One* 13, e0203049 (2018).
- 775
 78. Joyner, M. J. & Green, D. J. Exercise protects the cardiovascular system: Effects beyond traditional risk factors. *J. Physiol.* 587, 5551–5558 (2009).
- 32 777 79. West, C. R., Romer, L. M. & Krassioukov, A. Autonomic Function and Exercise Performance in Elite
 33 778 Athletes with Cervical Spinal Cord Injury. *Med. Sci. Sports Exerc.* 45, 261–267 (2013).
- 34 35 779
 36 780
 37 781
 80. Otsuka, Y., Shima, N., Moritani, T., Okuda, K. & Yabe, K. Orthostatic influence on heart rate and blood pressure variability in trained persons with tetraplegia. *Eur. J. Appl. Physiol.* 104, 75–78 (2008).
- ³⁸ 782 ³⁹ 783
 ^{81.} Malik, M. et al. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. *Eur. Heart J.* 17, 354–381 (1996).
- ⁴¹ 784
 ⁴² 785
 ⁴³ Shaffer, F. & Ginsberg, J. P. An Overview of Heart Rate Variability Metrics and Norms. *Front. Public Heal.* 5, 1–17 (2017).
- Pelletier, C. A., Jones, G., Latimer-Cheung, A. E., Warburton, D. E. & Hicks, A. L. Aerobic capacity, orthostatic tolerance, and exercise perceptions at discharge from inpatient spinal cord injury rehabilitation. *Arch. Phys. Med. Rehabil.* 94, 2013–2019 (2013).
- 47
 48 789
 49 790
 50 791
 51 792
 American Autonomic Society and the American Academy of Neurology. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. The Consensus Committee of the American Autonomic Society and the American Academy of Neurology. *Neurology* 46, 1470 (1996).
- ⁵²
 ⁵³ 793
 ⁵⁴ 794
 ⁵⁵ Thijssen, D. H. J. *et al.* Assessment of flow-mediated dilation in humans: A methodological and physiological guideline. *Am. J. Physiol. Hear. Circ. Physiol.* **300**, 2–12 (2011).
- 55
56
795
57
79686.Pyke, K. E. & Tschakovsky, M. E. Peak vs. total reactive hyperemia: Which determines the
magnitude of flow-mediated dilation? J. Appl. Physiol. 102, 1510–1519 (2007).
- ⁵⁸ 797 87. Padilla, J. *et al.* Normalization of flow-mediated dilation to shear stress area under the curve
- 60

1 2 3			
4	798		eliminates the impact of variable hyperemic stimulus. Cardiovasc. Ultrasound 6, 1-10 (2008).
6 7	799 800	88.	Thrush, A. & Hartshorne, T. <i>Vascular Ultrasound - How, When and Why. Churchill Livingstone</i> (2010). doi:10.1017/CBO9781107415324.004.
10 11 12 13 14 15	801 802	89.	Maher, J. L. & Cowan, R. E. Comparison of 1- Versus 3-Minute Stage Duration During Arm Ergometry in Individuals With Spinal Cord Injury. <i>Arch. Phys. Med. Rehabil.</i> 97 , 1895–1900 (2016).
	803 804 805	90.	Eerden, S., Dekker, R. & Hettinga, F. J. Maximal and submaximal aerobic tests for wheelchair- dependent persons with spinal cord injury: a systematic review to summarize and identify useful applications for clinical rehabilitation. <i>Disabil. Rehabil.</i> 40 , 497–521 (2018).
	806 807	91.	Au, J. S., De Zepetnek, J. O. T. & MacDonald, M. J. Modeling perceived exertion during graded arm cycling exercise in spinal cord injury. <i>Med. Sci. Sports Exerc.</i> 49 , 1190–1196 (2017).
18	808 809	92.	Kouwijzer, I. <i>et al.</i> Interrater and intrarater reliability of ventilatory thresholds determined in individuals with spinal cord injury. <i>Spinal Cord</i> 57 , 669–678 (2019).
21 22 23	810 811 812	93.	Leicht, C. A., Griggs, K. E., Lavin, J., Tolfrey, K. & Goosey-Tolfrey, V. L. Blood lactate and ventilatory thresholds in wheelchair athletes with tetraplegia and paraplegia. <i>Eur. J. Appl. Physiol.</i> 114 , 1635–1643 (2014).
26	813 814	94.	Larsen, C., Hansen, S., Hansen, L., P, B. & B, JK. Translation and Cross-Cultural Adaptation of the Danish Version: Wheelchair Users Shoulder Pain Index (WUSPI). in 1 (2015).
27 28 29	815 816	95.	Curtis, K. <i>et al.</i> Development of the Wheelchair User's Shoulder Pain Index (WUSPI). <i>Paraplegia</i> 33 , 290–293 (1995).
	817 818	96.	Curtis, K. A. <i>et al.</i> Shoulder pain in wheelchair users with tetraplegia and paraplegia. <i>Arch. Phys. Med. Rehabil.</i> 80 , 453–457 (1999).
33	819 820	97.	Bjorner, J. B., Thunedborg, K., Kristensen, T. S., Modvig, J. & Bech, P. The Danish SF-36 Health Survey: Translation and preliminary validity studies. <i>J. Clin. Epidemiol.</i> 51 , 991–999 (1998).
36 37	821 822	98.	Ware, Jr., J. E. & Sherbourne, C. D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection Author. <i>Med. Care</i> 30 , 473–483 (1992).
38 39 40	823 824	99.	Tate, D. G., Kalpakjian, C. Z. & Forchheimer, M. B. Quality of life issues in individuals with spinal cord injury. <i>Arch. Phys. Med. Rehabil.</i> 83 , 18–25 (2002).
	825 826	100.	RAND, H. C. 36-Item Short Form Survey (SF-36) Scoring Instructions. https://www.rand.org/health- care/surveys_tools/mos/36-item-short-form/scoring.html.
44 45	827 828 829	101.	Nightingale, T. E., Rouse, P. C., Walhin, J. P., Thompson, D. & Bilzon, J. L. J. Home-Based Exercise Enhances Health-Related Quality of Life in Persons With Spinal Cord Injury: A Randomized Controlled Trial. <i>Arch. Phys. Med. Rehabil.</i> 99 , 1998-2006.e1 (2018).
48 49	830 831 832	102.	Ginis, K. A. M., Phang, S. H., Latimer, A. E. & Arbour-Nicitopoulos, K. P. Reliability and Validity Tests of the Leisure Time Physical Activity Questionnaire for People with Spinal Cord Injury. <i>Arch.</i> <i>Phys. Med. Rehabil.</i> 93 , 677–682 (2012).
52 53	833 834	103.	Visovsky, C. & Corripio, J. Feasibility and Acceptability of a Resistance Exercise Intervention: For Women Undergoing Chemotherapy for Breast Cancer. <i>Nurs. Heal.</i> 3 , 110–119 (2015).
56	835 836	104.	Claydon, V. E. & Krassioukov, A. V. Orthostatic Hypotension and Autonomic Pathways after Spinal Cord Injury. <i>J. Neurotrauma</i> 23 , 1713–1725 (2006).
	837 838	105.	Claydon, V. E., Hol, A. T., Eng, J. J. & Krassioukov, A. V. Cardiovascular Responses and Postexercise Hypotension After Arm Cycling Exercise in Subjects With Spinal Cord Injury. <i>Arch.</i>

1 2			
3 4 5	839		<i>Phys. Med. Rehabil.</i> 87 , 1106–1114 (2006).
6 7	840 841	106.	Phillips, A. A. & Krassioukov, A. V. Contemporary Cardiovascular Concerns after Spinal Cord Injury: Mechanisms, Maladaptations, and Management. <i>J. Neurotrauma</i> 32 , 1927–1942 (2015).
10	842 843	107.	Sawka, M., Latzka, W. & Pandolf, K. Temperature Regulation During Upper Body Exercise: Able Bodied And Spinal Cord Injured. <i>Med. Eng. Phys.</i> 21 , 132–40 (1989).
11 12 13	844 845	108.	Price, M. & Campbell, I. Effects of spinal cord lesion level upon thermoregulation during exercise in the heat. <i>Med. Sci. Sports Exerc.</i> 35 , 1100–1107 (2003).
14 15	040		
16 17 18 19 20			
21 22			
23 24			
25 26 27			
27 28 29			
30 31			
32 33			
34 35			
36 37			
38 39 40			
40 41 42			
43 44			
45 46			
47 48			
49 50			
51 52			
53 54			
55 56			
57 58			
59 60			

Project title: Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users

Informed Consent to Participation in a Health Scientific Research Project

Title of the research project: Effect of wheelchair-modified rowing exercise on cardiometabolic risk factors in spinal cord injured wheelchair users

Declaration by the Volunteer

I have received information about the research project both in writing and orally, and I have sufficient knowledge of the objective, method, advantages and disadvantages to confirm my participation.

I know that <u>participation is voluntary</u> and that I can always withdraw my consent without losing my present or future rights to treatment.

I hereby give my consent to participation in the research project and to taking out samples of my biological material for storage in a research bio-bank. I have received a copy of this form and of all written information about the project for my own use.

Name of the Volunteer:

Date: _____ Signature: __

If new, significant health information appears during the research project, you will be informed. If you wish to **decline** receipt of this information, please tick here: ____

Would you like to be informed of the results of the research project and of the consequences for you, if any?

Yes_____ No _____ (tick the appropriate field)

Declaration by the Person giving Information

I hereby declare that the Volunteer has received information both in writing and orally about the research project.

I believe that the information given is sufficient for making a decision on participation in the research project.

Name of the person giving the information: _____

Date: _____ Signature: ___

Project identification: N-20190053

Standard declaration of consent issued by Den Nationale Videnskabsetiske Komité, December 2011. Translation into English made by Center for Sensory-Motor Interaction, Aalborg University

BMJ Open

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to

include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, Hróbjartsson A, Mann H, Dickersin K, Berlin J, Doré C, Parulekar W, Summerskill W, Groves T, Schulz K, Sox H, Rockhold FW, Rennie D, Moher D. SPIRIT 2013 Statement: Defining standard protocol items for clinical trials.

Ann Intern Med. 2013;158(3):200-207

Reporting Item

Page Number

Administrative

information

Title

<u>#1</u> Descriptive title identifying the study 1,3
 design, population, interventions, and, if
 applicable, trial acronym

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2	Trial registration	<u>#2a</u>	Trial identifier and registry name. If not	4,9
3 4			yet registered, name of intended	
5 6			registry	
7 8				
9 10	Trial registration:	<u>#2b</u>	All items from the World Health	n/a. The trial has been
11 12	data set		Organization Trial Registration Data	registered with details
13 14			Set	provided at Clinicaltrials.gov
15 16				
17 18	Protocol version	<u>#3</u>	Date and version identifier	1
19 20	Funding	<u>#4</u>	Sources and types of financial,	20
21 22			material, and other support	
23 24				
25 26	Roles and	<u>#5a</u>	Names, affiliations, and roles of	1,2,20
27 28	responsibilities:		protocol contributors	
29 30	contributorship			
31 32				
33 34	Roles and	<u>#5b</u>	Name and contact information for the	20
35 36	responsibilities:		trial sponsor	
37 38	sponsor contact			
39 40	information			
41 42	Doloo and	#50	Dele of study appear and fundare if	20
43 44	Roles and	<u>#5c</u>	Role of study sponsor and funders, if	20
45 46	responsibilities:		any, in study design; collection,	
47 48	sponsor and		management, analysis, and	
49 50	funder		interpretation of data; writing of the	
51 52			report; and the decision to submit the	
53 54			report for publication, including whether	
55 56				
57 58				
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1			they will have ultimate authority over	
2 3			any of these activities	
4 5 6	Roles and	#5d	Composition, roles, and responsibilities	n/a. No such committee has
7		<u>#30</u>	• • • •	
8 9	responsibilities:		of the coordinating centre, steering	been established.
10 11 12	committees		committee, endpoint adjudication	
12 13 14			committee, data management team,	
14 15 16			and other individuals or groups	
17 18			overseeing the trial, if applicable (see	
19 20			Item 21a for data monitoring	
21 22			committee)	
23 24				
25 26 27 28 29 30 31	Introduction			
	Background and	<u>#6a</u>	Description of research question and	6-8
	rationale		justification for undertaking the trial,	
32 33			including summary of relevant studies	
34 35 26			(published and unpublished) examining	
36 37 38			benefits and harms for each	
39 40			intervention	
41 42	Background and	#6b	Explanation for choice of comparators	6-8
43 44	rationale: choice	<u></u>		
45 46				
47 48 49	of comparators			
49 50 51	Objectives	<u>#7</u>	Specific objectives or hypotheses	8
52 53	Trial design	#8	Description of trial design including type	9
54 55		<u></u>	of trial (eg, parallel group, crossover,	
56 57				
58 59		5	factorial, single group), allocation ratio,	
60		⊦or peer	review only - http://bmjopen.bmj.com/site/about/gu	Idelines.xhtml

1			and framework (eg, superiority,	
2 3			equivalence, non-inferiority,	
4 5 6			exploratory)	
7 8 9	Methods:			
9 10 11	Participants,			
12 13	interventions, and			
14 15 16	outcomes			
17 18 19	Study setting	<u>#9</u>	Description of study settings (eg,	10,12
20 21			community clinic, academic hospital)	
22 23			and list of countries where data will be	
24 25 26			collected. Reference to where list of	
26 27 28			study sites can be obtained	
29 30	Eligibility criteria	#10	Inclusion and exclusion criteria for	9-10
31 32 33			participants. If applicable, eligibility	
34 35			criteria for study centres and individuals	
36 37			who will perform the interventions (eg,	
38 39			surgeons, psychotherapists)	
40 41 42				
42 43 44	Interventions:	<u>#11a</u>	Interventions for each group with	10-11
45 46	description		sufficient detail to allow replication,	
47 48			including how and when they will be	
49 50			administered	
51 52 53	Interventions:	<u>#11b</u>	Criteria for discontinuing or modifying	10-11, 18-19
54 55	modifications		allocated interventions for a given trial	
56 57 58			participant (eg, drug dose change in	
58 59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1 2			response to harms, participant request,	
3 4			or improving / worsening disease)	
5 6 7	Interventions:	<u>#11c</u>	Strategies to improve adherence to	10
8 9	adherance		intervention protocols, and any	
10 11			procedures for monitoring adherence	
12 13 14			(eg, drug tablet return; laboratory tests)	
15 16 17	Interventions:	<u>#11d</u>	Relevant concomitant care and	10-12
18 19	concomitant care		interventions that are permitted or	
20 21 22			prohibited during the trial	
23 24	Outcomes	<u>#12</u>	Primary, secondary, and other	12-17
25 26			outcomes, including the specific	
27 28 20			measurement variable (eg, systolic	
29 30 31			blood pressure), analysis metric (eg,	
32 33			change from baseline, final value, time	
34 35			to event), method of aggregation (eg,	
36 37 38			median, proportion), and time point for	
39 40			each outcome. Explanation of the	
41 42			clinical relevance of chosen efficacy	
43 44			and harm outcomes is strongly	
45 46 47			recommended	
48 49 50	Participant	<u>#13</u>	Time schedule of enrolment,	12
51 52	timeline		interventions (including any run-ins and	
53 54			washouts), assessments, and visits for	
55 56			participants. A schematic diagram is	
57 58 59			highly recommended (see Figure)	
60		For peer	r review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1 2 4 5 6 7 8 9 10 11	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	10
12 13 14 15 16 17 18 19	Recruitment	<u>#15</u>	Strategies for achieving adequate participant enrolment to reach target sample size	10
20 21 22	Methods:			
23 24	Assignment of			
25 26 27	interventions (for			
27 28 29	controlled trials)			
30 31 32	Allocation:	<u>#16a</u>	Method of generating the allocation	9
33 34	sequence		sequence (eg, computer-generated	
35 36	generation		random numbers), and list of any	
37 38 39			factors for stratification. To reduce	
40 41			predictability of a random sequence,	
42 43			details of any planned restriction (eg,	
44 45			blocking) should be provided in a	
46 47 48			separate document that is unavailable	
49 50			to those who enrol participants or	
51 52			assign interventions	
53 54				
55 56 57				
58 59				
60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1	Allocation	#16b	Mechanism of implementing the	9
2 3		<u>#100</u>		5
4 5	concealment		allocation sequence (eg, central	
6 7 8 9	mechanism		telephone; sequentially numbered,	
			opaque, sealed envelopes), describing	
10 11			any steps to conceal the sequence until	
12 13 14			interventions are assigned	
15 16	Allocation:	<u>#16c</u>	Who will generate the allocation	9-10
17 18 19	implementation		sequence, who will enrol participants,	
20 21			and who will assign participants to	
22 23			interventions	
24 25 26	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to	15
27 28 29			interventions (eg, trial participants, care	
30 31			providers, outcome assessors, data	
32 33 34			analysts), and how	
35 36	Blinding	<u>#17b</u>	If blinded, circumstances under which	n/a. Participants allocated to
37 38 39	(masking):		unblinding is permissible, and	the exercise and control
40 41	emergency		procedure for revealing a participant's	group cannot be blinded to
42 43	unblinding		allocated intervention during the trial	the PI, because PI is
44 45				responsible for conducting
46 47 48				the study. Parts of data
49 50				analysis will be blinded to the
51 52				PI.
53 54 55	Methods: Data			
56 57	collection,			
58 59		_		
60		⊦or peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1	management, and			
2 3 4	analysis			
5 6 7	Data collection	<u>#18a</u>	Plans for assessment and collection of	12-17
, 8 9	plan		outcome, baseline, and other trial data,	
10 11			including any related processes to	
12 13			promote data quality (eg, duplicate	
14 15 16			measurements, training of assessors)	
17 18			and a description of study instruments	
19 20			(eg, questionnaires, laboratory tests)	
21 22			along with their reliability and validity, if	
23 24 25			known. Reference to where data	
26 27			collection forms can be found, if not in	
28 29			the protocol	
30 31 32	Data collection	<u>#18b</u>	Plans to promote participant retention	18
33 34 25	plan: retention		and complete follow-up, including list of	
35 36 37			any outcome data to be collected for	
38 39			participants who discontinue or deviate	
40 41			from intervention protocols	
42 43 44	Data management	<u>#19</u>	Plans for data entry, coding, security,	19-20
45 46	-		and storage, including any related	
47 48 49			processes to promote data quality (eg,	
50 51			double data entry; range checks for	
52 53			data values). Reference to where	
54 55			details of data management procedures	
56 57 58			can be found, if not in the protocol	
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1 2	Statistics:	<u>#20a</u>	Statistical methods for analysing	18
3 4	outcomes		primary and secondary outcomes.	
5 6 7			Reference to where other details of the	
, 8 9			statistical analysis plan can be found, if	
10 11			not in the protocol	
12 13 14	Statistics:	<u>#20b</u>	Methods for any additional analyses	18
15 16	additional		(eg, subgroup and adjusted analyses)	
17 18 19 20	analyses			
20 21 22	Statistics: analysis	<u>#20c</u>	Definition of analysis population relating	18
23 24	population and		to protocol non-adherence (eg, as	
25 26 27	missing data		randomised analysis), and any	
27 28 29			statistical methods to handle missing	
30 31			data (eg, multiple imputation)	
32				
33	Methods:			
33 34 35				
33 34 35 36 37	Methods: Monitoring			
33 34 35 36 37 38 39		<u>#21a</u>	Composition of data monitoring	n/a
33 34 35 36 37 38	Monitoring	<u>#21a</u>	Composition of data monitoring committee (DMC); summary of its role	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 	Monitoring Data monitoring:	<u>#21a</u>		n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role and reporting structure; statement of	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	Monitoring Data monitoring:	<u>#21a</u>	committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the	n/a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	Monitoring Data monitoring:		committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation	

1 2	Data monitoring:	<u>#21b</u>	Description of any interim analyses and	n/a
3 4	interim analysis		stopping guidelines, including who will	
5 6 7			have access to these interim results	
7 8 9			and make the final decision to	
10 11			terminate the trial	
12 13 14	Harms	<u>#22</u>	Plans for collecting, assessing,	18-19
15 16			reporting, and managing solicited and	
17 18			spontaneously reported adverse events	
19 20 21			and other unintended effects of trial	
22 23			interventions or trial conduct	
24 25				
26 27	Auditing	<u>#23</u>	Frequency and procedures for auditing	19
28 29			trial conduct, if any, and whether the	
30 31			process will be independent from	
32 33			investigators and the sponsor	
34 35				
36 37	Ethics and			
38 39	dissemination			
40 41 42	Research ethics	<u>#24</u>	Plans for seeking research ethics	19
43 44	approval		committee / institutional review board	
45 46			(REC / IRB) approval	
47 48		1105		40
49 50	Protocol	<u>#25</u>	Plans for communicating important	19
51 52	amendments		protocol modifications (eg, changes to	
53 54			eligibility criteria, outcomes, analyses)	
55 56			to relevant parties (eg, investigators,	
57 58				
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

5				
1 2 3			REC / IRBs, trial participants, trial registries, journals, regulators)	
4 5 6 7 8	Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants	9
9 10				
11			or authorised surrogates, and how (see	
12 13 14			Item 32)	
15 16 17	Consent or	<u>#26b</u>	Additional consent provisions for	n/a
18 19	assent: ancillary		collection and use of participant data	
20 21	studies		and biological specimens in ancillary	
22 23 24			studies, if applicable	
25 26	Confidentiality	<u>#27</u>	How personal information about	19-20
27 28 29			potential and enrolled participants will	
30 31			be collected, shared, and maintained in	
32 33			order to protect confidentiality before,	
34 35 36			during, and after the trial	
37 38 39	Declaration of	<u>#28</u>	Financial and other competing interests	20
40 41	interests		for principal investigators for the overall	
42 43			trial and each study site	
44 45 46	Data access	<u>#29</u>	Statement of who will have access to	19-20
47 48			the final trial dataset, and disclosure of	
49 50 51			contractual agreements that limit such	
52 53			access for investigators	
54 55 56	Ancillary and post	<u>#30</u>	Provisions, if any, for ancillary and	n/a
57 58	trial care		post-trial care, and for compensation to	
59 60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1			those who suffer harm from trial	
1 2				
3 4			participation	
5 6 7	Dissemination	<u>#31a</u>	Plans for investigators and sponsor to	18-19
8 9	policy: trial results		communicate trial results to	
10 11			participants, healthcare professionals,	
12 13 14			the public, and other relevant groups	
14 15 16			(eg, via publication, reporting in results	
17 18			databases, or other data sharing	
19 20			arrangements), including any	
21 22 23			publication restrictions	
24	Disconsistor	#04b	Authorship all all the swidelings and any	20
25 26	Dissemination	<u>#31b</u>	Authorship eligibility guidelines and any	20
27 28	policy: authorship		intended use of professional writers	
29 30 31	Dissemination	<u>#31c</u>	Plans, if any, for granting public access	n/a
32 33	policy:		to the full protocol, participant-level	
34 35 26	reproducible		dataset, and statistical code	
36 37 38	research			
39 40	Appendices			
41 42	Appendices			
43 44	Informed consent	<u>#32</u>	Model consent form and other related	9
45 46	materials		documentation given to participants	
47 48			and authorised surrogates	
49 50 51	Biological	<u>#33</u>	Plans for collection, laboratory	12
51 52 53	•	<u>#33</u>		12
53 54 55	specimens		evaluation, and storage of biological	
55 56 57			specimens for genetic or molecular	
57 58 59			analysis in the current trial and for	
60		For peer	review only - http://bmjopen.bmj.com/site/about/gu	idelines.xhtml

1	future use in ancillary studies, if
2 3 4	applicable
5 6 7	None The SPIRIT checklist is distributed under the terms of the Creative Commons Attribution
, 8 9	License CC-BY-ND 3.0. This checklist can be completed online using <u>https://www.goodreports.org/</u> , a
10 11 12 13	tool made by the EQUATOR Network in collaboration with Penelope.ai
14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 22 23 24 25 26 27 28 30 31 32 33 4 35 36 37 38 9 40 41 22 44 5 46 7 48 44 44 45 46 47 48 49 40 41 40 40 41 40 40 41 40 40 40 40 41 40 40 40 40 40 40 40 40 40 40 40 40 40	
50 51 52 53 54 55 56 57	
58 59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml