An Insight into the Excitation States of Small Molecular Semiconductor Y6

Xianshao Zou ^{1,3}, Guanzhao Wen ¹, Rong Hu ², Geng Dong ^{4,5}, Chengyun Zhang ¹, Wei Zhang ^{1,*}, Hao Huang ⁶ and Wei Dang ^{6,*}

- ¹ School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China; xianshao.zou@chemphys.lu.se (X.Z.); gzhwen@e.gzhu.edu.cn (G.W.); chyzhang@gzhu.edu.cn (C.Z.); wzhang@gzhu.edu.cn (W.Z.)
- ² National Research base of Co-innovation Center for Micro/Nano Optoelectronic Materials and Devices, Chongqing University of Arts and Sciences, Chongqing 402160, China; hurong_82@cqwu.edu.cn (R.H.)
- ³ Division of Chemical Physics, Lund University, Lund 22100, Sweden
- ⁴ Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; gdong@stu.edu.cn (G.D.)
- ⁵ Medical Informatics Research Center, Shantou University Medical College, Shantou 515041, China
- ⁶ Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China; hbu_huanghao@163.com (H.H.); dangwei@hbu.edu.cn (W.D.)
- * Correspondence: wzhang@gzhu.edu.cn (W.Z.); dangwei@hbu.edu.cn (W.D.)

Main Contents

1. Computational details	. S1
2. TD-DFT with B3LYP/Def2-TZVPP	. S2
Table S1. Computed positions and oscillator strength of the ten lowest-energy	<u>electronic</u>
transitions	S2
Figure S1. Electron density contours of selected molecular orbitals	S3
Figure S2. Simulated UV-vis absorption spectrum and oscillator strength	S4
Figure S3. Computed natural transition orbital pairs for S1-S10	S6
Figure S4. The overlap of electron-hole isosurface density maps between So and the	<u>ten lowest</u>
excited energy states	S7
Table S2. Excited-state analysis-based values for the Sr, D, t, H, Ecoul, HDI and E	DI of the
transitions between the So and ten lowest excited energy states	S8
3. TD-DFT with B3LYP/6-31G*	. S8
Table S3. Computed positions and oscillator strength of the ten lowest-energy	electronic
transitions	S8
Figure S5. Electron density contours of selected molecular orbitals	S9
Figure S6. Simulated UV-vis absorption spectrum and oscillator strength	S10
Figure S7. Simulated PL spectrum and oscillator strength	S10
Figure S8. Computed natural transition orbital pairs for S1-S10	S12
Figure S9. The overlap of electron-hole isosurface density maps between S ₀ and the	<u>ten lowest</u>
excited energy states	S13
Table S4. Excited-state analysis-based values for the Sr, D, t, H, Ecoul, HDI and E	DI of the
transitions between S ₀ and ten lowest excited energy states	S14
Figure S10. Presentation of the electron density difference between excited and group	und states
	S15
Table S5. Geometrically optimized atomic X/Y/Z coordinates of the ground state struct	ture of Y6
	S16
<u>4. Fitting parameters in Figure 5</u>	S19
Table S6. Fitting parameters of the TRPL decay shown in Figure 5a	S19
Table S7. Fitting parameters of the TA decay shown in Figure 5b	S19
References	S20

1. Computational details

The original 3-dimensional chemical structure of Y6 was drawn in the open-source molecular editor software package ChemBio3D Ultra 12.0 (Cambridge Inc.). In order to reduce the computational costs, the long alkyl chains of the central unit are replaced by methyl groups. The geometry structure optimization of the ground state of Y6 was performed using density functional theory (DFT) with the hybrid Becke 3-parameter Lee-Yang-Parr (B3LYP) functional [1] and the Poplestyle double zeta and one polarization function basis set (6-31G*) [2]. After that time-dependent density functional theory (TD-DFT) calculations were carried out to optimize the geometry of excited state with B3LYP/6-31G*. All the DFT and TD-DFT calculations were carried out employing Gaussian 16 Revision B.01 [3]. Moreover, the single point energy of the ten lowest energy of excited states was calculated by TD-DFT using the polarizable continuum model (PCM) with the dielectric constant of 4.7113 at the level of B3LYP functional with 6-31G* basis set and a balanced basis set of triple zeta valence quality with two sets of polarization function (Def2-TZVPP) [4]. The dominant particle-hole pair contributions and the associated weights were calculated through the national transition orbitals (NTOs) [5] so as to evaluate the properties of electronic transitions from ground state to excited states. Finally, based on the output files of TD-DFT method, multifunctional wavefunction analyzer (Multiwfn) version 3.7 [6] and VMD version 1.9.3 [7] were used to get more transition information such as the theoretical UV-vis absorption and fluorescence spectrum, the electron density of frontier molecular orbitals (FMOs), major molecular orbital (MO) transitions in all excited states, natural transition orbitals (NTOs), the overlap of electron-hole distribution of excited states [8] and the presentation of the electron density difference between excited and ground state.

2. TD-DFT with B3LYP/Def2-TZVPP

State	λ _{cal} (eV, nm)	fª	Excitation contribution ^b (%)
S1	1.68 (739)	2.2771	H→L (98.5)
S_2	2.00 (618)	0.1572	H→L+1 (96.5)
S ₃	2.25 (539)	0.1024	H→L+2 (96.1)
S_4	2.30 (539)	0.0137	H-1→L (92.6)
S5	2.35 (527)	0.0471	H→L+3 (79.8), H-2→L (15.0)
S ₆	2.48 (500)	0.0916	H-3→L (50.1), H-1→L+1 (43.8)
S7	2.50 (496)	0.5543	H-2→L (76.6), H→L+3 (15.1)
S_8	2.64 (470)	0.0229	H-1→L+1 (47.9), H-3→L (36.6), H→L+4 (8.8)
S9	2.66 (467)	0.0127	H→L+4 (74.8), H-2→L+1 (9.5), H-3→L (9.2)
S10	2.74 (453)	0.1106	H-2→L+1 (80.3), H→L+4 (13.6)

Table S1. Computed positions and oscillator strength (*f*) of the 10 lowest-energy electronic transitions of Y6 solution by TD-DFT at B3LYP/Def2-TZVPP level of theory.

^aOscillator strengths. ^bH=HOMO, L=LUMO, H-1=HOMO-1, L+1=LUMO+1.

Figure S1. Electron density contours of (a) HOMO, (b) LUMO, (c) HOMO-1, (d) LUMO+1, (e) HOMO-2, (f) LUMO+2, (g) HOMO-3, (h) LUMO+3, (i) HOMO-4, (j) LUMO+4, (k) HOMO-5, (l) LUMO+5 of Y6 solution by TD-DFT at B3LYP/Def2-TZVPP level of theory. The isosurface value was set at 0.01 a.u..

Figure S2. Simulated UV-vis absorption spectrum (red curve) and oscillator strength (black spikes) of the Y6 solution by TD-DFT at B3LYP/Def2-TZVPP level of theory. A Gaussian function with a full width at half-maximum (FWHM) of 0.11 eV was employed.

S5

Figure S3. Computed natural transition orbital pairs for S_1 - S_{10} of Y6 by TD-DFT at the level of B3LYP/Def2-TZVPP. The isosurface value was set at 0.018 a.u..

Figure S4. The overlap of electron-hole isosurface density maps between (a) S₀ and S₁, (b) S₀ and S₂, (c) S₀ and S₃, (d) S₀ and S₄, (e) S₀ and S₅, (f) S₀ and S₆, (g) S₀ and S₇, (h) S₀ and S₈, (i) S₀ and S₉, (j) S₀ and S₁₀ of Y₆ solution by TD-DFT at B3LYP/Def2-TZVPP level of theory. The isosurface value was set at 0.0009 a.u..

Transition	Da (Å)	$S_{ m r^b}$	H ^c (Å)	t ^d (Å)	Ecoul ^e (eV)	HDIf	EDIg	Transition Character
$S_0 \rightarrow S_1$	1.34	0.67	7.50	-2.74	1.94	4.56	4.23	LE
$S_0 \rightarrow S_2$	2.00	0.64	8.02	-2.83	1.82	4.52	4.66	LE
$S_0 \rightarrow S_3$	3.34	0.56	7.72	-0.87	1.75	4.48	5.54	CT
$S_0 \rightarrow S_4$	3.14	0.50	6.31	-0.54	2.07	5.31	4.23	CT
$S_0 \rightarrow S_5$	2.36	0.69	7.59	-2.16	1.88	4.33	4.92	CT
$S_0 \rightarrow S_6$	2.66	0.55	6.72	-1.44	2.02	4.89	4.30	CT
$S_0 \rightarrow S_7$	0.95	0.77	7.99	-3.19	1.84	4.31	4.02	LE
$S_0 \rightarrow S_8$	2.13	0.67	6.84	-1.98	2.04	4.47	4.03	CT
$S_0 \rightarrow S_9$	1.68	0.72	6.09	-2.03	2.35	4.11	6.73	LE
$S_0 \rightarrow S_{10}$	0.68	0.71	8.16	-4.45	1.82	4.14	4.24	LE

Table S2. *S*_r, *D*, *t*, *H*, *E*_{coul}, *HDI* and *EDI* of the transitions between S₀ and 10 lowest-energy states in Y6 solution by TD-DFT at the level of B3LYP/Def2-TZVPP.

^athe distance between centroid of hole and electron in corresponding directions; ^bthe overlap function between hole and electron distribution; ^cthe average degree of spatial extension of hole and electron distribution in X/Y/Z direction; ^dthe degree of hole and electron in charge transfer direction; ^eexciton binding energy; ^fthe hole delocalization index; ^gthe electron delocalization index.

3. TD-DFT with B3LYP/6-31G*

Table S3. Computed positions and oscillator strength (*f*) of the 10 lowest-energy electronic transitions of Y6 solution by TD-DFT at B3LYP/6-31G* level of theory.

λ _{cal} (eV, nm)	f^{a}	Excitation contribution ^b (%)			
1.72 (722)	2.2709	H→L (98.7)			
2.05 (605)	0.1601	H→L+1 (96.6)			
2.32 (534)	0.1104	H→L+2 (96.0)			
2.42 (513)	0.0060	H-2→L (69.2), H-1→L (22.8)			
2.42 (513)	0.0141	H→L+3 (65.9), H-1→L (29.5)			
2.55 (485)	0.6055	H-1→L (45.2), H-2→L (26.9), H→L+3 (24.6)			
2.60 (477)	0.0867	H-3→L (45.0), H-1→L+1 (25.7), H-2→L+1 (25.6)			
2.69 (460)	0.0381	H→L+4 (69.1), H-1→L+1 (24.6)			
2.74 (452)	0.0287	H-3→L (42.6), H-1→L+1 (34.5), H→L+4 (17.7)			
2.79 (444)	0.0721	H-2→L+1 (65.7), H-1→L+1 (11.3), H→L+4 (9.6)			
	$\begin{array}{r} \lambda_{cal} \\ \hline (eV, nm) \\ \hline 1.72 (722) \\ 2.05 (605) \\ 2.32 (534) \\ 2.42 (513) \\ 2.42 (513) \\ 2.55 (485) \\ 2.60 (477) \\ 2.69 (460) \\ 2.74 (452) \\ 2.79 (444) \end{array}$	$\begin{array}{c} \lambda_{\rm cal} \\ \hline heve (eV, nm) \end{array} f^{a} \\ \hline 1.72 (722) 2.2709 \\ 2.05 (605) 0.1601 \\ 2.32 (534) 0.1104 \\ 2.42 (513) 0.0060 \\ 2.42 (513) 0.0141 \\ 2.55 (485) 0.6055 \\ 2.60 (477) 0.0867 \\ 2.69 (460) 0.0381 \\ 2.74 (452) 0.0287 \\ 2.79 (444) 0.0721 \end{array}$			

^aOscillator strengths. ^bH=HOMO, L=LUMO, H-1=HOMO-1, L+1=LUMO+1.

Figure S5. Electron density contours of (a) HOMO, (b) LUMO, (c) HOMO-1, (d) LUMO+1, (e) HOMO-2, (f) LUMO+2, (g) HOMO-3, (h) LUMO+3, (i) HOMO-4, (j) LUMO+4, (k) HOMO-5, (l) LUMO+5 of Y6 solution by TD-DFT at B3LYP/6-31G* level of theory. The isosurface value was set at 0.01 a.u..

Figure S6. Simulated UV-vis absorption spectrum (red curve) and oscillator strength (black spikes) of the Y6 solution by TD-DFT at B3LYP/6-31G* level of theory. A Gaussian function with a full width at half-maximum (FWHM) of 0.11 eV was employed.

Figure S7. Simulated PL spectrum (red curve) and oscillator strength (black spikes) of the Y6 solution by TD-DFT at level of B3LYP/6-31G*.A Gaussian function with a full width at half-maximum (FWHM) of 0.11 eV was employed.

Figure S8. Computed natural transition orbital pairs for S_1 - S_{10} of Y6 solution by TD-DFT at B3LYP/6-31G* level of theory. The isosurface value was set at 0.018 a,u,.

Figure S9. The overlap of electron-hole isosurface density maps between (a) S_0 and S_1 , (b) S_0 and S_2 , (c) S_0 and S_3 , (d) S_0 and S_4 , (e) S_0 and S_5 , (f) S_0 and S_6 , (g) S_0 and S_7 , (h) S_0 and S_8 , (i) S_0 and S_9 , (j) S_0 and S_{10} of Y6 solution by TD-DFT at B3LYP/6-31G* level of theory. The isosurface value was set at 0.0009 a.u..

Transition	Da (Å)	Srb	H° (Å)	t ^d (Å)	E _{coul} e (eV)	HDIf	EDIg	Transition Character
$S_0 \rightarrow S_1$	1.29	0.67	7.45	-2.75	1.95	4.64	4.24	LE
$S_0 \rightarrow S_2$	1.95	0.64	7.96	-2.84	1.83	4.61	4.67	LE
$S_0 \rightarrow S_3$	2.98	0.60	7.80	-1.42	1.81	4.54	5.57	СТ
$S_0 \rightarrow S_4$	3.09	0.57	6.35	-0.62	2.07	5.12	4.16	СТ
$S_0 \rightarrow S_5$	2.18	0.71	7.65	-2.56	1.88	4.23	4.58	СТ
$S_0 \rightarrow S_6$	1.06	0.78	7.92	-3.62	1.86	4.33	4.03	LE
$S_0 \rightarrow S_7$	2.63	0.55	6.70	-1.32	2.02	4.95	4.35	СТ
$S_0 \rightarrow S_8$	1.60	0.71	6.61	-2.36	2.18	4.29	6.33	LE
$S_0 \rightarrow S_9$	1.34	0.73	6.87	-2.78	2.07	4.11	3.98	LE
$S_0 \rightarrow S_{10}$	1.48	0.72	7.84	-3.21	1.86	3.84	4.21	LE

Table S4. *S*_r, *D*, *t*, *H*, *E*_{coul}, *HDI* and *EDI* for the transitions between S₀ and 10 lowest-energy excited states in Y6 solution by TD-DFT at the level of B3LYP/6-31G*.

^athe distance between centroid of hole and electron in corresponding directions; ^bthe overlap function between hole and electron distribution; ^cthe average degree of spatial extension of hole and electron distribution in X/Y/Z direction; ^dthe degree of hole and electron in charge transfer direction; ^eexciton binding energy; ^fthe hole delocalization index; ^gthe electron delocalization index.

Figure S10. The electron density difference between (a) S₀ and S₁, (b) S₀ and S₂, (c) S₀ and S₃, (d) S₀ and S₄, (e) S₀ and S₅, (f) S₀ and S₆, (g) S₀ and S₇, (h) S₀ and S₈, (i) S₀ and S₉, (j) S₀ and S₁₀ of Y6 solution by TD-DFT at B3LYP/6-31G* level of theory. The isosurface value was set at 0.0005 a.u. (blue, electron density decreases upon transition; red, electron density increases upon transition).

N	3.334	-1.423	-6.840
Ν	4.17	-2.722	-4.838
С	2.203	0.914	-4.155
С	3.477	-0.987	-3.226
С	3.595	-1.567	-4.530
С	2.879	0.293	-3.054
С	3.115	-0.823	-5.677
С	2.401	0.402	-5.469
С	4.396	1.124	6.548
Н	-2.067	1.302	-4.117
Н	9.715	2.247	-2.467
С	-4.505	8.431	-10.889
S	4.703	-2.765	-1.212
С	-2.715	6.63	-7.968
Ν	3.038	0.702	-1.730
S	1.361	1.391	-8.049
О	-2.366	6.578	-5.561
Н	-2.804	-0.508	-2.507
F	-5.514	10.828	-4.765
Н	6.386	3.927	0.772
Н	5.625	-0.389	9.368
С	-5.449	10.348	-7.071
Н	-2.363	1.919	1.131
Н	5.684	5.541	0.591
Н	-1.951	5.41	-9.477
С	0.312	2.776	-7.697
С	0.234	3.082	-6.325
С	5.045	-2.293	1.633
С	-1.943	5.568	-8.405
С	-4.205	8.992	-5.496
С	4.058	-0.643	0.264
F	4.845	1.762	10.546
S	3.982	0.139	1.809
S	0.784	4.453	-6.022
С	5.006	0.123	7.323
Ν	-2.599	5.775	-11.787
С	3.939	2.322	7.083
С	3.658	-0.345	-1.056
С	-3.773	8.242	-6.583
Н	-5.361	9.878	-9.142
С	6.916	2.094	-2.098

 $\label{eq:solution} \textbf{Table S5.} Geometrically optimized atomic X/Y/Z coordinates of the ground state structure of Y6.$

Н	-0.371	2.499	2.583
С	9.180	1.626	-3.195
С	4.608	2.578	-1.010
С	3.160	2.100	-1.272
Н	9.742	1.655	-4.135
С	-5.016	9.596	-8.156
Н	5.458	3.562	-2.753
С	-1.119	4.610	-7.77
С	5.168	0.328	8.700
Н	2.551	2.218	-0.369
С	6.35	-3.261	6.018
С	-2.872	7.069	-6.565
С	1.682	1.242	-6.339
С	4.513	3.973	-0.350
С	-1.024	3.271	2.159
С	4.643	-1.921	0.346
Н	-0.404	4.153	1.954
С	5.996	-2.171	6.870
Н	6.908	1.072	-1.692
Н	7.243	1.496	-4.15
Н	6.505	4.782	-0.776
С	4.948	-0.656	5.078
Н	-2.528	-1.171	-4.118
С	1.025	2.200	-5.557
С	4.762	-1.273	2.579
Н	-3.892	8.758	-4.484
С	5.37	-1.014	6.435
С	7.741	2.116	-3.391
Н	-0.119	4.374	-10.528
S	4.105	-2.851	-6.492
Н	6.682	-3.483	2.408
С	5.091	-1.436	3.944
Ν	1.324	2.002	-4.213
Н	-1.526	3.331	-10.375
F	-6.269	11.387	-7.266
С	-2.036	-0.691	-3.265
С	0.367	2.427	-3.166
Н	9.199	0.593	-2.827
0	3.861	1.340	4.212
С	-1.719	2.775	0.887
Н	-1.320	-1.410	-2.848
С	-1.330	0.596	-3.708
Н	0.095	2.628	-10.355

Н	3.472	3.079	6.462
F	3.691	3.640	9.038
С	-3.517	7.524	-8.808
С	4.336	0.688	5.136
Н	5.814	-4.216	1.0540
С	-3.079	6.539	-11.049
С	5.692	-3.612	1.958
С	4.711	1.526	9.236
С	-3.688	7.496	-10.182
С	5.465	2.560	-2.300
Н	0.904	2.927	-2.362
С	-5.054	10.057	-5.757
С	-0.735	2.364	-0.217
С	-0.501	3.481	-10.02
Н	-0.081	3.22	-0.436
С	4.105	2.514	8.446
С	-4.158	8.518	-7.906
С	-0.437	3.619	-8.523
С	5.850	4.586	0.079
Н	3.864	3.898	0.533
С	3.934	-1.385	-1.954
Н	-1.753	3.55	2.927
Ν	6.654	-4.17	5.355
Н	5.062	1.897	-0.278
Н	5.095	-4.194	2.669
Н	4.009	4.66	-1.045
Н	2.731	2.73	-2.050
Н	5.005	1.897	-3.044
Н	7.413	2.716	-1.342
Н	7.754	3.139	-3.795
Н	-0.266	3.189	-3.63
Н	-0.657	0.345	-4.536
Н	-0.08	1.565	0.163
Н	-2.386	3.559	0.502
Н	5.559	-2.399	4.109
С	-0.523	1.300	-2.597
С	-1.439	1.877	-1.494
Н	0.138	0.554	-2.131
Н	-2.039	2.697	-1.918
Н	-2.158	1.101	-1.206
Ν	-5.161	9.175	-11.499
С	6.360	-2.401	8.232
Ν	6.671	-2.624	9.333

4. Fitting parameters in Figure 5

Excitation Fluence	Amplitude	Lifetime
(photons/(pluse×cm ²))	A_1	τ1 (ps)
4.8×10^{12}	1.053	822 ± 17
1.0×10^{13}	1.084	794 ± 18
1.6×10^{13}	1.081	884 ± 16

Table S6. Fitting parameters of the TRPL decay shown in Figure 5a.

Table S7. Fitting parameters of the TA decay shown in Figure 5b.

Excitation Fluence	Amplitude	Lifetime	Amplitude	Lifetime	Amplitude	Lifetime
(photons/(pluse×cm²))	A_1	τ1 (ps)	A_2	τ2 (ps)	Aз	τ3 (ps)
2×10^{14}	4.7	1.6 ± 0.2	2.8	31 ± 2	0.58	3929 ± 1155

References

- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* 1994, *98*, 11623–11627, doi:10.1021/j100096a001.
- 2. Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. *Chem. Phys.* **1998**, *109*, 1223–1229, doi:10.1063/1.476673.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H., et al. *Gaussian Inc.* 2016, Wallingford, CT. https://gaussian.com/g09citation/ (accessed on 1 November, 2016)
- 4. Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305, doi:10.1039/b508541a.
- 5. Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777, doi:10.1063/1.1558471.
- 6. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580–592, doi:10.1002/jcc.22885.
- 7. Humphrey, W.; Dalke, A.; Schulten, K. VMD: visual molecular dynamics. *J. Molec. Graphics* **1996**, *14*, 33–38, doi:10.1016/0263-7855(96)00018-5.
- Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Electronic structure, electronic spectrum, and optical nonlinearity. *Carbon* 2020, *165*, 461–467, doi:10.1016/j.carbon.2020.05.023.