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Supplementary Material

1. Methods

In the Bayesian framework, the marginal likelihood or evidence of data D conditioned on model ⌧ with
associated parameters ✓ = (✓1, ✓2, . . . , ✓N ) is

p(D | ⌧) =
Z

p(D | ✓, ⌧)p(✓ | ⌧)d✓,

where p(D | ✓, ⌧) is the probability of the data given parameters ✓, p(✓ | ⌧) is the prior on ✓, and the integral
is of dimension N.

Dependence on model ⌧ is suppressed in the rest of the document to simplify notation.

1.1. Laplace method.

1.1.1. Classical Laplace. The Laplace method [Tierney and Kadane, 1986] approximates the marginal likeli-
hood by approximating the posterior distribution using a multivariate normal distribution with mean equal
to the maximum a posteriori estimates ✓̃, and covariance ⌃̃ = (�H)�1 where H is the Hessian matrix of
second derivatives of log(p(D | ✓)p(✓)). Specifically, let us define l(✓) = log(p(D | ✓)p(✓)) and Taylor-expand
l(✓) around ✓̃. Exponentiating this quadratic approximation leads to a normal distribution with µ̃ = ✓̃ and
⌃̃ = �H�1. Integrating the normal distribution yields the Laplace marginal likelihood estimator

p̂L(D) ⇡ (2⇡)d/2 det(⌃̃)1/2p(D | ✓̃)p(✓̃),
where det(⌃̃) is the determinant of the covariance matrix.

Unfortunately, the above normal approximation is not always accurate in practice. In our specific phylo-
genetic setting, the positivity of branch lengths creates problems for the normal approximation. It is however
possible to improve the normal approximation of the posterior and the Laplace method if we transform each
variable ✓i using a one-to-one twice di↵erentiable function g such as ✓i = g(zi) and zi = g�1(✓i). Applying
the chain rule, the Hessian of the posterior for the transformed parameters is

Hz
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otherwise.

The transformation requires an adjustment to account for the distortion of the distribution hence insuring
that the distribution integrates to 1. Therefore, given z ⇠ N (µ,⌃) the density of ✓ is

p(✓) = N (g�1(✓) | µ,⌃) | det Jg�1(✓)|,

where | det Jg�1(✓)| is the absolute value of the determinant of the Jacobian matrix evaluated at ✓. However,
we find in practice that some branch length posteriors are monotonically decreasing functions with modes
at 0, and thus the transformation approach is not su�cient to make the normal approximation accurate.

1.1.2. The Laplus approximations. However, while some transformations may work well for a branch or
subset of branches, we find in practice that there is no one transformation that works well for all branches
on a tree. As an alternative we use a family of approximations inspired by the Laplace that we call the
Laplus approximations (in recognition of the fact that they are like the Laplace but designed for parameters
on R+). We share with the Laplace approximation the assumption that the posterior is concentrated around
the mode, ✓̃. Unlike the Laplace approximation, we assume that branch lengths are mutually independent,
such that we can make the approximation

p(✓ | ⌧, D) ⇡
Y

i

q(✓i;�i)

Here q is a parametric distribution with known normalizing constant (such as the gamma distribution) that
we will use to approximate the posterior distributions for each branch. For a given branch, �i are the
parameters of q that approximate the marginal posterior of that branch. Let C be a constant such that

p(✓ | ⌧, D) = C ⇥ p(D | ⌧,✓)p(✓)
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That is, C is the inverse of the marginal likelihood that we seek to estimate, and using our approximation
above,

C =
p(✓ | ⌧, D)

p(D | ⌧,✓)p(✓) ⇡
Q

i q(✓i;�i)

p(D | ⌧,✓)p(✓)
Finally, by applying this equation at the posterior mode, our resulting estimate of the marginal likelihood is

p̂Laplus(D) = Ĉ�1 =
p(D|✓̃)p(✓̃)
Q

i q(✓̃i;�i)

The general procedure for the Laplus approximations is similar regardless of parametric distributional
family assumption q. Our goal is to take the joint MAP estimates of the branch lengths ✓̃ and the vector
of second derivatives of the log-posterior ( @2l

@✓2
1
, @2l
@✓2

2
, . . . , @2l

@✓2
n
) and find the parameters of our approximating

distributions for each branch, �i, by matching modes and second derivatives of the approximating and
posterior distributions of branch lengths. The complete procedure is written here algorithmically.

(1) Find the (joint) MAP branch lengths, ✓̃ = (✓̃1, ✓̃2, . . . , ✓̃n)
(2) for i in 1 : n

(i) Compute @2l
@✓2

i
, the second derivative of the log unnormalized posterior with respect to the ith

branch
(ii) Find parameters of �i by solving

d2

dx2
log(q(x;�i)) =

@2l

@✓2i

���
✓i=✓̃i

mode(q(x;�i)) = ✓̃i

(iii) Catch exceptions

(3) Compute the marginal likelihood as p̂Laplus(D) = p(D|✓̃)p(✓̃)Q
i q(✓̃i;�i)

Exceptions occur when elements of �i are outside of the domain of support, whenHii is nonnegative (so the
posterior has a mode at 0), or when elements of �i are otherwise suspect (such as producing particularly high-
variance distributions with very short branches). Exceptions and their handling depend on the distributional
assumption, and so we describe exception handling in the section for each distribution individually. We
consider three choices for q, the gamma distribution, the Beta0 distribution, and the lognormal distribution.
Since the Laplus method is not derived through a Taylor expansion of the unnormalised posterior, it is
not subject to some of the assumptions required by Laplace’s method. Although both methods require
the function to be twice di↵erentiable, Laplace’s method assumes that the global maxima ✓̃ is not at the
boundary of the interval of integration so that the first derivatives vanishes at ✓̃. Zero-length branches have
typically non-zero (i.e. negative) first derivatives and positive second derivatives making the Laplus method
attractive. And while it is obvious that there must be some dependence between branch lengths, we find in
practice that the posterior correlations between branch lengths are often quite small.

1.1.3. Gamma-Laplus. Here we seek to approximate the marginal posteriors of all branch lengths with
gamma distributions. The vector �i = (↵i,�i) contains the shape and rate parameters of the gamma
distribution; the log probability density function of the gamma is

log(Gamma(x;↵,�)) = ↵ log(�)� log(�(↵)) + (↵� 1) log(x)� �x.

The first and second derivatives of the log gamma distribution with respect to x are given by

d

dx
log(Gamma(x;↵,�)) =

↵� 1

x
� �,

d2

dx2
log(Gamma(x;↵,�)) = �↵� 1

x2
.

We make use of the second derivative of the log-posterior at the mode, Hii = @2l
@✓2

i

���
✓i=✓̃i

to estimate ↵̂i

using the second derivative of the log of the gamma distribution. Then we solve for �̂i using the analytic
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formula for gamma mode: ✓̃i =
↵i�1
�i

.

Hii = � ↵̂i � 1

✓̃2i

↵̂i = 1� ✓̃2iHii

�̂i =
↵̂i � 1

✓̃i
=

�✓̃2iHii

✓̃i
= �✓̃iHii

We note two exceptions to handle with the GL approach. The first case are branches with a mode at 0,
which have posteriors that are monotonically decreasing. The second case are branches that are short with
oddly large variances. We detect branches of the first type by checking whether ✓̃i < ✏1 or Hii >= 0. These
branches are handled by fixing ↵̂i = 1 (to ensure that the approximation is monotonically decreasing) and
fitting �̂i directly using the log-posterior calculated at N points spaced evenly (on the log-scale) between
✓̃i and 0.5. We detect branches of the second type by checking whether ✓̃i < ✏2 and ↵i

�2
i

> 0.1. These

branches are handled by fitting ↵i,�i to N points spaced evenly (on the log-scale) between ✓̃i and 0.5, while
constraining ✓̃i =

↵̂i�1
�̂i

(such that the mode of the approximation to be the mode of the posterior). We use

N = 10, ✏1 = 10�6, and ✏2 = 10�4.

1.1.4. Beta

0
-Laplus. Here we seek to approximate the marginal posteriors of all branch lengths as beta0 dis-

tributions. In this case, the vector �i = (↵i,�i) concatenates the shape parameters of the beta0 distribution
with log probability density function is

log(Beta0(x;↵,�)) = � log(B(↵,�)) + (↵� 1) log(x)� (↵+ �) log(x+ 1),

where B is the beta function.
The first and second derivatives of the log beta0 distribution with respect to x are given by

d

dx
log(Beta0(x;↵,�)) =

↵� 1

x
� ↵+ �

x+ 1
,

d2

dx2
log(Beta0(x;↵,�)) = �↵� 1

x2
+

↵+ �

(x+ 1)2
.

When ↵  1, the beta0 distribution collapses to a monotonically decreasing distribution. When ↵ = 1,

log(Beta0(x; 1,�i)) = � log(B(1,�i)) + (1� 1) log(x)� (1 + �i) log(x+ 1),

log(Beta0(x; 1,�i)) = � log(B(1,�i))� (1 + �i) log(x+ 1),

d

dx
log(Beta0(x; 1,�i)) = �1 + �i

x+ 1
.

We make use of the second derivative at the mode, Hii =
@2l
@✓2

i

���
✓i=✓̃i

to estimate �̂i. Then we solve for ↵̂i

using the fact that ✓̃i =
↵̂i�1
�̂i+1

.
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Hii = � ↵̂i � 1

✓̃2i
+

↵̂i + �̂i

(✓̃i + 1)2

= � 1

✓̃i

↵̂i � 1
↵̂i�1
�̂i+1

+
1

✓̃i + 1

↵̂i + �̂i

↵̂i+�̂i

�̂i+1

= � 1

✓̃i
(�̂i + 1) +

1

✓̃i + 1
(�̂i + 1)

= (�̂i + 1)
⇣ 1

✓̃i + 1
� 1

✓̃i

⌘

=
�̂i + 1

✓̃i(✓̃i + 1)

�̂i = �Hii(✓̃i + 1)✓̃i � 1

↵̂i = ✓̃i(�̂i + 1) + 1.

We note two exceptions to handle with the BL approach. To start, we check if �̂i < 0, which implies
Hii > 0, meaning the posterior should be monotonically decreasing. In this case, we set ↵̂i = 1 and use the
equations outlined below to fit �̂i. We then check if �̂i < 2, in which case our approximate posterior has
suspiciously high variance, in which case we fit ↵i,�i to N points spaced evenly (on the log-scale) between
✓̃i and 0.5, while constraining ✓̃i =

↵̂i�1
�̂i+1

(such that the mode of the approximation to be the mode of the

posterior).

When we set ↵̂i = 1 we can use the first derivative of the log-posterior, ri =
@l
@✓i

���
✓i=✓̃i

, to fit �̂i:

ri = �1 + �̂i

✓̃i + 1
,

�̂i = �ri(✓̃i + 1)� 1.

1.1.5. Lognormal-Laplus. Here we seek to approximate the marginal posteriors of all branch lengths as
lognormal distributions. The vector �i = (µi,�i) concatenates the mean and standard deviation parameters
of the lognormal distribution with log probability density function

log(Lognormal(x;µi,�i)) = � log(2⇡)

2
� log(x)� log(�i)�

(log(x)� µi)2

2�2
i

.

The first and second derivatives of the log lognormal distribution with respect to x are given by

d

dx
log(Lognormal(x;µi,�i)) = � 1

x
� log(x)� µi

x�2
i

,

d2

dx2
log(Lognormal(x;µi,�i)) =

1

x2
� � log(x) + µi + 1

x2�2
i

.
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We make use of the second derivative at the mode, Hii = @2l
@✓2

i

���
✓i=✓̃i

, and the fact that ✓̃i = eµi��2
i to

estimate �̂2
i . Then we solve for µ̂i using the fact that log(✓̃i) = µi � �2

i .

Hii =
1

✓̃2i
� � log(✓̃i) + µ̂i + 1

✓̃2i �̂
2
i

=
1

✓̃2i
� �(µ̂i � �̂2

i ) + µ̂i + 1

✓̃2i �̂
2
i

=
1

✓̃2i
� 1

✓̃2i �̂
2
i

� �̂2
i

✓̃2i �̂
2
i

,

�̂2
i = � 1

✓̃2iHii

,

µ̂i = log(✓̃i) + �̂2
i .

We note two exceptions to handle with the LL approach. The first case are branches with a mode at
0, which have posteriors that are monotonically decreasing. The second case are branches that are short
with oddly large variances. We nest the cases such that we first check for branches that fall in either
category, checking ✓̃i < ✏1 or Hii >= 0 or µ̂ > 5 (which happens when �̂ is suspiciously large). As there
is no parameter regime in which the lognormal is monotonically decreasing, and suspiciously high-variance
branches are not fit any better by a lognormal distribution than a gamma distribution, at this point we switch
to approximating branches as gamma distributions and proceed with exceptions as in the GL approach.

1.2. Importance sampling. Importance sampling uses a reference or importance distribution from which
values are drawn, allowing summaries to be calculated for an unknown distribution by taking into account
the importance weights (probabilities of drawing the sampled values). If g is an importance distribution
then

p(D) =

Z
p(D | ✓)p(✓)d✓

=

Z
p(D | ✓)p(✓)

g(✓)
g(✓)d✓

= Eg

✓
p(D | ✓)p(✓)

g(✓)

◆
.

For a normalized density g, the estimate is given by,

p̂IS(D) =
1

N

NX

i=1

p(D | ✓̃i)p(✓̃i)
g(✓̃i)

, ✓̃i ⇠ g(✓).

For an unnormalized density q, the self normalized importance sampling estimate [Owen, 2013] is given
by

p̂IS(D) =

PN
i=1 p(D | ✓̃i)w(✓̃i)PN

i=1 w(✓̃i)
, ✓̃i ⇠ q(✓),

where w(✓̃i) is the importance weight given by w(✓̃i) =
p(✓̃i)

q(✓̃i)
.

1.3. Naive Monte Carlo. The simplest Monte Carlo estimator of the marginal likelihood is defined as the
expected value of the likelihood with respect to the prior distribution [Hammersley and Handscomb, 1964,
Raftery and Banfield, 1991]. The so called naive Monte Carlo (NMC) estimator can be approximated by
drawing N samples ✓1,✓2, . . . ,✓N from the prior distribution and calculating the arithmetic mean of the
likelihood.

p̂NMC(D) =
1

N

NX

i=1

p(D | ✓̃i), ✓̃i ⇠ p(✓).
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Although this approach is fast and unbiased, the high-likelihood region can be distant from the high-prior
region. Most ✓̃is will therefore be sampled from a region of the likelihood with low probability yielding high
variance [Newton and Raftery, 1994].

1.4. Harmonic mean. The harmonic mean (HM) estimator only requires samples from the posterior gener-
ated by a single MCMC or other samplers and is therefore appealing to the user [Newton and Raftery, 1994].
The harmonic mean estimator of marginal estimator is equivalent to an importance sampling estimator of
1/p(D) with importance distribution p(✓ | D):

p̂HM(D) =
1

1
N

PN
i=1

1
p(D|✓̃i)

, ✓̃i ⇠ p(✓ | D).

This estimator is unstable due to the possible occurrence of small likelihood values the estimator and hence
this estimator has infinite variance. Although the Law of Large Numbers guarantees that this estimator is
consistent, the number of samples required to get an accurate estimate can be prohibitively high.

1.5. Stabilized harmonic mean. Newton and Raftery [1994] also proposed the stabilized harmonic mean
(SHM) estimator to address the instability of the HM estimator. The SHM estimator is based on importance
sampling scheme where the importance sampling distribution is a mixture of the prior and the posterior:
p?(✓) = �p(✓) + (1� �)p(✓ | D) where � is small, such that

p̂SHM⇤(D) =

Pn
i=1

p(D|✓̃i)

�p̂SHM⇤ (D)+(1��)p(D|✓̃i)Pn
i=1{�p̂SHM⇤(D) + (1� �)p(D | ✓̃i)}�1

, ✓̃i ⇠ p?(✓).

Unfortunately this estimator requires simulating from both the posterior and prior. Newton and Raftery
proposed to simulate from the posterior and assume that a further �n

(1��) observations are drawn from the

prior, all of them with their likelihoods equal to their expected value p(D). The likelihood of the imaginary
samples drawn from the prior is p(D | ✓j) = p̂SHM for j = 1, . . . , �n

1�� . Then, the approximate marginal
likelihood p̂SHM(D) satisfies the following equation:

p̂SHM(D) =

�n
1�� +

Pn
i=1

p(D|✓̃i)

�p̂SHM(D)+(1��)p(D|✓̃i)

�n
(1��)p̂SHM(D) +

Pn
i=1{�p̂SHM(D) + (1� �)p(D | ✓̃i)}�1

, ✓̃i ⇠ p(✓ | D),

which is solved by an iterative scheme that updates an initial guess of the marginal likelihood (e.g. harmonic
mean estimate) until a stopping criterion is satisfied. In our implementation the recursion stops when the
absolute change in log p̂SHM(D) is less than 10�7. Newton and Raftery [1994] advocate � = 0.01 while
Lartillot and Philippe [2006] use � = 0.1. In this study we used the p̂SHM with � = 0.01.

1.6. Bridge sampling. Bridge sampling (BS) was initially developed to estimate Bayes factors [Kass and
Raftery, 1995] and was more recently adapted to approximate the marginal likelihood of a single model
[Overstall and Forster, 2010, Gronau et al., 2017]. Following a derivation by Gronau et al. [2017], the bridge
sampling estimator is derived from the following identity:

1 =

R
p(D | ✓)p(✓)h(✓)g(✓)d✓R
p(D | ✓)p(✓)h(✓)g(✓)d✓

,

where g(✓) is the proposal distribution and h(✓) is the bridge function. The bridge function ensures that
the denominator in the identity is not zero.

Multiplying both sides of the above identity by p(D) the bridge sampling estimator of the marginal
likelihood is

pBS(D) =

R
p(D | ✓)p(✓)h(✓)g(✓)d✓R
h(✓)g(✓)p(✓ | D)d✓

=
Eg(✓)(p(D | ✓)p(✓)h(✓))

Ep(✓|D)(h(✓)g(✓))
.

The marginal likelihood is approximated using n1 samples from the posterior distribution and n2 samples
from the proposal distribution

p̂BS(D) =
1/n2

Pn2

i=1(p(D | ✓̃i)p(✓̃i)h(✓̃i))
1/n1

Pn1

j=1 h(✓
⇤
j )g(✓

⇤
j )

, ✓̃i ⇠ g(✓),✓⇤
j ⇠ p(✓ | D).
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Several bridge functions can be used including the so called optimal bridge function [Meng and Wong,
1996]:

h(✓) =
C

s1p(D | ✓)p(✓) + s2p(D)g(✓)
,

where s1 = n1/(n1 + n2) and s2 = n2/(n1 + n2) and C is a constant that cancels out.
The definition of the optimal bridge function depends on the marginal likelihood itself, suggesting an

iterative scheme to approximate p(D) starting from an initial guess, such as the HM estimate. Gronau et al.
[2017] provide a detailed description of an algorithm.

1.7. Thermodynamic integration (aka path sampling, power posterior). The thermodynamic in-
tegration estimator was introduced by Lartillot and Philippe [2006] in the phylogenetic context, borrowing
ideas from path sampling [Gelman and Meng, 1998] and the physics literature where a large body of research
is dedicated to the estimation of normalisation constants. Lartillot and Philippe defined a path going from
the prior to the unnormalised posterior q using

q� = p(D | ✓)�p(✓)

for � 2 [0, 1]. The normalisation constant Z� of the tempered unnormalised posterior is therefore

Z� =

Z

✓
p(D | ✓)�p(✓)d✓

and the log marginal likelihood of the model follows from the path sampling identity:

log p(D) = logZ1 � logZ0 =

Z 1

0

@Z�

@�
d� =

Z 1

0
E✓|D,�(log p(D | ✓))d�.

Friel and Pettitt [2008] worked on similar ideas but di↵er in the choice of temperature schedule and
how the integral over [0,1] is approximated. Lartillot and Philippe [2006] approximate the integral using the
Simpson’s rule while Friel and Pettitt [2008] applied the trapezoidal rule. The interval � 2 [0, 1] is discretized
such that 0 = �0 < �1 < · · · < �K = 1 and for each �i samples are drawn from p(✓ | D,�i) to estimate
E✓|D,�i

(log p(D | ✓)). For example, using the trapezoidal rule the log marginal likelihood of a given model is

log p̂PS(D) ⇡
KX

i=1

(�i � �i�1)

✓
Ei�1 + Ei

2

◆
,

where Ei = E✓|�i
log p(D | ✓) is the expectation of the log deviance at �i.

Lartillot and Philippe [2006] used equally spaced inverse temperatures between 0 and 1, while Friel and
Pettitt [2008] set �i = (i/K)5. It is clear that other temperature schedules can be exploited such as a
schedule based on the quantiles of parametric distribution [Xie et al., 2010] (see stepping stone section) and
the adaptive scheme proposed by Friel et al. [2014]. Friel et al. [2014] subsequently proposed a modified
trapezoidal rule that uses the variance of the samples to improve the approximation:

log p̂MPS(D) ⇡
KX

i=1

(�i � �i�1)

✓
Ei�1 + Ei

2

◆
�

KX

i=1

(�i � �i�1)2

12
(Vi � Vi+1) ,

where Vi = V✓|�i
(log p(D | ✓)) is the variance of the log deviance at �i.

1.8. Stepping stone. Xie et al. [2010] proposed the stepping stone (SS) algorithm that is related to the path
sampling approach described in the previous section. It uses a series of distributions defining a path between
the prior and posterior and therefore inherits the computational burden of path sampling. Thermodynamic
integration and stepping stone di↵er in the choice of � values: Xie et al. [2010] set �1, . . . ,�n equal to
the quantiles of a density with fixed parameters (e.g. beta distribution). This approach allows for a more
intensive sampling of power posteriors with small � values, for which the posterior is changing rapidly.

Let’s define the unnormalized power posterior distribution q� = p(D | ✓)�p(✓) and normalized power
posterior distribution p� = q�

c�
, where c� is the power marginal likelihood of the data. The aim of the

method is to estimate the ratio rSS = c1.0/c0.0, which is equal to c1.0 if the prior is proper. This ratio can
be expanded into a series of telescopic product of ratios using intermediate power posteriors
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rSS =
c1.0
c0.0

=
KY

k=1

c�k

c�k�1

=
KY

k=1

rSS,k,

where rSS,k = c�k/c�k�1
for k = 1, . . . ,K. Xie et al. [2010] estimate each ratio c�k/c�k�1

by importance
sampling using p�k�1

as the importance distribution. Using the definition of importance sampling the kth

ratio is

r̂SS,k =
1

n

nX

i=1

p(D | ✓k�1,i)�k

p(D | ✓k�1,i)�k�1
=

1

n

nX

i=1

p(D | ✓k�1,i)
�k��k�1 ,

where p(D | ✓k�1,i) is the likelihood function evaluated at ✓k�1,i, the ith MCMC sample sampled from p�k�1
.

The product of the K ratios r̂SS,k yields the estimate of the marginal likelihood

p̂SS =
KY

k=1

r̂SS,k.

1.9. Generalized stepping stone. Although stepping stone proved to be more accurate than other ap-
proaches, such as path sampling [Xie et al., 2010], sampling distributions close to the prior (i.e., small �
values) can be di�cult, particularly if the prior is di↵use. Fan et al. [2010] proposed to generalize the stepping
stone method using a reference distribution that approximates the posterior distribution of interest using
samples from the posterior distribution to parametrize the reference distribution. The reference distribution
can be independent probability densities from the same family as the prior distribution or the product of
densities with the same support. In our study the priors are exponential distributions, but we used gamma
distributions that are parametrized using the method of moments. The shape and rate parameters are esti-
mated by matching the first two moments of the gamma distribution to the marginal posterior sample mean
and variance.

In the same vein as the SS method, the unnormalized and normalized power posterior distributions in the
generalized stepping stone (GSS) approach are

q� =
�
p(D | ✓)p(✓)

���
p0(✓;�)

�1��
,

p� =
q�
c�

,

where p(D | ✓) is the likelihood function, p(✓) is the prior distribution, p0 is the reference distribution
parametrized by �, and c� is the (power) marginal likelihood of the data. The key di↵erence with the SS
approach is that for � = 0 the power posterior is equivalent to the reference distribution.

As for the SS method, the aim of this method is to estimate the ratio rGSS = c1.0/c0.0 using importance
sampling. The ratio r̂GSS,k is estimated using n samples from p�k�1

:

r̂GSS,k =
1

n

nX

i=1

✓
p(D | ✓k�1,i)p(✓k�1,i)

p0(✓k�1,i;�)

◆�k��k�1

.

Combining r̂GSS,k for all K ratios yields the marginal likelihood estimator:

p̂GSS =
KY

k=1

r̂GSS,k.

1.10. Nested sampling. Nested sampling is a Monte Carlo method that aims at calculating the marginal
likelihood using a change of variable [Skilling, 2004, Skilling et al., 2006]. It transforms the multidimen-
sional evidence integral over the parameter space into a more manageable one-dimensional integral over the
likelihood space. Skilling defines the prior volume as dX = p(✓)d✓ so that

(1) X(�) =

Z

L(✓)>�

p(✓)d✓,

where L(✓) is the likelihood function and the integral is taken over the region bounded by the iso-likelihood
contour L(✓) = �. The marginal likelihood becomes a one-dimensional integral over unit range
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pNS(D) =

Z 1

0
L(X)dX,

where L(X) is the inverse function of X(�).
Assuming that L(X) can be computed for a sequence of decreasing values 0 < Xm < · · · < X0 = 1, the

unit integral can be approximated using quadrature techniques as the weighted sum:

p̂NS(D) ⇡
mX

i=1

L(Xi)wi,

where wi = Xi �Xi�1.
The nested sampling algorithm uses a clever process of sampling from the prior (hence dX) and condi-

tioning on the likelihood being above a given size (to achieve the likelihood condition of (1)) to approximate
the input to such a quadrature technique [Skilling et al., 2006, Maturana Russel et al., 2018]. The algorithm
is initialized with N samples {✓1, . . . ,✓N} drawn from the prior and their corresponding likelihoods are
calculated {L(✓1), . . . ,L(✓N )}. The sample with the lowest likelihood Lmin is discarded from the set and
replaced by a new sample ✓⇤ drawn from the prior subject to the constraint L > Lmin. When we use the
discarded point as an Xi, the other points in the set of course satisfy the likelihood constraint. There are
a variety of choices for terminating the algorithm [Maturana Russel et al., 2018]. We choose to terminate
when the absolute change in log(p̂NS(D)) is less than 10�6.

1.11. Posterior predictive model selection. As an alternative to the marginal likelihood, the fit of
a model can be assessed through the accuracy of its predictions [Gelman et al., 1996]. The probability
distribution of a new data set D̃ having observed data set D is defined as

p(D̃ | D) =

Z
p(D̃ | ✓)p(✓ | D)d✓.

1.11.1. Log pointwise predictive density. A related quantity is the expected log pointwise predictive density
[Vehtari et al., 2017] for a new data set, with n data points, is defined as

elpd =
nX

i=1

Z
pt(D̃i) log p(D̃i | D)dD̃i,

where pt(D̃i) is the distribution representing the true data-generating process for D̃i. In the phylogenetic
framework, the observation Di corresponds to a single site in the alignment. Since the pt is not known, one
can use cross-validation to approximate elpd (see next section).

As in [Vehtari et al., 2017], we define the log pointwise predictive density

lpd =
nX

i=1

log p(Di | D) =
nX

i=1

log

Z
p(Di | ✓)p(✓ | D)d✓,

where p(Di | ✓) is the likelihood of the ith observation. The log pointwise predictive density can be estimated
using S draws ✓1, . . . ,✓S from the posterior distribution p(✓ | D), by summing over the n data points

clpd =
nX

i

log
⇣ 1

S

SX

s=1

p(Di | ✓s)
⌘
,✓s ⇠ p(✓ | D).

We compared the fit of our topology models using the predictive accuracy approximation clpd

log p̂PPD(D) = clpd

as an estimate of the log marginal likelihood. Although we are not aware of others using it in this way,
we have found that it provides a reasonable approximation. However, the lpd of observed data D is an
overestimate of the elpd for future data [Vehtari et al., 2017].
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1.11.2. Conditional predictive ordinates. A related approach is the conditional predictive ordinates (CPO)
method based on Bayesian leave-one-out (LOO).

The leave-one-out estimate of the predictive density for a datapoint is

elpdloo =
nX

i=1

log p(Di | D�i) =
nX

i=1

log

Z
p(Di | D�i,✓)p(✓ | D�i)d✓,

where p(Di | D�i) is the leave-one-out predictive density (aka conditional predictive ordinate) given the data
without the ith data point.

The CPO estimate of this is given by

p̂(Di | D�i) =
1

1
S

PS
i=1

1
p(Di|✓s)

,✓s ⇠ p(✓ | D).

The resulting estimate of the log marginal likelihood (called the log pseudo-marginal likelihood by Lewis
et al. [2013]) is given by

log p̂CPO(D) = \lpdloo =
nX

i=1

log p̂(Di | D�i)

1.12. Variational inference. Variational Bayes methods provide an analytical approximation to the pos-
terior probability and a lower bound for the marginal likelihood. The main idea is to choose a family of
distributions q parametrised with parameters � and to minimize the Kullback Leibler (KL) divergence from
variational distribution q to the posterior distribution p of interest

�⇤ = argmin
�2�

KL(q(✓;�) k p(✓ | D)).

It is di�cult to minimise the KL divergence directly but much easier to minimize a function that is equal
to it up to a constant. Expanding the KL divergence we get

KL(q(✓;�) k p(✓ | D)) = E[log q(✓;�)]� E[log p(✓ | D)]

= E[log q(✓;�)]� E[log p(✓, D)] + log p(D)

= �ELBO(�) + log p(D),

where ELBO(�) = E[log p(✓, D)] � E[log q(✓;�)]. This equation suggests that the ELBO(�) is the lower
bound of the evidence: log p(D) � ELBO(�).

Instead of minimizing KL divergence, we maximize the evidence lower bound:

ELBO(�) = E
q(✓;�)

[log p(D,✓)� log q(✓;�)].

Several variational distributions can be used including the mean-field and fullrank Gaussian distributions.
The fullrank model uses a multivariate Gaussian distribution to model the correlation between variables
while the meanfield distribution assumes a diagonal covariance matrix. In this study we used the meanfield
model hence taking the assumption that there is no correlation between the branch lengths of the phylogeny:

q(✓;�) = N (✓;µ, diag(�2)) =
nY

i=1

N (✓i;µi,�
2
i ).

It is common to use stochastic gradient ascent algorithm to maximise the ELBO as long as the model is
di↵erentiable [Ranganath et al., 2014, Kucukelbir et al., 2015]. In the phylogenetic context the derivative of
posterior with respect to the branch lengths can be derived analytically without resorting to approximations
such as finite di↵erences. We used a log transform on the branch lengths to ensure that the variational
distribution stays within the support of the posterior.

Given an optimized variational model we used the ELBO as an approximation of the marginal likelihood

p̂ELBO(D) = max
�2�

ELBO(�).
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The ELBO estimates can have high variance and might be of little use to discriminate between closely
related models (in the KL sense). We used importance sampling to calculate the marginal likelihood of a
model using the variational distribution q as the importance distribution. This yields the p̂VBIS(D) estimator:

p̂VBIS(D) =
1

N

NX

i=1

p(D | ✓̃i)p(✓̃i)
qELBO(✓̃i)

, ✓̃i ⇠ qELBO(✓).

2. Supplementary Figures

For completion, we include here equivalents of Figure 3 and Figure 2 for datasets DS1-4. We also include
versions of Figure 4 and Figure 1 that use KL divergence instead of RMSD as the measure of accuracy. The
KL and RMSD results are qualitatively similar.
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Figure S1. The posterior probabilities of all the splits observed in DS1 for a single replicate. MrBayes
posteriors are plotted on the x-axis versus the denoted approximation on the y-axis. The line y = x is
provided for ease of interpretation, and points are colored by the thresholds we discuss: RMSD < 0.01 is a
good approximation (green), 0.01  RMSD < 0.05 is a potentially acceptable approximation (yellow), and
RMSD � 0.05 is poor (red). Panels are ordered by RMSD in increasing order.
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Figure S2. The posterior probabilities of all the splits observed in DS2 for a single replicate. MrBayes
posteriors are plotted on the x-axis versus the denoted approximation on the y-axis. The line y = x is
provided for ease of interpretation, and points are colored by the thresholds we discuss: RMSD < 0.01 is a
good approximation (green), 0.01  RMSD < 0.05 is a potentially acceptable approximation (yellow), and
RMSD � 0.05 is poor (red). Panels are ordered by RMSD in increasing order.
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Figure S3. The posterior probabilities of all the splits observed in DS3 for a single replicate. MrBayes
posteriors are plotted on the x-axis versus the denoted approximation on the y-axis. The line y = x is
provided for ease of interpretation, and points are colored by the thresholds we discuss: RMSD < 0.01 is a
good approximation (green), 0.01  RMSD < 0.05 is a potentially acceptable approximation (yellow), and
RMSD � 0.05 is poor (red). Panels are ordered by RMSD in increasing order.
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Figure S4. The posterior probabilities of all the splits observed in DS4 for a single replicate. MrBayes
posteriors are plotted on the x-axis versus the denoted approximation on the y-axis. The line y = x is
provided for ease of interpretation, and points are colored by the thresholds we discuss: RMSD < 0.01 is a
good approximation (green), 0.01  RMSD < 0.05 is a potentially acceptable approximation (yellow), and
RMSD � 0.05 is poor (red). Panels are ordered by RMSD in increasing order.
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Figure S5. The approximate posterior probabilities of the topologies in DS1 versus the ground truth
posterior probabilities from MrBayes, plotted on the log scale for clarity. Results are for a single run of each
method. Panels are ordered by RMSD in increasing order.
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Figure S6. The approximate posterior probabilities of the topologies in DS2 versus the ground truth
posterior probabilities from MrBayes, plotted on the log scale for clarity. Results are for a single run of each
method. Panels are ordered by RMSD in increasing order.
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Figure S7. The approximate posterior probabilities of the topologies in DS3 versus the ground truth
posterior probabilities from MrBayes, plotted on the log scale for clarity. Results are for a single run of each
method. Panels are ordered by RMSD in increasing order.
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Figure S8. The approximate posterior probabilities of the topologies in DS4 versus the ground truth
posterior probabilities from MrBayes, plotted on the log scale for clarity. Results are for a single run of each
method. Panels are ordered by RMSD in increasing order.
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Figure S9. Average Kullback-Leibler (KL) divergence from MrBayes posteriors to approximate posteriors
for each method on each dataset for 10 replicates. LL, GL, BL, MAP, and ML are deterministic and therefore
only one replicate is shown.
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Figure S10. Average Kullback-Leibler (KL) divergence from MrBayes posteriors to approximate posteriors
of splits in the approximate posterior against running time. Text denotes method used, while superscripts
label applications to individual datasets. Four methods are omitted for visual clarity: MAP is essentially
identical to ML, BL is nearly identical to GL, and PS and MPS are both similar to SS. The horizontal
dashed and solid lines depict RMSDs of 0.01 and 0.05 respectively. The KL divergence is calculated using
the average marginal likelihood of each tree from each of 10 replicate analyses. The running time is calculated
using the average running time of each tree from each of 10 replicate analyses.
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Figure S11. Standard error of the Monte-Carlo-based estimators. Each point represents the standard error
of an individual tree across the 10 replicate analyses for each estimator.


