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S1 Appendix. Models derivation

We report the detailed derivation of the models proposed in the paper. The derivation
is based on the assumptions discussed in the section Models. These assumptions allow
to neglect second-order interactions among the stochastic processes, so that the
variables can be partially decoupled, thus leading to drastic reductions in the size of
model. Such strategy is illustrated in the following proposition.

Proposition 1. Let (Ω,A,P) be a probability space. Let A,B,C ⊂ Ω and let D be a
finite partition of Ω, such that:

(H1) A ⊥⊥ B |C,D ∀D ∈ D;

(H2) B ⊥⊥ D |C ∀D ∈ D.
Then, we have:

P [A|B,C] =

∑
D∈D P [A|C,D]P [C,D]

P [C]
= P [A|C].

Proof. We have:

P [A|B,C] =
P [A,B,C]

P [B,C]
=

∑
D∈D P [A,B,C,D]

P [B,C]
=

∑
D∈D P [A|B,C,D]P [B,C,D]

P [B,C]

=

∑
D∈D P [A|B,C,D]P [B|C,D]P [C,D]

P [B,C]
.

From (H1), it follows:
P [A|B,C,D] = P [A|C,D].

Moreover, in virtue of (H2), we have:

P [B|C,D] = P [B|C] = P [B,C]/P [C].

By substituting into the above equation, the thesis follows.

In the following, we will use several times the result of Prop. 1, where (H1) is a
modeling choice on the dynamics of the system and (H2) is a simplifying assumption.
Specifically, A is the target event, whose probability is the aim of the computation. In
many situations, we know the joint probability of C and B, whereas the probability of
A can be obtained by the joint probability of C and a different event D. Proposition 1
allows to pass from B to D, by assuming that the knowledge of B does not provide any
further information when C and D are known.
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Remark: the equations references in this document are referred to the main paper.

Definition of transition rates

As a starting point for a rigorous derivation of the proposed models, we provide a precise
definition of the transition rates that govern the dynamics of the stochastic processes
T ti , Cti , A

t
i, M

t
j and Zti . Specifically, we have, for δ ∈ {B,U} and α, β, η ∈ {P,N}:

k
δδ|β
C,i = lim

∆t→0

1

∆t
P
[
Ct+∆t
i = δ | (Ci, Ti)t = (δ, β)

]
,

k
ββ|α · η,δ
T,i = lim

∆t→0

1

∆t
P
[
T t+∆t
i = β | (Ti−1, Ti, Ti+1, Ci)

t = (α, β, η, δ)
]
,

f iα(x, v(t)) = lim
∆t→0

1

∆t
P
[
Zt+∆t
i = x |Zti = ∅, T ti = α,

∃ j ∈ IM : dtij = x+ vhs∆t,M
t
j = 0

]
,

giα(x, v(t)) = lim
∆t→0

1

∆t
P
[
Zt+∆t
i = ∅ |Zti = x, T ti = α

]
,

where v(t) (i.e. the normalized shortening velocity) is assumed to be given. In the
definition of f iα, the events conditioning the probability ensure that, at time t, the i-th
BS is not attached and that there exists a non-attached MH at distance x+ vhs∆t (so
that at time t+ ∆t the distance is reduced to x).

Derivation of Eq. (5)

Le us consider the time increment ∆t and let us compute the probability
παβδ,ϑηλi (t+ ∆t). In virtue of the Bayes formula [1], we have:

παβδ,ϑηλi (t+ ∆t)
∆t→0∼

P
[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
T t+∆t
i+1 = δ|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
Ct+∆t
i−1 = ϑ|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
Ct+∆t
i+1 = λ|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
παβδ,ϑηλi (t)

+P
[
(Ti−1, Ti, Ti+1)t+∆t = (α, β, δ), (Ci−1, Ci, Ci+1)t+∆t = (ϑ, η, λ)|

(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)
]
παβδ,ϑηλi (t),

where, by definition, we have:

P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

] ∆t→0∼ k
ββ|α · δ,η
T,i ∆t,

and

P
[
Ct+∆t
i−1 = ϑ|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

] ∆t→0∼ k
ϑϑ|α
C,i−1∆t,

P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

] ∆t→0∼ k
ηη|β
C,i ∆t,

P
[
Ct+∆t
i+1 = λ|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

] ∆t→0∼ k
λλ|δ
C,i+1∆t.
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By adopting assumption (H1) and applying Prop. 1 for A = (T t+∆t
i−1 = α),

B = (T ti+1 = δ, Cti+1 = λ), C = ((Ti−1, Ti)
t = (α, β), (Ci−1, Ci)

t = (ϑ, η)) and
D = {(T ti−2 = ξ, Cti−2 = ζ)}ξ,ζ , we have:

P
[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), (Ci−1, Ci, Ci+1)t = (ϑ, η, λ)

]
=

∑
ξ,ζ

πξαβ,ζϑηi−1 (t)

−1∑
ξ,ζ

P
[
T t+∆t
i−1 = α|(Ti−2, Ti−1, Ti)

t = (ξ, α, β),

(Ci−2, Ci−1, Ci)
t = (ζ, ϑ, η)

]
πξαβ,ζϑηi−1 (t)

=

∑
ξ,ζ k

αα|ξ · β,ϑ
T,i πξαβ,ζϑηi−1 (t)∑
ξ,ζ π

ξαβ,ζϑη
i−1 (t)

∆t+ o (∆t) ,

and similarly for the term related to T t+∆t
i+1 . In conclusion, by taking the limit ∆t→ 0,

we obtain Eq. (5).

Derivation of Eq. (15)

Before showing the derivation of Eq. (15), we precisely state the hypothesis of invariance
by translation of the joint distribution of RUs. Specifically, we assume that, for any set
of indices I1 ⊂ Z and I2 ⊂ Z and for any collection of states αi ∈ {N ,P} (for i ∈ I1)
and βi ∈ {U ,B} (for i ∈ I2), the joint distribution of the states of the corresponding
RUs is not affected when the RUs are translated by a count of k ∈ Z units:

P

[( ⋂
i∈I1

T ti = αi

)
∩

(⋂
i∈I2

Cti = βi

)]
= P

[( ⋂
i∈I1

T ti+k = αi

)
∩

(⋂
i∈I2

Cti+k = βi

)]
.

Similarly to what done before, we consider a finite time increment ∆t and we write:

παβδ,η(t+ ∆t)
∆t→0∼ P

[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
T t+∆t
i+1 = δ|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t)

+P
[
(Ti−1, Ti, Ti+1)t+∆t = (α, β, δ), Ct+∆t

i = η|
(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
παβδ,η(t),

where, by definition of the transition rates, it holds:

P
[
T t+∆t
i = β|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

] ∆t→0∼ k
ββ|α · δ,η
T ∆t,

and
P
[
Ct+∆t
i = η|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

] ∆t→0∼ k
ηη|β
C ∆t.

By adopting assumption (H4), Prop. 1 for A = (T t+∆t
i−1 = η), B = (T ti+1 = δ, Cti = η),

C = ((Ti−1, Ti)
t = (α, β)) and D = {(T ti−2 = ξ, Cti−1 = ζ)}ξ,ζ leads to:

P
[
T t+∆t
i−1 = α|(Ti−1, Ti, Ti+1)t = (α, β, δ), Cti = η

]
=

∑
ξ,ζ P

[
T t+∆t
i−1 = α|(Ti−2, Ti−1, Ti)

t = (ξ, α, β), Cti−1 = ζ)
]
πξαβ,ζi−1 (t)∑

ξ,ζ π
ξαβ,ζ
i−1 (t)

∆t→0∼ k̃
αα|◦ · β,◦
T ∆t.

In conclusion, by letting ∆t→ 0, we get Eq. (15).
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Assumption (H3) Assumption (H3-bis)

Fig A. Representation of assumptions (H3)-(H3-bis). According to assumption (H3)
(respectively, assumption (H3-bis)) when a BS-MH pair is within the XB formation
range, then the adjacent BSs (respectively, MHs) cannot be bound to the considered
MH (respectively, BS).

Derivation of Eqs. (7) and (17)

We start with a remark on Ass. (H3).

Remark 1. Assumption (H3) states that, whenever a MH can bind to a given BS, it
cannot be involved in a XB with another BS. Suppose that the support of f is contained
in the interval [x1, x1 + h]. Then, this is equivalent to say that, if dij ∈ [x1, x1 + h], the
XBs between the couples (i− 1, j) and (i+ 1, j), which feature displacements dij −DA

and dij +DA respectively, cannot exist. This condition is automatically fulfilled if XBs
are present only for displacements in the interval (−DA + x1 + h,DA + x1), which has
width 2DA − h. The interval consists in the support of f , with width h, surrounded by
two bands of width DA − h. Consider now the following condition:

f iP(dij(t), v(t)) 6= 0 =⇒ Mk 6= i ∀ k 6= j. (H3-bis)

Assumption (H3-bis) states that, whenever a BS lies within the attachment range of a
given MH, it cannot be involved in a XB with another MH. By similar considerations as
above, it turns out that this hypothesis is satisfied if XBs are present only in the range
(−DM + x1 + h,DM + x1). Since DM > DA, assumption (H3) is stronger than (H3-bis).
Assumptions (H3)-(H3-bis) allow to decouple the dynamics of the different units. Their
validity is justified when the shortening velocity is relatively small, whereas, for large
velocities, the XB displacements may be convected outside the region
(−DA + x1 + h,DA + x1). Figure S1-1 provides a visual representation of assumptions
(H3)-(H3-bis).

We recall that we have defined dij(t) as the distance between the i-th actin BS and
the j-th MH at time t. Since the myofilaments mutually slide with velocity
vhs(t) = − d

dtSL(t)/2, we have, for some constant d0:

dij(t) = DAi−DM j +
SL(t)

2
− d0,

DA and DM being the distance between two consecutive BSs and MHs, respectively. In
order to account for the imperfections in the sarcomere lattice, we consider the value of
d0 as a random variable rather than a constant. Hence, we assume that, given a BS in
front of the MF, the probability that the closest MH is located at distance x is uniform
for x ∈ [0, DM ). We denote by ρM := f

[
∃ j ∈ Z : dtij = x

]
= DM

−1 the MH linear
density, that is:

P
[
∃ j ∈ Z : dtij = x ∈ (a, b)

]
=

∫ b

a

f
[
∃ j ∈ Z : dtij = x

]
dx = ρM |b− a|.

Let us consider now the variable ni,P(x, t) (similar calculations can be carried out for
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ni,N (x, t)). We have:

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)
] ∆t→0∼

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P)
]
P
[
(Zi, Ti)

t = (∅,P)
]

+f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,N )
]
f
[
(Zi, Ti)

t = (x,N )
]

+f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,P)
]
f
[
(Zi, Ti)

t = (x,P)
]
.

Thanks to Prop. 1, by taking A = ((Zi, Ti)
t+∆t = (x− vhs(t)∆t,P)), B = (Zti = x),

C = (T ti = N ) and D = {(Ti−1, Ti+1, Ci)
t = (α, η, δ)}α,η,δ, assumption (H2) leads to

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,N )
] ∆t→0∼ k̃NPT,i ∆t.

where we have defined:

k̃NPT,i :=

∑
α,η,δ k

NP|α · η,δ
T,i P [(Ti−1, Ti, Ti+1, Ci)

t = (α,N , η, δ)]
P [T ti = N ]

,

k̃PNT,i :=

∑
α,η,δ k

PN|α · η,δ
T,i P [(Ti−1, Ti, Ti+1, Ci)

t = (α,P, η, δ)]
P [T ti = P]

.

We notice that the transition rates k̃NPT,i and k̃PNT,i can be obtained from the variables

παβδ,ϑηλi as in Eq. (8). Moreover, we have:

P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (x,P)
]

∆t→0∼ 1− P
[
(Zi, Ti)

t+∆t = (∅,P)|(Zi, Ti)t = (x,P)
]

− P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,N )|(Zi, Ti)t = (x,P)
]

∆t→0∼ 1−∆t
(
giP(x, v(t))− k̃PNT,i

)
,

where we have applied once again assumption (H2). Concerning the XB formation term,
we have:

(F ) := f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P)
]
P
[
(Zi, Ti)

t = (∅,P)
]

= f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P)

]
= f

[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM : dtij = x,M t

j = 0
]

+ f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM : dtij = x,M t

j 6= 0
]

+ f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ Z \ IM : dtij = x

]
.

The last two terms are at least of second order in ∆t for ∆t→ 0, while the first term
gives:

f
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P), (Zi, Ti)
t = (∅,P),∃ j ∈ IM : dtij = x,M t

j = 0
]

= P
[
(Zi, Ti)

t+∆t = (x− vhs(t)∆t,P)|(Zi, Ti)t = (∅,P),∃ j ∈ IM : dtij = x,M t
j = 0

]
f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ Z : dtij = x,M t
j = 0

]
∆t→0∼ f iP(x, vhs(t)) f

[
(Zi, Ti)

t = (∅,P),∃ j ∈ Z : dtij = x,M t
j = 0

]
∆t;

the remaining two terms are null. Thus:

(F ) ∼ f iP(x, v(t)) ∆t f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM : dtij = x,M t
j = 0

]
.
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By assumption (H3), for any i and x such that f iP(x, v(t)) 6= 0, the event (M t
j = 0) for j

s.t. dtij = x implies the event (Zti = ∅), thus:

f
[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM : dtij = x,M t
j = 0

]
= f

[
(Zi, Ti)

t = (∅,P),∃ j ∈ IM : dtij = x
]

= (f
[
T ti = P,∃ j ∈ IM : dtij = x

]
−
∑
k

f
[
(Zi, Ti)

t = (x+ kDM ,P),∃ j ∈ IM : dtij = x
]
),

since a BS can be only attached with displacements that are multiple of DM . Moreover,
we recall that the RU dynamics is independent of the interaction with XBs and thus of
d0 (see section Models) and that for i and x such that f iP(x, v(t)) 6= 0 the events
(∃ j ∈ IM : dtij = x) and (∃ j ∈ Z : dtij = x) coincide. Therefore, we have (on the support

of f iP):
f
[
T ti = P,∃ j ∈ IM dtij = x

]
= P

[
T ti = P

]
f
[
∃ j ∈ Z : dtij = x

]
.

In addition, since (Zi = x+ kDM ) implies (∃ j ∈ Z : dtij = x), on the support of f iP it
holds true:

f
[
(Zi, Ti)

t = (x+ kDM ,P),∃ j ∈ IM : dtij = x
]

= f
[
(Zi, Ti)

t = (x+ kDM ,P)
]
.

Since assumption (H3) implies (H3-bis), the unique nonzero term of the sum is k = 0
and thus:

(F ) ∼= f iP(x, v(t))∆t(P
[
T ti = P

]
f
[
∃ j ∈ Z : dtij = x

]
− f

[
(Zi, Ti)

t = (x,P)
]
).

Finally, we divide everything by ∆t we let ∆t→ 0 and we observe that:

ni,P(x− vhs(t)∆t, t+ ∆t)− ni,P(x, t)

∆t

=
ni,P(x− vhs(t)∆t, t+ ∆t)− ni,P(x− vhs(t)∆t, t)

∆t

+
ni,P(x− vhs(t)∆t, t)− ni,P(x, t)

∆t vhs(t)
vhs(t)

→ ∂ni,P
∂t

(x, t)− vhs(t)
∂ni,P
∂x

(x, t).

We get in such a way Eq. (7). Moreover, the expected value of the force exerted by the
whole half filament is given by:

Fhf(t) =
∑
i

∫ +∞

−∞
FXB(x)f

[
Zti = x

]
dx

=
∑
i

∫ +∞

−∞
FXB(x)

(
f
[
Zti = x, T ti = P

]
+ f

[
Zti = x, T ti = N

])
dx

=
∑
i

∫ +∞

−∞
FXB(x) (ni,P(x, t) + ni,N (x, t)) dx.

On the other hand, Eq. (17) can be derived similarly to Eq. (7), by dropping the
dependence on the RU index i.
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Derivation of Eqs. (11) and (21)

By following [2], we multiply Eq. (7) by ( x
SL0/2

)p, for p = 0, 1, and we integrate with

respect to x over the real line. Thanks to the fact that, for x→ ±∞, the distributions
ni,α are definitively equal to zero, for α ∈ {N ,P} and for i ∈ IA, the convective terms
give raise to the following terms. For p = 0, we have:∫ +∞

−∞
vhs

∂ni,α
∂x

dx = [ni,α]
+∞
−∞ = 0.

On the other hand, for p = 1, we have:∫ +∞

−∞

x

SL0/2
vhs

∂ni,α
∂x

dx = −
∫ +∞

−∞

vhs

SL0/2
ni,Pdx+ vhs

[
x

SL0/2
ni,α

]+∞

−∞
= −v µ0

i,α(t).

Hence, simple calculations lead to Eqs. (11) and (21).
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