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In a relatively new research field that is growing at the rate of 10,000 research articles a year and 

is accompanied by broad coverage in the popular press, it is almost impossible to provide a 

comprehensive review that spans both the historical record and the state-of-the-art. There is also 

a broad spectrum in the depth of coverage of the various topics connected by this review. We 

have identified a large number of articles that should inform the reader about the intersection of 

the human microbiome, clinical pharmacology, environmental toxicology, and the central 

nervous system. Given the reasonable restriction in the number of references allowed, we have 

chosen to present many points in the main article with minimal references, and provide, as 

appropriate, parallel text in this Supplementary Information with more complete references. 

Hence, this supplement is presented as a complementary guide to reading in greater depth and a 

“review of the reviews,” mixed with selections from primary literature. We have attempted to 

minimize redundancy between the main article and this supplement, but some has been necessary 

to maintain the context of the citations in both places. We also apologize to the many researchers 

whose work we were unable to highlight. 

 

INTRODUCTION 

Several articles provide additional information about metabotypes1, 2, 3, other metabolomic 

profiles4, 5, 6 and the development of high-dimensional biomarkers.4, 7, 8 

With regard to the microbiome and human disease,9, 10 there are a rapidly growing 

number of reports of differences between the gut microbiota of healthy and diseased patients, 

where the primary method for studying the microbiome involves comparing microbiota 

composition between individuals or model animals with shotgun metagenomics and 16S rDNA 

sequencing.11 

As another example of a disease-related change to the microbiome, fecal samples of 

colorectal cancer patients seemed to be enriched with Bacteroidetes, whereas in the fecal 

samples of healthy controls, Firmicutes were one of the major phyla detected.12 Further, it has 

been shown that variances in the gut microbiota can account for differences in outcomes for 

patients who suffer from recurrent Clostridium difficile infection.13, 14  

In addition to reports of the microbiome affecting behavior, mood, and decision-

making,15, 16, 17, 18,the gut microbiota’s influence has been implicated in multiple central nervous 

system (CNS) diseases such as Parkinson’s disease,19, 20, 21, 22, 23, 24 depression and anxiety,19, 25, 26, 

27, 28 autism spectrum disorder (ASD),19, 25, 29, 30, 31, 32 attention-deficit hyperactivity disorder 

(ADHD),25 schizophrenia,25, 33 bipolar disorder,33 multiple sclerosis (MS),19, 34 Alzheimer’s 

Disease (AD),24, 34 glioblastomas,35 and various non-CNS diseases such as obesity,36 type 2 

diabetes,36 glucose intolerance,36 insulin resistance,36 acne,37 atopic dermatitis,37 psoriasis,37 

colorectal cancer,11 non-alcoholic fatty liver disease (NAFLD),36, 38 irritable bowel syndrome 

(IBS),25 Crohn’s disease (CD),39 ulcerative colitis (UC),39 substance use disorders (including 

opioid use disorder (OUD)),40 fibromyalgia,41 chronic pain,42, 43, 44 stroke,45 lung disease,46 celiac 

disease,47 and metabolic syndrome.48 It is also important to recognize that genotoxic bacterial 

proteins such as the typhoid toxin directly inflict damage to the host’s DNA.49 
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SIGNIFICANT FACTORS IN THE HUMAN-MICROBIOME 

INTERACTION 

Biochemical Signaling from Gut Microbiota to the Human 

To provide support for the interactions shown in Figure 1 (see main article), it is worthwhile to 

examine how the primary postbiotics can alter the host’s physiological state by reviewing the 

roles of tryptophan metabolites, bile acids, short-chain fatty acids (SCFAs), and immune system 

signaling.  

1. Tryptophan Metabolism  

The essential amino acid tryptophan is primarily produced from dietary protein metabolism and 

enters the vascular system in the intestinal tract. Enterochromaffin cells in the digestive tract 

metabolize tryptophan to serotonin, which is stored systemically in platelets. Spore-forming 

bacteria in the gut modulate the induction of serotonin in the colon and blood, and in doing so 

regulate GI motility and clotting.50 Free circulating tryptophan can cross the blood-brain barrier 

(BBB) to support serotonin synthesis within the brain. Additional tryptophan metabolism is 

provided by the kynurenine and aryl hydrocarbon receptor ligand pathways.51 These tryptophan 

metabolites are associated with regulation of gut and brain immune homeostasis, gut and brain 

inflammatory response, inflammatory bowel disease, gut barrier function, and depression.40, 52 

Furthermore, mouse models of autism spectrum disorder are associated with impaired serotonin 

production, which is correlated with a decrease of Blautia,30 and rat models with fecal 

transplantation from depressed patients had alterations in tryptophan metabolism.25 Tryptophan 

can directly influence the brain, where tryptophan metabolites affect microglia activity, leading 

to a reduction of CNS inflammation.34 

2. Bile Acids 

Bile acids are metabolites of cholesterol catabolism, which affects nutrient absorption and gut 

immune homeostasis. Primary bile acids are transported from the liver to the gut, where they 

undergo biotransformation.40 Bile acids digest dietary lipids, regulate lipid metabolism, and are 

important for small intestine epithelial barrier function. The primary bile acids include cholic 

acid, chenodeoxycholic acid, and muricholic acid. Using 7α-dehydroxylation, Blautia converts 

the primary bile acids into secondary bile acids, which include deoxycholic acid, lithocholic acid, 

and ursodeoxycholic acid. Further, there are taurine-conjugated and -deconjugated forms of 

primary and secondary bile acids. Bifidobacterium and Lactobacillus produce bile salt hydrolase 

that deconjugates primary and secondary bile acids from taurine and glycine. Mouse models of 

autism spectrum disorder have deficient bile conversion, suggesting a link between bile 

metabolism and ASD.30 

3. Short-Chain Fatty Acids  

The three most common SCFAs are acetate, propionate, and butyrate, with acetate being 

approximately three times more common than propionate and butyrate.38 SCFAs are primarily 

generated by the gut microbiota-driven fermentation of dietary fibers in the colon and the 

metabolism of dietary fats or dietary proteins in the absence of dietary fibers. SCFA metabolites 

are used for energy in the colon, and some SCFAs are transported to the liver by the hepatic 

portal vein. SCFAs are released from the liver for circulation. Local SCFAs affect gut membrane 

permeability, and circulating SCFAs can cross the BBB to affect neural and glia cells.40 SCFAs 
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also can affect BBB permeability and act as a histone deacetylase inhibitor.38, 40 There is 

evidence of alterations in the amount of SCFAs in ASD children, but it is unclear whether there 

is an increase or decrease, as the evidence points both ways.25 

4. Immune System  

The immune system plays a central role in those interactions between the human and its gut 

microbiome that are associated with CNS diseases, including schizophrenia,25 glioblastomas,35 

Parkinson’s35 and Alzheimer’s diseases,35 and multiple sclerosis,35 all associated with changes in 

the immune system. There are three main ways the gut microbiota interacts with the immune 

system: inflammasomes, type-I interferon signaling (IFN-I), and NF-κB signaling. 

Inflammasomes are signaling complexes that activate in response to microbial and endogenous 

threats. Pattern-recognition receptors (PRRs) are involved with inflammasome activation. 

NLRC5 acts to negatively regulate NF-κB and IFN-I signaling to modulate innate immune 

system homeostasis. Gut microbiota are able to change inflammation through inflammasome 

signaling.35 

IFN-I is a cytokine that influences innate immunity, adaptive immunity, and maintenance 

of host homeostasis. IFN-I is induced by pathogen-associated molecular patterns (PAMPs) and 

IFN-I secretion depends on the PRRs. IFN-I signaling can be utilized for protective effects for 

the host, such as inducing anti-viral responses. Host INF-I signaling influences microbiota 

composition. Glioblastomas are associated with altered IFN-I signaling.35 

The NF-κB family of transcription factors influences innate immunity, adaptive 

immunity, and maintenance of the immune system. Alterations of gut microbiota composition 

influence different inflammatory diseases by regulating innate immunity and NF-κB signaling. 

Parkinson’s disease and Alzheimer’s disease are associated with a pro-inflammatory reaction 

partially through NF-κB signaling.35 

Through signaling with the immune system, the gut microbiota can influence immune 

cells’ development in the CNS, such as Bacteroides fragilis promoting Th1 cell development and 

Clostridium promoting Treg cell differentiation. Furthermore, microbe-produced SCFAs activate 

inflammasomes and influence the differentiation of suppressive Tregs, and long-chain fatty acids 

(LCFAs) promote differentiation and proliferation of Th1 and Th17 cells while simultaneously 

increasing mRNA expression of pro-inflammatory factors. Hyperactive Th1 and Th17 cells can 

lead to infiltration of immune cells in the CNS and progression of multiple sclerosis, and 

recruitment of immune cells can lead to the progression of glioblastomas.35 The translocation of 

microorganisms from the gut to lymphatic tissues via immune cells will both challenge and train 

the mammalian immune system.53 

Gut Microbiota and Host CNS Interactions 

In addition to the hypothalamic-pituitary-adrenal (HPA) axis and microglia interactions 

discussed in the main article,20, 26, 34, 35 there is also an intriguing conference report that bacteria 

from the gut may migrate from the GI system directly to astrocytes in the brain to form a brain 

microbiota.54 

1. The Vagus and Enteric Nervous Systems 

The enteric nervous system (ENS) provides local control of digestive functions and an intimate 

connection between the stromal cells of the GI tract and the autonomic nervous system (ANS). 
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The ENS within the gastrointestinal wall regulates enteric processes that include immune 

response, detecting nutrients, motility, microvascular circulation, intestinal barrier function, and 

epithelial secretion of fluids, ions, and bioactive peptides.55, 56, 57 The gut microbiota regulates 

maturation of the adult enteric nervous system via enteric serotonin networks.58 The vagus nerve, 

connected to all of the layers of the digestive wall, serves as the connection between the CNS 

and the ENS, but in such a manner that it is never in direct contact with the gut microbiota. Thus, 

only indirect signals interact with the microbiota through the transport of postbiotic diffusion or 

by cells in the epithelium relaying luminal signals. Afferent vagal and hormonal signals from the 

gut to the brain regarding the quality and quantity of food affect the sensation of satiety, energy 

balance, and glucose homeostasis.59 Enteroendocrine cells, which control motility, secretion, and 

food intake in the presence of luminal carbohydrates, triglycerides, and proteins, interact with the 

vagus nerve directly through the vagus nerve’s serotonin-activating 5-HT3 receptors, and gut 

hormones such as cholecystokinin, glucagon-like peptide-1, and peptide YY affect the brain 

through receptors in the vagus nerve. SCFAs, LCFAs, and TLR4 also affect the vagus nerve.60 

The Dresden model of Parkinson’s disease proposes that the microbiota and the vagus nerve are 

tied to the disease etiology, and that environmental toxins such as rotenone cause α-synuclein 

production in the gut. Once produced, the α-synuclein is then transferred from the enteric system 

to the CNS via the vagus nerve.20 Once in the brain, α-synuclein disrupts mitochondria function, 

leading to the production of reactive oxygen species and the progression of the disease.61 

Traumatic brain injury can trigger increases in intestinal permeability. Is this the result of the 

neuro-enteric axis,62 or might it also be associated with shifts in the microbiome? 

2. The Inflammasomes (Covered in the main article) 

3. Microglia (Covered in the main article)  

4. HPA Axis (Covered in the main article) 

5. Development (Covered in the main article) 

6. Gut Microbiota Spatial Heterogeneity 

The heterogeneity of the gut microbiome, both in types and densities along the length of the GI 

tract and with depth into mucosal layers, is coupled with physiological gradients in pH and 

pressure.63 At the simplest level, it has been shown that there is large variability between the 

compositions of the microbes in the mucosa and the stool.64 Next-generation Illumina gene 

sequencing of the highly preserved 16S rRNA gene has shown that there are gradients of 

microbial community composition: the mouth has the most phylogenic diversity, the stomach the 

least, and there is increasing diversity down the GI tract from the stomach to the stool.65 Due to 

the diversity of the gut microbiota throughout the GI tract, there are differences in the way the 

microbial communities respond to various inputs. For instance, pyrosequencing the 16S rRNA 

gene (V1–2) after 8 weeks of Vitamin D3 supplementation showed that only the composition of 

the upper GI tract (gastric corpus, antrum, and duodenum) changed.66 While the upper GI tract 

saw decreased counts of Gammaproteobacteria, including Pseudomonas spp. and 

Escherichia/Shigella spp., there were no measurable differences in the microbial composition in 

the terminal ileum, appendiceal orifice, ascending colon, and sigmoid colon, or in stools.66 This 

might help to explain why Vitamin D3 supplementation may ameliorate inflammatory bowel 

disease.67 A similar distribution was seen in healthy subjects, where Enterobacteriaceae were 

shown to increase toward the distal end of the GI tract (the sigmoid colon and rectum), whereas 
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Streptococcus species, Comamonadaceae, Enterococcus species, and Corynebacterium species 

had increased abundance in the proximal end of the GI tract (the cecum and transverse colon).68 

There also has been new research into “smart pills” that are able to collect intestinal fluid 

samples autonomously to measure gut microbe diversity with higher resolution and lower 

costs.69, 70, 71, 72 

EXTERNAL INFLUENCES ON THE MICROBIOME 

Xenobiotics and the Exposome  

Here we provide specific details that can add a useful perspective to the material presented in the 

main review article.  

Emulsifiers, a food additive, can disrupt the mucus layer that protects the gut epithelium 

from bacteria. Examples of emulsifiers in processed food include carboxymethylcellulose and 

polysorbate-80, which have been shown to affect SCFA levels found in feces. Non-caloric 

artificial sweeteners such as saccharin, sucralose, aspartame, and acesulfame K are associated 

with inducing glucose intolerance in humans and a disruption of the gut microbiota through an 

increase of Enterobacteriaceae, Deltaproteobacteria, and Actinobacteria phyla, and a decrease 

of probiotics Bifidobacterium, Lactobacillus, and Bacteroides. Polyphenols, commonly found in 

red wine, are associated with the increase of probiotics and the decrease of pathogenic bacteria.73 

The gut microbiota is both resilient and plastic. It maintains a relatively stable steady 

state despite changes in diet or antibiotics.74 However, it can be formed and guided toward 

different paths through diet or directed therapies. With this in mind, some targeted approaches to 

alter gut microbiota composition have been attempted, such as using Clostridium scindens to 

increase resistance to C. difficile infection by targeting the pathway of secondary bile acid.75 

There have been forays into bioengineering probiotics for prevention of colonization, production 

of antimicrobial factors, immunomodulation and cytoprotection, and regulation of virulence gene 

expression.76 Another example of microbial manipulation is the use of a tungstate treatment to 

selectively inhibit molybdenum cofactor-dependent microbial respiratory pathways, thereby 

reducing inflammation in colitis.77 Thus it is important to account for the effects of the gut 

microbiota when considering drug efficacy, availability, and toxicity.74 

Probiotics, Prebiotics, Synbiotics, and the FDA  

Lactobacillus is an example of a beneficial bacteria thqt is used as a probiotic to prevent stress-

induced synaptic dysfunction and thereby reduce the response of the HPA axis to chronic stress 

and relieve the symptoms of anxiety and major depression disorder.26 Probiotics also have been 

used to reverse symptoms of diseases such as IBS.25 Other beneficial effects include anti-

pathogen and anti-inflammation activity and mitigating symptoms of CNS disorders.78 Probiotics 

also can potentially control body weight, adipose tissue, and inflammation and prevent metabolic 

syndrome.48 So-called psychobiotics refer to probiotics that produce neurochemicals such as 

GABA, serotonin, and dopamine. These compounds have the potential to directly influence ENS 

signaling and indirectly influence host brain function and behavior.79 

While prebiotics are indigestible to the host, they serve as microbial nutrients and act to 

promote the growth of beneficial bacteria populations. Bifidogenic prebiotics include inulin, 

oligofructose, fructo-oligosaccharides, galactose-containing oligosaccharides, and xylose-

containing oligosaccharides.48  
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An example of a symbiotic, which promotes the beneficial effect of probiotics, is the 

combination of the prebiotic inulin with the probiotics Bifidobacterium animalis, Lactobacillus 

acidophilus, and Lactobacillus paracasei.78  

Diet  

The microbiome changes associated with various diets have been examined in some detail. The 

Western diet and lifestyle are associated with a high-calorie, high-fat, low-fiber diet and a 

sedentary lifestyle and produce a less diverse microbial ecology when compared to other diets, 

such as those high in fiber.80 Bifidobacterium and Eubacterium are reduced and there is an 

increase of cancer-promoting nitrosamines and inflammation.73 In addition to the production of 

TMA by the gut microbiome, a high-fat diet can induce inflammasome activation and has been 

shown to worsen the effects of antibiotics in Oreochromis niloticus.35, 81 Metformin and 

berberine are two drugs that treat type 2 diabetes by reversing the microbiota modulations of a 

high-fat diet. The drugs decrease microbiota diversity but increase the number of SCFA-

producing bacteria Allobaculum, Bacteroides, Blautia, Butyricicoccus, and 

Phascolarctobacterium.73 

The Mediterranean diet is high in fiber and antioxidants and low in red meat, and it is 

associated with increased levels of fecal SCFAs and probiotics Bifidobacteria, Lactobacilli, 

Eubacteria, Bacteroides and Prevotella.73 In general, the amount of SCFAs produced is 

dependent not only on the amount of fiber but also the type of fiber eaten.82 Furthermore, gluten 

is metabolized in the gut primarily by Firmicutes, Actinobacteria, and Proteobacteria.47 

Intermittent fasting is a diet that alternates between periods of fasting and non-fasting. 

When Drosophila melanogaster were fed on a 2-day non-fasting and 5-day fasting diet, 

triacylglyceride levels increased and led to a decrease of bacterial load in the gut.83, 84 

Intermittent fasting has also been investigated in mice. After a diet of fasting every other day, 

mice gut microbiota had a large increase of Firmicutes, which was shown to induce beiging of 

white adipose tissue, weight loss, and attenuation of metabolic dysfunction.85 How might such 

protocols become a part of clinical pharmacology? 

The ketogenic diet is a high-fat, low-carbohydrate diet that has been well established as a 

treatment for refractory epilepsy but is also used for treating autism spectrum disorder, 

Alzheimer’s disease, metabolic syndrome, and cancer. The ketogenic diet alters the microbiota 

by decreasing alpha diversity (within a sample) and increasing the taxa Akkermansia muciniphila 

and Parabacteroides. Akkermansia muciniphila and Parabacteroides are associated with 

decreased systemic gamma-glutamylated amino acids and elevated hippocampal 

GABA/glutamate levels, which provide a seizure protective effect.86 Children on the ketogenic 

diet had a decrease of Bifidobacterium and Eubacterium rectale, which is associated with 

production of the SCFAs acetate and butyrate, respectively.87  

Fecal transplants in mice enhanced healthspan and lifespan.88 More active lifestyles, such 

as those of professional athletes (and the possible use of nutritional supplements), result in 

increased gut microbiota diversity,89 which suggests the possibililty of legal questions and 

sporting regulations regarding the possible use of fecal transplants in increasing an athlete’s 

competitive advantage in sports. 
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Drugs 

It is known that there are different passive permeability characteristics among the different 

portions of the human intestines.90 There are simple differences of the ion permeability as well; 

for instance, the jejunum is highly permeable to sodium and chloride ions, while the colon is 

more anion- than cation-selective.90 Early work on drug permeability within rat intestines has 

shown that there is a decrease in permeability to hydrophilic drugs and a significant increase in 

permeability for hydrophobic drugs in the small intestine.91 Overall, a recent review has 

concluded that the varying factors throughout the GI tract, such as osmolality, the unstirred water 

layer, mucosal differences, and the presence of other fluids, all must be taken into account when 

considering how a body will take in a drug.92 Within the small intestine, there is a thin and 

discontinuous mucous layer, composed mostly of MUC2, that is able to effectively facilitate 

molecular transport.93 However, within the colon there are two layers of mucous, a thin, sterile 

inner layer and a thicker, more porous outer layer, to allow a symbiotic relationship with gut 

microbiota.94 The mucous layers can affect drug absorption due to size restriction through the 

mucous95 or electrostatic interactions between the drug and the mucin when the pH is greater 

than 2.6.92 In addition, the unstirred water layer, which is a stagnant boundary layer above the 

epithelium, can affect drug absorption.92 It has been shown that between 10% and 36% of 

transport resistance is due to the unstirred water layer,96 which varies in thickness along the GI 

tract depending on the amount of villi within the space.92 Further research has shown that it is not 

epithelial surface area that is the main determinant of drug absorption, but rather the mucus layer 

at the surface of the epithelium and the fluidity of the epithelial cell membrane.97 Diet can affect 

drug absorption by regulating enzymes involved in drug metabolism, limiting drug 

bioavailability.98 Note that these layers could severely compromise the ability to obtain 

representative samples of the microbiota of each region.  

In addition to variances in the way a drug is absorbed throughout the GI tract, it has been 

shown that the location within the GI tract changes the way a drug is metabolized. Phase I 

metabolism, which is the introduction of a reactive group by means of oxidation, reduction, and 

hydrolysis, predominantly occurs in precision-cut, illium intestinal slices, and phase II 

metabolism, which is the conjugation with polar moieties occurring by means of glucuronidation, 

sulfation, acetylation, and methylation, mostly takes place in precision-cut, colon intestinal 

slices.99, 100 This is heavily due to the distribution of P450 enzymes, which account for about half 

of overall elimination of commonly used drugs.99 

The gut microbiota affects drug efficiency both directly and indirectly through multiple 

mechanisms.101 Some direct means of interaction include acetylation, deacetylation, and 

demethylation.102 Such mechanisms can sometimes be helpful, as in treating inflammatory bowel 

disease with sulfasalazine, which is turned into the active drug 5-aminosalicylic acid by 

microbial enzymes.102 However, the gut microbiota can indirectly reduce the efficacy of a drug, 

as is the case with acetaminophen (paracetamol), which must compete for sulfonation by the 

liver with the microbial metabolite p-cresol, ultimately leading to some drug toxicity.103 

Postbiotics also can affect liver metabolism, such as the expression of cytochrome P450 

enzymes.63 To take these factors into account, researchers have recently published a genome-

scale metabolic reconstruction for 773 members of the gut microbiota so that physiologically 

based pharmacokinetic models are more accurate.104  

Wilson and Nicholson105 and Thiele et al.101 provide a number of informative examples 

of how the gut microbiome interacts with drug metabolism, efficacy, and toxicity. Oral drugs 
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interact with the gut microbiota first, and intravenous (IV) drugs interact with the liver before the 

gut microbiota. Interactions of the gut microbiota with drugs include reduction, hydrolysis, 

dihydroxylation, dealkylation, demethylation, decarboxylation, acetylation, deamination, and 

deconjugation. Liver interactions are primarily oxidations, conjugations, reductions, and 

hydrolyses. Enterohepatic cycling involves the transfer of metabolites between the gut and liver 

and can result in drugs being reactivated by gut microbiota. The liver acts as the way to cause 

metabolites to enter circulation. Metabolites are eliminated in feces or by the kidneys. 105 

One of the pharmacological challenges is to identify whether human microbiota can serve 

as agonists to G-protein coupled receptors (GPCRs). In a recent demonstration, a panel of 

bacteria were selected to create a forward chemical screen that can be used to detect small 

molecules produced by gut microbiota that interact with host GPCRs.106 It was shown that small 

molecules produced by the gut microbiota can activate multiple GPCRs, including orphan 

GPCRs, serving as an unanticipated source of GPCR ligands that might adversely affect drug 

action.  

Opioids  

As a final example of the emerging complexity of opioid clinical pharmacology and its 

implications for precision medicine, suppose that our Vitruvian human in Figure 1 were to 

ingest 200 ml of grapefruit juice every day for five days, and be treated on day four with a 10 mg 

oral dose of oxycodone hydrochloride. The mean area under the oxycodone concentration-time 

curve, the peak plasma concentration, and oxycodone half-life would be increased by factors of 

1.7, 1.5, and 1.2, respectively, all a result of the grapefruit juice inhibiting first-pass intestinal 

CYP3A4-mediated oxycodone metabolism and transporter proteins such as P-glycoprotein (P-

gp) and organic anion transporter polypeptide.107 In addition, grapefruit juice decreases the 

production of noroxycodone and noroxymorphone, and increases production of oxymorphone. 

One might reasonably assume that there are many more as yet unidentified interactions between 

these drugs, the microbiome, and the gut-liver-immune-brain axis GLIBA.108 The roles of 

endogenous opioids that are a dopamine metabolite produced by mammalian cells109, 110 are 

worthy of detailed study, could have significant biological, medical, and social implications, and 

may play a role in some of the interactions in Figure 1.  

DECODING MICROBIOME-HUMAN INTERACTIONS 

Pharmacogenomics/Microbiomics (Covered in the main article) 

Mathematical Modeling of the Microbiome-Host Interaction 

One method for in silico modeling of these interactions is constraint-based reconstruction and 

analysis (COBRA), in which a metabolic reconstruction of an organism is assembled in a 

bottom-up manner on the basis of reaction stoichiometry and physicochemical properties 

obtained from genome annotations and biochemical and physiological data.111 This reduces the 

system to a set of linear equations that is able to provide physiologically relevant solutions.101 

This type of system has been used, for example, to investigate how the body interacts with 

levodopa, the most common drug administered for Parkinson’s disease.101 From this approach, it 

was determined that plasma-levels of levodopa were most sensitive to the gastric emptying rate 

and the loss of bioavailability due to microbial activity.101 Further work to predict a drug’s 

effects have come from research within the field of quantitative systems toxicology (QST), 
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which is an approach to quantitatively understand the toxic effects of a chemical on a living 

organism, from molecular alterations to phenotypical observations, through the integration of 

computational and experimental methods.112 One of the fundamentals of QST is the use of 

molecular descriptors and physicochemical properties to make accurate in silico predictions in 

quantitative structure-activity relationships (QSARs).112 In addition, pathway analysis tools, such 

as Ingenuity Pathway Analysis and DAVID/KEGG, are being used to create network-based 

models of biological systems.113 Models such as these have been used to determine the molecular 

mechanisms responsible for sunitinib cardiotoxicity and identify a prophylactic intervention.114 

Multi-omic techniques under development for rapid determination of drug mechanism of action 

should be readily extensible to organ-chip systems with microbiomes.115 The quantity of the data 

and the variety of interactions will exceed the capacities of standard relational databases, with 

graph databases offering the greatest potential, at least for describing the interaction network.116, 

117, 118 

Assays for Understanding Host-Microbiome Interactions (Covered in the 

main article)  

Organs-on-Chips for In Vitro Studies of Microbiome-Organ-Organ 

Interactions 

1. The Rationale for Microphysiological Systems (MPS) GLIBA Models 

Shuler began pioneering work on organs-on-chips in the 1990s and remains active in the field, 
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135 with some of his work directly related to 

toxicology.119, 120, 135, 136  A growing number of original papers and reviews are relevant to the 

MPS and the microbiome GLIBA (M-GLIBA),137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147 with 

substantial progress in the implementation of the four organs of the GLIBA: the gut,148,124, 129, 148, 

149, 150, 151, 152 the liver,153, 131, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163 and the neurovascular unit and/or 

the blood-brain barrier (BBB).122, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178 Zhang and 

Radisic provide an excellent overview of the rapidly expanding commercial market.179 

Organoids are often a useful intermediate step between a biopsy or stem cells and a tissue 

chip, and they can be used in MPS organoid chips,151, 180, 181, 182, 183, 184, 185 but this discussion is 

beyond the scope of this review. Organoids are already being used to propagate cells from a 

patient’s cancer biopsy to predict the response to different cancer therapies using a variety of 

live-cell assays, including patient-derived xenografts and organoids.186, 187, 188, 189 

2. Single Organ Chips Needed for the M-GLIBA (Covered in the main article) 

3. Multiple-Organ MPS Models 

There is a small but expanding literature on multi-organ MPS.128, 130, 132, 133, 135, 139, 145, 147, 161, 162, 

163, 174, 185, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200 Boeri et al. provide a review that focuses on liver 

multi-organ communication with the gut, microbiota, and brain.201 Logsdon et al. review how the 

BBB connects the microbiome to the brain via bacterial and host cytokines, peripheral immune 

cells, and other secreted factors.202 The coupling between different organs can either be physical, 

as demonstrated by several groups using either integrated or connected chips,132, 163, 193, 198 or 

functionally by transferring effluent media from the output of one chip into the input of another 

organ chip.199, 200, 203 One advantage of the functional approach is that it is easy to adjust the 

fraction of the media in one organ that has been conditioned by another, whether done 
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manually203 or by an automated pipetting robot.200 Functional coupling does not even require that 

the different organs have to be co-localized, as long as the biochemical signals of interest can 

survive freezing and transport,203 and offers the advantage of ready access to the input and output 

of the media for each organ. The need to examine the metabolic coupling between different cell 

types, particularly endothelial and stromal cells, can be addressed using connected organ chips 

for which the cell types that are normally cultured in close proximity or even in contact are 

instead spatially separated but joined fluidically.204 The evaluation of juxtacrine signaling, for 

example between astrocyte end feet, pericytes, and endothelial cells, might benefit from the 

comparison of physically coupled co-cultures with separated ones. 

In any multiple organ application, it is important to recognize that recirculation will 

increase the ability of a small population of cells in each organ to condition some volume of 

common media over time as compared to single-pass perfusion, that the common media will 

have to be periodically or continuously refreshed and a fraction removed, since the multiple 

organ chip will need to be fed and is not likely to have sufficient kidney or liver function to 

detoxify the recirculating media by excreting toxic metabolites, and that the total volume of 

media being recirculated must be scaled properly to the numbers of cells used, lest the circulating 

signals be diluted below the threshold of physiological effect.205, 206. There are also economical 

and practical considerations in systems that couple multiple organs. If the system is large, 

expensive, and difficult to maintain, it is less likely to be used in moderately parallel experiments 

than one that is compact, inexpensive, and easy to use and replace should a component fail. 

Given the need to culture tissue chips for extended periods of time, it is important to have a 

system that can be readily sterilized. Multiple organs integrated on a single larger chip have the 

possible advantage of operating with smaller fluid volumes than those that are connected by 

tubing, discrete reservoirs, and/or pipettes. Integrated systems will have a lower probability of 

being fully functional than separated systems for which the most highly functional organ chips 

can be preselected and sub-optimal organs can be readily replaced, rather than having to seed all 

cells on a single integrated chip with the expectation that some organs on the chip will prove 

better than others. If the integrated chips are small, inexpensive, and do not require a large 

number of cells, this may not be an issue. 

From this analysis, we conclude that it is most appropriate to use simple, massively 

parallel well-plate cultures for high-throughput screening, for example, for the effects of a drug 

or toxin on a specific receptor or transporter. Single-organ or organoid MPS chips are already 

available commercially for medium-throughput, high-content screening of phenomena that can 

only be reproduced in multicellular co-cultures, particularly those that involve either a 2D barrier 

separating different cell types, or multicellular interactions with a non-trivial extracellular 

matrix. There is growing recognition that microphysiological systems with multiple organs are 

better suited for high-content, low-throughput identification and recapitulation of complex 

pharmacological and toxicological kinetics and dynamics and organ-organ and drug-organ-organ 

interactions than are isolated monocultures on plastic, albeit at a much greater investment in 

operator training and experimental complexity.132, 198, 207 That investment, while at first glance 

significant, needs to be compared not to high-throughput screening but to a long-term, multiple 

animal study, which may not reflect human physiology, pathology, or toxicology, and is also 

expensive. Returning to the focus of this review, studies of the interaction between human 

multiple organs and their individual microbiota may well be an ideal application of multiple, 

coupled organ chips. 
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4. MPS for Drug Discovery 

A number of papers address drug toxicity135, 136, 143, 208, 209 and pharmacology.134, 195, 210, 211, 212, 213, 

214 Of the many groups working on organs-on-chips, only a few are developing the 

pharmacodynamic (PD) tools that will be needed by clinical pharmacologists and toxicologists to 

fully utilize tissue chips.127, 132, 134, 198, 215, 216 The reader is urged to study a comprehensive review 

of the iterative measurement-modeling connection between MPS and quantitative systems 

pharmacology.217
 

Although beyond the scope of this review, it is worthwhile to note that studies of the 

microbiota of male and female genitourinary systems218, 219, 220, 221, 222, 223, 224, 225, 226 could be 

conducted using organ-on-chip models,192, 227, 228, 229, 230, 231, 232 which might provide insights into 

the interplay between the vagina microbiome, human papilloma virus, inflammation, and 

cancer,6 and the effect of the vaginal  and gut microbiota on drug metabolism and efficacy.233 
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