Supplementary Table 1: Characteristics of transgenic mice used in this study.

Supplementary Table 2: Demographic information for postmortem human samples of cerebellar cortex used in this study.

Supplementary Table 3: Liver profile of Q84/Q84 transgenic mice and littermate controls used in the MRS study.

Supplementary Figure 1: Cerebellar neurochemical levels are altered in homozygous Q84/Q84 mice. A) Neurochemical profiles of female Q84/Q84 mice (N=5, black bars) and wt littermates (N=7, white bars). B) Neurochemical profiles of male Q84/Q84 mice (N=7, black bars) and wt littermates (N=4, white bars). Bars represent average neurochemical concentration \pm SEM. Comparison between mouse genotypes was performed using Student's t-test and statistical significance is indicated as: **P*<0.05, ***P*<0.01, and ****P*<0.001.

Supplementary Figure 2: Cerebellar neurochemical levels are altered in hemizygous Q135 mice. A) Neurochemical profiles of female Q135 mice (N=3, black bars) and wt littermates (N=5, white bars). B) Neurochemical profiles of male Q135 mice (N=4, black bars) and wt littermates (N=2, white bars). Bars represent average neurochemical concentration \pm SEM. Comparison between mouse genotypes was performed using Student's t-test and statistical significance is indicated as: **P*<0.05, ***P*<0.01, and ****P*<0.001.

Supplementary Figure 3: myo-Ins, tCho, and tNAA are commonly decreased in Q84/Q84 and Q135 mice compared to controls. Boxplot graphs representing the distribution of cerebellar levels of myo-Ins, t-Cho, and tNAA in Q84/Q84 (N=12, dark grey boxes), Q135 (N=7,

1

light grey boxes) and respective wt littermates (N=11; N=7, white boxes). Median for each group is represented as a black horizontal line inside the box, outliers are shown as circles and extreme outliers are displayed as asterisks. Comparison between mouse genotypes was performed using Student's t-test and statistical significance is indicated by the specific *P* value.

Supplementary Figure 4: End-stage Q84/Q84 and aged Q135 mice show thinning of the molecular layer thickness with no signs of Purkinje cell loss. A) Graphs showing the average of four molecular layer thickness measurements (\pm SEM) in the primary fissure of the SCA3 transgenic mice and respective controls (N=4 animals per group). B) Counts of Purkinje cells per area of the depth of the primary fissure folium (N=4 mice per group). Comparison between mouse genotypes was performed using Student's t-test and statistical significance is indicated as: *P<0.05.

Supplementary Figure 5: Correlation of neurochemical concentrations with levels of MBP and NFL in Q84/Q84 and Q135 mouse cerebella. Plots showing Pearson correlations of levels of MBP with myo-Ins (A,C), NFL with tNAA (B), and MBP with tCho (D) in Q84/Q84 (black circles), Q135 (grey circles), and their respective wt littermate mice (white circles).