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A- OTTA CONSORTIUM SAMPLE DESCRIPTION AND PROCESSING 

A.1 SAMPLE SELECTION  
Twenty participating studies across the Ovarian Tumor Tissue Analysis (OTTA) consortium from the 

UK, Europe, Australia, Canada and USA (Table SA1 and Figure SA1) contributed 4071 unique high-

grade serous tubo-ovarian carcinoma (HGSOC) specimens for NanoString gene expression analysis 

(Tables SA1). The total number of samples processed was based on availability of HGSOC specimens 

from contributing OTTA consortia members and restricted to the available funding envelop for purchase 

of NanoString reagents. Data can be found under NCBI GEO dataset [available on request] 

Figure SA1. Overview of processing of samples in from the ovarian tumor tissue analysis (OTTA) 
consortium. A total of 4319 specimens were run excluding reference pools. From this there were 4071 
unique samples, 3829 of which passed quality control measures and were used for refinement of a 
minimal gene classifier and inference of biological associations (discussed in Supplement C). In addition, 
248 specimens served as controls to specifically examine performance, reproducibility, and heterogeneity 
(in the context of biological replicates). Derivation of the minimal gene classifier is discussed below, 
whereas technical controls, biological replicates, heterogeneity and biological covariates are discussed in 
further detail in Supplement C. In addition to the samples represented in the workflow presented here, a 
subset of the unique samples was further replicated in two independently synthesized NanoString 
CodeSets and is discussed in further detail in section C.1. 
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A.2 PATHOLOGY REVIEW 
Each study provided, at minimum, one representative H&E slide for centralized pathology review and 

an archival formalin-fixed paraffin embedded tissue block for each case. Original (study provided) 

diagnosis was accepted if consistent with modern classification of HGSOC, for instance archival 

specimen of high-grade endometrioid were considered for inclusion as HGSOC - subject to pathologist 

review.(1,2) For 12% (468/3829 unique cases post-QC) of cases in sub-studies AOV, SEA, RTR and 

BRO (Table SA1), an H&E slide and cores from a tumor-enriched region of the matching FFPE tissue 

block was provided.  

Inclusion/Exclusion criteria were samples from primary ovarian, fallopian tube, or primary peritoneal 

carcinoma; recurrences were excluded. Pathologist confirmed diagnosis of HGSOC, cellularity >20%. 

Information on interval debulking (i.e. neo-adjuvant chemotherapy; NACT) was limited, however given 

the span of years where most samples were collected it was presumed that few samples may have had 

NACT. That said, samples with pathology review suggesting chemotherapy effect consistent with NACT 

were excluded. No exclusions were done based on patient characteristics (age, stage, BRCA status). 

Contributing studies were asked to give preference to ovary, fallopian tube, or adnexal sites for 

specimens (when specifically recorded). We excluded distant metastasis (except as noted specifically 

re: omentum), and ascites.  

Three processing centres conducted pathology review and subsequent experiments: (1) BC 

Cancer/University of British Columbia (BCCRC/UBC) in Vancouver, Canada; (2) University of Southern 

California (USC) in Los Angeles, USA; and (3) the Peter MacCallum Cancer Centre (PMC) in 

Melbourne, Australia. Each processing centre conducted pathology review with an expert gynecologic 

pathologist: 

BC Cancer/UBC: Dr. Tayyebeh Mehrane Nazeran and Dr. C. Blake Gilks 

USC: Dr Wafaa Elatre 

PMC: Dr Mila Volchek 

Pathologists were not blinded to the original diagnosis and were asked to judge whether specimens 

were consistent, based on morphology alone, with a diagnosis of HGSOC in the context of the 2014 

WHO standards. (3) Pathologists also estimated the tumor cellularity and necrosis of each specimen, 

and marked slides for macrodissection-based enrichment (see A.4). This expert pathology review was 

designated as gold standard for histotype diagnosis, and any sample not judged to be HGSOC was 

omitted. At BCCRC/UBC, the centre that processed roughly half of samples, a two-level pathology 

review process was adopted: any sample that did not agree with its original diagnosis on first review 

(TMN) was re-reviewed by a second expert gyne-pathologist (CBG). In addition, samples that were part 
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of the NCO study (Table SA1) were reviewed by an expert gyne-pathologist at Duke University (Author: 

Rex Bentley) prior to being transferred to Vancouver, and therefore subject to two (sometimes three) 

rounds of expert review. Relevant variables including originating study and specimen ID, reviewing 

pathologist (and secondary pathologist where applicable), diagnosis, cellularity, and necrosis were 

recorded. 

A.3 ADDITIONAL CLINICOPATHOLOGICAL DATA  
We considered the following clinical and pathological variables where available: 

• Age at diagnosis 
• Stage: using the FIGO system(4) and dichotomized into low (stage 1 and 2) vs high (stage 3 

and 4). The use of historical dataset precluded updating to the latest version of FIGO staging, 
however this will not impact the dichotomized data (3,5). 

• Residual disease: dichotomized into no visible macroscopic disease vs any level of residual. In 
our conservative analysis, the latter category also included instances previously considered 
“optimal”, and recorded in the OTTA consortium database as “< 1cm” (6). This limitation in our 
data annotation may have resulted in some patients that genuinely had no visible residual 
disease being included in the “any” level category. 

• Tumor cellularity and necrosis in the NanoString-assayed specimen as determined during 
pathology review of a serial H&E section (see B.1). 

• BRCA1/BRCA2 germline deleterious mutation status obtained from study specific clinical 
records and research-based testing. Methods varied depending on study and year of testing 
and were subjected to local verification (per noted citations) so as to ensure adequate 
distinction between known pathogenic germline mutation carriers and non-carriers. (7-9) (6,10) 

• Race/ethnicity: as self-reported by women in participating studies. 
• CD8+ tumor infiltrating lymphocyte (TIL) counts: TIL was defined as the infiltrating lymphocytes 

within the epithelial compartment of tumors only, derived from a previous reported (11). This 
measure assigned patients to categories based on the average number of CD8+ TILs per high-
powered field in tissue microarray cores: negative (none), low (1-2), moderate (3-19), and high 
(≥20). 

• Anatomical site from which the tested HGSOC specimen was acquired. Adenxal specimens 
included ovary and/or tubal specimens or adnexal without additional detail. Specimens were 
presumed adnexal based on our request to contributing studies for treatment naïve, primary 
ovarian or tubal high-grade serous tubo-ovarian carcinoma specimens, but where a specific 
sampling site was not reported by the contributing study. Additional sites of sampling were 
accepted if defined: peritoneal specimens included all peritoneal sites, including peritoneal 
lymph nodes, unless omentum was specifically denoted. In the latter case omentum was 
specified as the site of sampling. Upper gynecological tract included specimens acquired from 
uterine and/or cervical sites where the diagnosis was still consistent with primary high-grade 
serous tubo-ovarian carcinoma. Lower gynecological tract included specimens acquired from 
the vagina. 

Outcome data included overall survival and progression free survival where progression was 
determined by the treating physician. In both cases, the variable was calculated as time from diagnosis 
to time of event (death/progression) or censoring. Follow up that exceeded 10 years was left truncated 
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and right censored as at December 31st of the 10th year post diagnosis to minimize ascertainment bias 
and ensure non-informative censoring. 

A.4 NANOSTRING GENE SELECTION 
513 genes were selected for the NanoString custom CodeSet and an additional 5 genes (RPL19, 

ACTB, PGK1, SDHA, and POLR1B), were included as house-keeping genes for normalisation. 313 

candidate genes were added. These were selected based on: 

a) Association with prognosis or potential drug targets from the literature 

b) residing within a 1 MB region of a potential survival GWAS hit p<5x10-6 and showing a survival 

association in TCGA data.(12) 

c) Utility in molecular subtype classification selected from: 

i. Differentially expressed genes by class (one vs all) using the Tothill and TCGA datasets 

independently, ranked by fold change with a minimum 2-fold change and (Benjamini-

Hochberg corrected) p-value <0.01. Differential gene expression analysis using SAM(13) 

with the top ten highest fold change and lowest fold change genes for each class. 

ii. Genes selected from training and 10-fold cross validation on Tothill and TCGA datasets 

using linear discriminant analysis and recursive partitioning. Redundancy was introduced 

by removing genes selected in a first round and repeating the supervised analysis.  

iii. Manual review and curation of genes and pathways from the literature, specifically with 

reference to molecular subtypes. (12,14-17) 

iv. Genes selected for molecular subtype discrimination using a leave-one-out cross 

validation strategy as described in Leong et al.(18) 

d) Ability to evaluate consistency with previous CodeSet analysis. Six additional genes (TBP, 

GAPDH, KIF3B, GUSB, BMS1, and RPL41), were included to evaluate consistency with 

previous CodeSet analysis(18) but were not used in the normalization. 

e) 200 genes selected from a meta-analysis of six transcriptome-wide microarray studies, including 

1,516 tumors, to identify prognostic genes (Millstein et al. submitted).  

f)  “tagging” genes that represent the gene expression patterns of other genes that have 

correlated expression, identified using the methods in Rudd et al(19). For this study, we chose a 

threshold of 99% correlation observed in all four of the largest publicly-available HGSOC gene 

expression datasets(12,15,20).  We determined that the genes selected (from a-e above) 

included 99%- correlated gene expression information for an additional 2,617 genes. We 

supplemented an additional 10 genes in order to maximize gene expression data representation 

in other parts of the transcriptome that were not already represented by previous selections. 

The 10 additional genes represent gene expression for 49 genes at our 99% correlation 

threshold.  
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Gene lists were combined for a total of 518 unique transcripts after removing redundancy, and including 

controls (housekeeping genes). Note: Of gene added from literature review (a), GWAS hits (b), and 

meta-analysis (e), 181 genes were unique from subtype selections noted above (c and d), however 

89/181 were also significantly differentially expressed between subtypes (as defined above in “c) i” 

though not top ranking). 

A.5 RNA EXTRACTIONS 
Standard operating procedures were established in advance and implemented at all sites performing 

sample preparation and NanoString reactions. 

Tumor Content enrichment  
Pathology reviewed, formalin-fixed, paraffin embedded (FFPE) tissue blocks without adjacent normal 

tissue (normal, non-tumor involved organ tissues, BUT NOT tumor associated stroma or tumor 

infiltrated tissues) or where normal tissue was less than ~10% were scrolled directly into sterile 

microfuge tubes, 3x 10um scrolls, without further enrichment.  

Pathology reviewed, formalin-fixed, paraffin embedded (FFPE) tissue blocks with adjacent normal 

tissue (normal, non-tumor involved organ tissues, not tumor associated stroma) were sectioned, 3x 

10um sections, and floated onto glass slides. Tumor (and infiltrating tumor associated stroma) was then 

manually macrodissected with a scalpel and placed into a sterile microfuge tube.  

As noted above, specimens from a small number of studies provided up to 4 x 0.6 mm tissue cores 

selected from pathologist-marked tumor enriched regions of FFPE blocks. Relevant studies included: 

AOV, BRO and SEA. To increase the efficiency of RNA extraction from tissue cores, cores were frozen 

on dry ice, in microfuge tubes, and pulverized using (sterile) micro-pestles. 

Deparaffinization 
After tumor enrichment (above), all FFPE materials were deparaffinized using 1 ml xylene (per sample), 

and washed 1x in 95-100% ethanol to remove residual xylene. Samples were then allowed to dry for 

~10 min at ambient temperature. 

Tissue digestion & nucleic acid extraction 
After deparaffinization, RNA was extracted using a modified protocol based on the Qiagen miRNeasy 

FFPE extraction kit (Qiagen) as outlined previously (21). Specific modifications were tissue digestion 

with proteinase K at 56°C for 45 min (instead of the recommended 15 min digest), then heating at 80°C 

for 15 min to reverse fixation cross-links. Optional DNAse 1 digest to remove contaminant DNA was 

also performed on all samples (10 min digest). Total RNA was eluted from miRNeasy micro columns in 

20-50 ul of nuclease free, sterile ddH2O and quantified on a NanoDrop spectrophotometer. RNA with 
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A260/280 ratio < 1.5 were excluded from experiments. All RNA was stored at -80°C until NanoString 

experiments were done. 

A.6 NANOSTRING PROCESSING 
As noted above for RNA extractions, all sites performing NanoString reactions followed standard 

operating procedures outlined in advance. Briefly, each day sites processed a maximum of 24 samples. 

Our standard operating procedure called for 500ng of total RNA, as measured from NanoDrop, 

combined with hybridization buffer and a custom NanoString reporter and capture CodeSet allowing 

hybridization for exactly 16 hours (short-hyb, 12 samples per day) or 20 hours (long-hyb, 12 samples 

per day)  at 65°C in a pre-heated thermal cycler. Immediately at the end of the prescribed hybridization 

period samples were processed on an nCounter prep-station (NanoString) following standard 

procedures. Loaded cartridges (12 samples) were scanned at maximum resolution on an nCounter 

Digital Analyser (NanoString). The BC Cancer (Vancouver) site performed scanning on a Gen1 Digital 

Analyzer, while both USC (Los Angeles) and PMC (Melbourne, sometime denoted as AOC or 

Australian Ovarian Cancer study) performed scanning on Gen2 Digital Analyzers. 

Relevant variables including processing date, operator, site, and hybridization time were 

recorded/embedded into specimen information (CDF) and data files (RCC). In addition to unique 

HGSOC samples a number of controls and sample replicates were run at all sites to enable evaluation 

of data quality (see also Fig SA1).  

Reference Pools  
To monitor for technical bias across sites and allow for cross-CodeSet comparisons (21), we ran 3 

distinct control RNA pools. This reference-based normalization strategy is considered best practice for 

development of NanoString based clinical tests and is similar to the implementation already in use for 

Prosigna(22,23) and a number of other in development tests(24). Pools consisted of high-quality RNA 

from fresh-frozen ovarian cancer samples believed to be representative of all molecular subtypes 

and/or various ovarian cancer histotypes. Pools were assembled en-mass and aliquoted (5ul, 100ng 

total RNA) for single use without multiple freeze thaws at all sites. Control aliquots were stored at -80°C 

until ready for use and shipped on dry ice to all processing sites. Pool1 was run approximately every 

month at each site. Pool2 and Pool3 were run alternatingly, every other month, at each site. 

Cross-Site Controls  
In addition to control pools, a subset of 48 samples were run once at each of the three processing 

centres (144 individual run files created, 1 failed QC). The first 36/48 consisted of randomly selected 

high-grade serous ovarian carcinoma specimens, 12 from each processing centre. In addition, the 

Vancouver site selected 12 samples from non-High-grade serous histology samples (3 clear cell, 3 

endometrioid, 3 low-grade serous, 3 mucinous). Aliquots of RNA chosen at each site were sent on dry 
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ice to the other two processing centres. Refer to B.6 below and C.1 for analysis of cross site 

reproducibility and inter-rater analysis. 

Technical Replicate Samples  
104 samples were chosen randomly and re-run at the same site with the same extractions of RNA, as a 

control against sample mix-up and data consistency. Similarly, as we migrated across two additional 

NanoString CodeSets samples were also replicated from the original RNA, in the second and third 

CodeSets. Due to yield of RNA from the initial extraction we were unable to run the same set across all 

three CodeSets, refer to supplemental section D.1 for analysis of replicates within and across 

CodeSets. 

Paired Omentum Sampling   
53 samples had paired samples from the adnexa and omentum sites. In these cases, the adnexal site 

was included in our “unique” HGSOC sample set while the paired other site was reserved to examine 

molecular subtype heterogeneity linked to specific anatomical sites. 

A.7 QUALITY ASSURANCE, BATCH EFFECT, AND NORMALIZATION OF THE NANOSTRING DATA  
Raw data was assessed using several quality assurance (QA) metrics to measure imaging quality, 
oversaturation and overall signal to noise(21). 

1. Imaging quality controls: Samples were flagged as imaging failures if the percentage of lane 

images FOV obtained was less than 75% of the requested number of fields.  

2. Linearity of the assay: Samples were flagged as linearity failures if spiked-in positive control 

probes at different concentrations had R2<0.95. 

3. Detection of Smallest Positive Control: Samples were flagged when the 0.5 fM positive control 

probe is smaller than 2 standard deviations from the mean of the negative controls probes. 

4. Sample Quality: 

a. % of Genes above Limit of Detection (LOD) of negative controls: LOD is an upper bound 

of the background noise in the system, computed as two standard deviations above the 

mean of the spiked-in negative control probes. Samples below a 50% threshold were 

deemed of poor quality and considered failures.  

b. Signal to noise ratio (S/N): calculated as a ratio between the geometric mean of 

housekeeping genes and lower limit of detection: geometric mean/LOD. Samples with 

signal to noise ratio below a 170 threshold were deemed to be of unrecoverable poor 

quality and considered failures. Samples with S/N below 1000 (but > 170) were 
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considered to have low S/N (see also technical variability considered when labelling 

NanoString samples – section B.4) 

Thresholds were set to maximize the number of samples of high quality included in the 

analysis. Sample Quality fails if either the Limit of Detection or Signal to Noise 

thresholds are not met. 

5. Overall QC. This is an overall quality control flag which fails if any of the Imaging, Linearity, or 
Smallest Positive Control conditions fail. 
 

A summary of the failures encountered is outlined in Table SA2. Samples are included in the analysis if 

they passed the overall QC and the sample quality. In Fig SA2 the sample quality is depicted. We do 

not observe any systematic failures by site. 

Table SA2. Quality control failures encountered in the NanoString data.  All percentages represent percent 
of total samples run. Percentages in the row of Total Samples run, represent the breakdown by site.*  

  Total AOC USC Vancouver 
Total Samples Run 5258 (100%) 984 (18.7%) 1766 (33.6%) 2508 (47.7%) 
Imaging Failures 11 (0.2%) 0 (0.0%) 7 (0.4%) 4 (0.2%) 
Linearity Failures 15 (0.3%) 0 (0.0%) 15 (0.8%) 0 (0.0%) 
Smallest PC Failures 1 (0.0%) 0 (0.0%) 1 (0.1%) 0 (0.0%) 
Limit of Detection Failures 289 (5.5%) 70 (7.1%) 27 (1.5%) 192 (7.7%) 
Signal to Noise Failures 327 (6.2%) 80 (8.1%) 34 (1.9%) 213 (8.5%) 
     
Sample Quality Failures 346 (6.6%) 92 (9.3%) 35 (2.0%) 219 (8.7%) 
Overall QC Failures 22 (0.4%) 0 (0.0%) 18 (1.0%) 4 (0.2%) 

*Note the numbers of assays include biological and technical replicates, control specimens and non-HGSOC. 

Therefore the total numbers here are greater than the number of samples carried through in classifier design, 

biological correlate and technical control experiments. 
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Figure SA2. Sample Quality was assessed by considering Signal to Noise (x-axis) and the % of Genes Detected 
above LOD (y-axis) 

 

BATCH CORRECTION USING CONTROL POOLS 
The reference sample methods described in Talhouk et al was used. Briefly, assuming two batches A 

and B. To calibrate samples with gene expressing XB, that were run in batch B to samples with gene 

expression XA, that were run in batch A 

• Some number of reference samples (R) would be run in both batches A and B, resulting in 

expression RA and RB. 

• To remove Batch Effect: XB-RB and XA-RA 

• Or alternatively: XB + (RA − RB) would result in calibrating batch B to batch A. 

As the same CodeSet was observed at all three sites, little difference was observed across sites; for 

consistency, everything was calibrated to the Vancouver batch. Fig SA3 depict the average log 

expression (base 2) of the housekeeping genes of the reference pools run at different sites, over time. 

We notice a slight degradation of the performance over time.  



 12 

 

Figure SA3. Reference Pools Over Time 
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CROSS-SITE CONTROLS 
We additionally wanted to confirm that data from biological samples was consistent across site. We 

used the following reliability measure: the coefficient of accuracy (Ca), squared Pearson’s correlation 

coefficient (R2) and Lin’s concordance correlation (Rc). We computed these measures gene-wise 

(histogram in Fig SA4) and for the average across all genes (Fig SA5). 

 

Figure SA4. Data Consistency of Cross-Site Controls across sites. Average of gene-wise reliability measures, 
when comparing samples that were run cross-site. 
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Figure SA5. Pairwise plot of cross-site controls comparing the expression levels of identical samples across 
different sites. 
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B: SUBTYPE LABELS ASSIGNMENT TO NANOSTRING DATA 

B.1 TRANSCRIPTOME-WIDE DATA INCLUSION 
We included all high-grade serous ovarian carcinoma (HGSOC) studies for which whole-transcriptome 

gene expression data are available (Table SB1 and Fig SB1). The histomorphological classification of 

HGSOC has changed considerably over the past two decades. Since none of the existing considered 

datasets defined histology based on the 2014 WHO standards(3) (at the time of their publications), we 

applied the following previously validated criteria(2) to restrict to HGSOC specimens: 

- Presentation: Primary ovarian carcinoma, including adnexal sites, fallopian tubes or peritoneal, 

excluding recurrences, ascites, and metastasis to the ovary. If site was unknown, it was presumed to 

be a primary ovarian cancer.  

- Treatment: All specimens were presumed to be chemotherapy naïve. Samples showing any indication 

of exposure to neoadjuvant treatment were excluded. We presumed that first line therapy was 

consistently platinum +/- taxane and excluded any exploratory therapies. 

- Histological diagnosis:  

o Serous of either grade 2 or grade 3 and stage 3 or 4. If grade was missing and stage was 3 or 4, 

samples were included. Similarly, if stage was missing, but grade was 2 or 3, samples were also 

included. If both stage and grade were unknown, samples were excluded unless authors referred 

to those samples in the text as high grade and/or high stage. 

o Endometrioid histology was included only if grade 3 and stage 3 or 4. Unknown grade or stage 

were excluded. 

o Undifferentiated histology and carcinosarcomas were included if grade 2 or 3 and stage 2 or 3. If 

grade was missing and stage was 3 or 4, samples were included. Similarly, if stage was missing, 

but grade was 2 or 3, samples were also included. If both stage and grade were unknown, 

samples were excluded. 

o Mixed histology was included only if the dominant component was identified as serous. If the 

dominant component was unknown or non-serous, then samples were excluded. 

o All other histologies were excluded.  

o If samples were re-reviewed (post-publication) by an expert pathologist following 2014 standards 

and were deemed to be HGSOC then they were included, likewise whose reviewed and deemed 

non-HGSOC were excluded. This applied to samples in the Tothill et al. study and a subset of 

“p53” wildtype samples from the TCGA study(25). 

o If sequencing(25) or IHC data for p53 were available and were not consistent with p53 alterations, 

then samples were excluded. 
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o Samples that clustered in the C3 or C6 groups (only relevant to the Tothill et al(15) 

study) were presumed to be non-HGSOC 

- Duplicates: samples that were run in multiple studies were included only once. 

- Sample size: Studies were included if they had a minimum of n=40 tumors that met all the criteria 

noted above.  

B.2 TWO INDEPENDENT APPROACHES 
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We adopted two approaches, performed in parallel by two independent teams. The purpose of this was 
to mitigate possible downstream effect of batch correction and to ensure a robust final clustering. Prior 
to data processing, and after curation of samples, data was split into four groups that were processed 
independently (see also Fig SB1). 

Figure SB1. Upper panels define gene expression array study sample selection and curation workflow (A &B), 
while lower panels (C & D) define the gene restriction workflow relevant for class re-discovery (All Array strategy 
only) and derivation of de facto standard for gene-expression based subtypes (further described below). A. 
Outlines the process for the All Array strategy, additional detail on included studies can be found in Table SB1. B. 
Outlines the TCGA strategy. Note the TCGA cohort is used in both parallel strategies with the All Array Approach 
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taking data from 593 Affymetrix U133A2 arrays (before applying including/exclusion criteria), and the TCGA 
Approach taking expression array data from the Broad Institute data portal (Affymetrix U133A2). The same 
inclusion/exclusion criteria (section B.1) were applied to all samples regardless of approach. C. Outlines the total 
number of genes considered that were common to array platforms used in the All Array Approach, the filtering 
applied before clustering for class-discovery, and gene restriction for supervised model development. D. likewise 
described the number of genes available for the TCGA Approach from the Broad Institute data portal (Affymetrix 
U133A2) and restrictions applied for supervised model development. No class discovery step is undertaken in the 
TCGA strategy as class labels are used from the class discovery exercise undertaken in the Cancer Genome Atlas 
Consortia study.(12)   

In the approach referred to as the “All Array Approach”, we used: 

1. Training 1: samples and data from multiple studies committed as the training set for the All 

Array strategy (n=1322). 

2. Confirmation 1: samples from multiple Affymetrix array datasets, excluded from any training sets 

(above; n=328). 

3. Confirmation 2: a subset of samples for which both Affymetrix array and NanoString data were 

available. This subset of samples was excluded from the training sets noted above and was 

used to ensure cross-platform portability for both the All Array and TCGA strategies (n=98). 

In the other approach, referred to as the “TCGA Approach”, we used: 

1. Training 2: samples and pre-processed data accessed directly from the Broad Institute data 

portal (Affymetrix U133A2; http://firebrowse.org/?cohort=OV&download_dialog=true)(12), 

curated following rules outlined above (B.1; Fig SB1). This dataset was committed as the 

training set for the TCGA strategy (n=411).  

2. Confirmation 1 & 2: (described above). 

B.2.1 All Array Approach  

Normalization 
raw data from gene expression microarrays of ovarian cancers on Affymetrix platforms (HG-U133A2, 

HG-U133 Plus 2, Human Gene 1.0 ST) were collected from Gene Expression Omnibus or 

ArrayExpress (Table SB1). Samples were processed in separate groups to minimize cross-group 

influences. Within each group, frozen robust multi-array analysis (fRMA) normalization were performed 

using R version 3.1.2 (2014-10-31) and Bioconductor packages (affy version 1.42.3) for 3’IVT arrays 

(HG-U133 series), or Affymetrix Power Tools version 1.15.2 for human exon array (human gene 1.0 

ST)(14,26). We retained 12536 probes common across platforms.  Probe matching of the Affymetrix 

platforms were based on “U133PlusVsHuGene_BestMatch” annotation from Affymetrix. 
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Batch Effects Correction 
Batch Effect (BE) correction was performed using two known batch effects removal methods: empirical 

Bayes (EB) and cross-platform normalization (XPN) using R package inSilicoMerging(27). This resulted 

in two datasets, one EB corrected and the other XPN corrected, for each group that were carried 

forward for analysis. 

 
Unsupervised learning for de novo class re-discovery 
Class discovery was undertaken using an ensemble unsupervised training approach on Training 1, 

using the two batch effect correction approaches (XPN and EB) independently. This was done using 

the CRAN library diceR described in Chiu and Talhouk(28). Briefly, for each dataset, genes with 

standard deviation greater than 1 were retained and the dataset standardized gene-wise to have mean 

0, variance 1.   

 

One thousand subsamples of the data were generated by sampling without replacement, each time 

selecting 80% of the cases. The following nine unsupervised algorithms were repeatedly used on each 

subsample to assign clusters: Non-negative matrix factorization using Kullback-Leibler divergence 

(NMF_Lee)(29), Non-negative matrix factorization using Euclidean distance (NMF_Brunet)(30), k-

means clustering using Euclidean distance (KM_Eucl), k-means clustering using Spearman distance 

(KM_Spear), k-means clustering using Manhattan distance (KM_Manh), partition around medoids 

clustering using Euclidean distance (PAM_Eucl), partition around medoids clustering using Spearman 

distance (PAM_Spear)(31), partition around medoids clustering using Manhattan distance 

(PAM_Manh), block clustering using latent model (BLOCK)(32). We excluded hierarchical clustering 

algorithms because those have been known to perform poorly in high dimensions(33).  

 

The k-modes(34)  consensus function was used to combine the clustering to result in a final consensus 

cluster assignment. Principal Components Analysis (PCA) and Principal Variance Components 

Analysis (PVCA)(35) were used to measure the impact of batch and assess sources of variability in the 

corrected data. Figure SB2 shows that for Training 1 both batch correction methods eliminate the 

variability associated with study. The XPN batch effect correction method performed nominally better in 

our dataset and was selected for onward analysis. 
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Pathway Analysis 
Biological differences between molecular subtypes was examined using Significance Analysis of 

Microarrays (SAM) analysis performed in R (version 3.5.0) using RStudio (version 1.1.453) and the 

package samr(13). The package was run using Shiny through GitHub using the instructions on the 

website (https://github.com/MikeJSeo/SAM). Analysis was performed as a one vs. all analysis where 

each subtype was compared to the other three grouped together.  The following variables in SAM 

analysis were set as below: 

Data type = Array 

Response Type = Two class unpaired 

Analysis = Standard (genes) 

Test statistic = T-statistic 

Median centre the arrays = No 

Are data in log scale (base 2) = Yes 

Estimator of s0 factor for denominator = Automatic 

Number of permutations = 1000 

K-nearest Neighbours Imputer = 10 

Random seed = 1234567 

When saving results, the delta value was manually entered to whichever value gave a median FDR of 

<0.05 as shown in the delta table results. All other options when saving results were left as default. 

Delta values used: 

Figure SB2. Principal Variance Components Analysis (PVCA) analysis illustrating sources of variance explained 
by the different component. The percentages represent the variability explained by each factor and first 

    

https://github.com/MikeJSeo/SAM
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Subtype 1 Analysis delta = 0.47 

Subtype 2 Analysis delta = 0.32 

Subtype 3 Analysis delta = 0.05 

Subtype 4 Analysis delta = 0.16 

For each subtype, two lists of genes were generated, based on whether they were overexpressed 

(“Significant Positive” in tables SB2-SB5), or under expressed (“Significant Negative”) relative to the 

other three subtypes, with statistical significance defined as an FDR q-value cut off of 0.05 (Tables 

SB2-SB5 for subtypes 1-4 respectively). For example, for subtype 2, the “Significant positive” gene list 

represents all genes overexpressed in the subtype labelled as “2”, compared to all other subtypes (1, 3, 

and 4), and “Significant Negative” genes are genes that are under expressed in that subtype compared 

to all others. To examine biological pathways that are enriched in each subtype the statistically 

significant genes from each subtype analysis were used for gene set analysis using the Molecular 

Signature Database (MSigDB 6.1, Broad Institute, 

http://software.broadinstitute.org/gsea/msigdb/index.jsp) to compute the overlap of overexpressed and 

under expressed genes(36-38). This was done separately for overexpressed (positive) and under 

expressed (negative) genes. For this analysis genes were compared against the “Canonical Pathways” 

subset (C2:CP), with the top 20 pathway-based gene sets returned (ranked by FDR; q<0.05). The 

biological pathways over- and underexpressed in each subtype were compared back to previously 

published studies reporting on molecular subtyping and their gene expression patterns to label our 

clustered subtypes. Values of specific genes previously reported in subtypes were also examined in the 

centroid data to confirm if specific genes were expressed higher in specific subtypes. 

Subtype 1 = Immunoreactive (aka. C2 or C2.IMM) 

Subtype 2 = Differentiated (aka. C4 or C4.DIF) 

Subtype 3 = Proliferative (aka. C5 or C5.PRO) 

Subtype 4 = Mesenchymal (aka. C1 or C1.MES) 

Subtype 1 has a similar biology to the previously reported Immunoreactive subtype, with 12 of the top 

20 upregulated pathways being immune related or containing immune related genes. These include 

genes involved in the Immune System, Interferon Signaling, Cytokine Signaling in the Immune System, 

Interferon Alpha/Beta Signaling, Chemokine receptors bind chemokines, and Interferon Gamma 

signaling. Genes with the highest fold-change included CCL5, CXCL10, TAP1, CXCL9, and CXCL11, 

all of which are immune genes that have previously been shown as strongly expressed in the 

immunogenic subtype. As few as ten transcription factor regulators may control immune gene 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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expression in the stroma of Immunoreactive tumours(39). Two of these master regulators are present in 

our data set (HCLS1 and IRF7) and showed statistically significant up-regulation in Subtype 1. 

Subtype 2 best represents the Differentiated subtype which has been previously characterised by 

markers of differentiation and ovarian/fallopian physiology. This subtype showed the highest expression 

of mucins MUC1 and MUC16 and enrichment of the pathway Genes involved in O-linked glycosylation 

of mucins, and the highest expression of the secretory fallopian tube marker SLPI, previously linked to 

the differentiated subtype. Cell cycle gene CDKN2A and transcription factor MYC were overexpressed 

in the Differentiated (12,15,17) subtype and are similarly overexpressed here. Other pathways and 

genes previously associated with the Differentiated subtype (12,15,17) such as pro-apoptotic genes, 

other ovarian physiology genes, cell cycle, and double strand break repair were not enriched in this 

analysis but are due to the genes not being represented in the array data set. The HER2 pathway 

(including ERBB3, ERBB4, ESR1 and IL6R) are statistically significantly overexpressed in this subtype, 

along with nine solute carrier (SLC) genes, enriching the Transport of small molecules and SLC 

mediated transmembrane transport pathways. 

One study(40) has suggested that the TCGA Differentiated/Tothill C4 subtype is best represented by 

two distinct subtypes they refer to as Anti-mesenchymal (characterized by statistically significant down 

regulation of extracellular matrix (ECM) genes including COL11A1, POSTN, VCAN, DCN, ZEB1 and 

FAP, and up regulation of oxidative phosphorylation, peroxisome, and butanoate metabolism pathways) 

and a second subtype that is more closely related to the Differentiated subtype (characterized by 

increased expression of COLEC11, STAR, ITGB4, MGLL, MLPH, DEFB1 and up regulation of 

Ribosome and Cytochrome P450 pathways). Subtype 2 in the current study has features of both these 

groups, with statistically significant decreases in ECM genes and pathways including those associated 

with anti-mesenchymal, and strong up regulation of COLEC11, STAR, MGLL, MLPH, and DEFB1. 

Enrichment of the pathways associated with the two subtypes was not observed but may be because a 

large number of the genes involved in these pathways were not in the data set. However, eight genes 

from these pathways were quantified and were statistically significantly upregulated in Subtype 2 

(ATP6V1B1, ACSL5, ACSM3, ALDH3B2, PIPOX, MOAB, GSTA2, and UQCRH). This shows that the 

biology of these two subtypes may be present in Subtype 2 in this study. 

Subtype 3 closely matches the biology of the previously reported Proliferative/ Tothill C5 

subtype(12,15,17). Several of the top upregulated pathways were enriched for WNT signaling genes, 

and included two WNT Signaling Pathways, which have been associated with the Proliferative subtype 

in several previous studies. Several transcription factors were also overexpressed as previously 

described (including HMGA2, TOX, TCF7L1, and SOX11), some homeobox genes (HOXB6, HOXB7, 

HOXC6) and the stem cell marker LGR5. This subtype also has the lowest expression of ovarian 
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markers MUC1 and MUC16 and kallikreins (KLK5, KLK6, KLK7, KLK8, KLK10, KLK11) confirming the 

suggestion of a de-differentiated phenotype. Cadherin CDH2 and CDH3 are also overexpressed. 

Double strand break and homologous recombination repair have been reported to be increased in the 

Proliferative subtype. Many of these genes were not in this data set but one gene previously reported 

(RAD51AP1) was statistically significantly increased in this subtype. 

Eleven of the top 20 pathways enriched for down regulated genes include immune genes indicating this 

subtype shares the feature of the Proliferative subtype of low immune expression. The top significant 

down regulated genes are related to antigen presentation including many HLA/MHC genes. 

The TCGA analysis(41) reported high proliferative markers MCM2 and PCNA in the Proliferative 

subtype. Another study of molecular subtypes (42) did not replicate this proliferative signature and 

suggested mesenchymal may be a better descriptor for this subtype. Our data do not include PNCA 

and MCM2 so can’t we distinguish this in our subtype, however other cell cycle genes including 

CCND1, CCND2, and CCNE2 are overexpressed in this subtype.   

Subtype 4 has statistically significant enrichment for stromal genes and pathways that matches it to the 

TCGA Mesenchymal/Tothill C1 subtype(12,17). All of the top 20 pathways upregulated in Subtype 4 are 

related to and enriched with extracellular matrix related genes, and includes Core Matrisome, 

Extracellular matrix glycoproteins, Extracellular matrix regulators, Focal Adhesion, Extracellular matrix 

organization, Integrins, Collagen formation, and Signaling by PDGF. These contain many collagen 

genes, MMPs, remodeling genes such as PLAU, Fibroblast- and Platelet Derived- Growth factors. 

Several markers of activated cancer associated fibroblasts (CAF) are statistically significantly 

upregulated in this subtype including FAP and ACTA2 possibly suggesting a high CAF population in the 

tumor microenvironment. Epithelial to Mesenchymal Transition (EMT) markers are also upregulated 

including SNAI2, ZEB1, and TWIST1. Five genes from the Insulin like growth factor (IGF) pathway are 

also significantly upregulated (IGF1, IGF2, IGFBP3, IGFBP4, and IGFBP5).  

There was some up regulation of immune genes in this subtype with two immune pathways enriched in 

the top 20; Complement and Coagulation Cascades and Cytokine Cytokine-Receptor Interactions. 

Some antigen presenting genes are also statistically significantly upregulated; however, the immune 

signature is not as strong as the stromal signature, or the immune signature in Subtype 1. This is 

consistent with the previous finding of Tothill et al. that the Mesenchymal (C1) subtype has some 

elevated immune pathways (15). 

Alongside the master regulators of the Immunoreactive subtype, Zhang et al. (39) also identified 6 

master regulator transcription factors controlling the stromal signature in the Mesenchymal subtype. 
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Four of these (AEBP1, HOPX, SNAI2, and ZEB1) were quantified in our data set and highly 

upregulated in Subtype 4.  

Down regulated genes in Subtype 4 show enrichment for cell cycle and cell division pathways. The top 

20 down regulated pathways include Kegg Cell Cycle, Reactome Cell Cycle, Meiotic Recombination, 

Meiotic Synapse, Meiosis, Telomere Maintenance, and RNA transcription. Most of these pathways are 

enriched by significant down regulation of cell cycle genes (CCNA1, CCNE1, CCNE2, and CDKN2A) 

and 7 histone genes (HIST1H2AC, HIST1H2AE, HIST1H2BC, HIST1H2BD, HIST1H3H, HIST2H2AA3, 

and HIST2H2BE). 

All four subtypes had upregulated pathways that were enriched with genes related to extracellular 

matrix genes. Two pathways in particular are present in all four subtypes; NABA Matrisome and NABA 

Matrisome Associated. These pathways include a broad range of genes that are linked to the 

extracellular matrix and have a high degree of overlapping genes(43). The enrichment of these 

pathways in some of the subtypes are driven by genes unique to the subtype, e.g. in Subtype 2 

(Differentiated) these pathways contain genes like mucins that are not seen in the other subtypes. 

However, some subtypes such as Subtype 1 (Immunoreactive) and 4 (Mesenchymal) share similar 

upregulated genes including cytokines, collagens and matrix metalloproteinases. This suggests that 

while a strong up regulation of stromal and extracellular matrix genes is a key feature of the 

Mesenchymal subtype, all four subtypes have some unique differential expression of ECM genes, and 

some overlap of ECM gene expression, particularly the subtypes matching the Immunoreactive and 

Mesenchymal subtypes.   

Outcome by re-established molecular subtypes  
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Using outcome data available from the originating studies compiled in CISOVDB (26) and updated 

outcome data from the ovarian TCGA cohort(12,44) we re-examined overall and progression free 

survival (Fig SB3). Overall survival data reflected a similar pattern to previous reports with C2.IMM and 

C4.DIF having the best outcomes and C1.MES having the worst. Differences were less pronounced in 

disease-free survival (progression-free survival) but the overall pattern remained consistent. 

Supervised Learning  
Using the data from Training 1 only (see Fig SB1), and treating the labels assigned based on pathway 

analysis in the previous step as gold standard, we restricted the gene set to include only those genes 

that were evaluated in our NanoString custom CodeSet (n=454/513 possible genes on the NanoString 

platform).  

The genes were additionally filtered to include only the top variable genes (minimum standard deviation 

of 0.5). Furthermore, to ensure the cross-platform portability of the final model, data in Affymetrix were 

“standardized” sample-wise by subtracting the average expression level of the housekeeping genes: 

ACTB, POLR1B, SDHA, RPL19, PGK1. This means that for each sample the expression level is no 

longer an absolute measure, but rather is the expression level relative to housekeeping genes; this was 

done to facilitate future portability to NanoString where samples are normalized in this manner.  

Several algorithms were used for model training: linear discriminant analysis (LDA), random forest 

(RF), prediction analysis for microarrays (PAM), multinomial regression with L1 penalty with embedded 

feature selection (MLR_lasso), multinomial regression with L2 penalty where coefficients are shrunk 

Figure SB3. Overall and disease-free (progression free) survival for all samples in the All Array 
strategy, segregated in the de-novo re-discovered molecular subtypes. 
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towards 0 but not set at 0 (MLR_ridge), K-nearest neighbours (KNN), adaptive boosting using decision 

trees (adaboost), naïve bayes (nbayes), and support vector machines (SVM).  

Internal Validation 
A bootstrap approach was used for internal validation and to correct for over-optimism, whereby n 

observations of size equal to the training dataset (i.e. group 1) were sampled with replacement. From 

this, a model was built using those observations and evaluated on the “out of bag” samples, i.e. the 

samples that were not selected as part of the bootstrap subset(45). This was repeated 500 times. 

Hyperparameters, tuning parameters and supervised training algorithms are fit within each bootstrap 

iteration before any out of bag prediction and evaluation.  

These models each resulted in a “probability measure” that assigned the class based on the highest 

probability. The obtained predictions are compared to the gold standard label which was assigned via 

the de novo clustering in the previous step (see A.3). The top 5 performing algorithms are ranked below 

(Table SB6). 

Table SB6. Measures of accuracy of all generated models from the All Array approach in internal 
validation. For all metrics, a higher score indicates increased accuracy. 

Strategy Algorithm Metrics (median; 95% CI) 
Overall 
Accuracy 

F1-score 
C1.MES 

F1-score 
C2.IMM 

F1-score 
C4.DIF 

F1-score 
C5.PRO 

All Array SVM 0.87 (0.85-0.89) 0.89 (0.86-
0.92) 

0.86 (0.82-
0.88) 

0.88 (0.85-
0.91) 

0.84 (0.79-0.88) 

All Array MLR_ridge 0.85 (0.83-0.88) 0.89 (0.86-
0.93) 

0.83 (0.80-
0.86) 

0.85 (0.82-
0.89) 

0.83 (0.78-0.88) 

All Array Adaboost 0.85 (0.82-0.87) 0.89 (0.85-
0.92) 

0.84 (0.80-
0.87) 

0.85 (0.82-
0.89) 

0.79 (0.72-0.85) 

All Array MLR_lasso 0.85 (0.82-0.87) 0.90 (0.86-
0.93) 

0.83 (0.80-
0.86) 

0.85 (0.82-
0.88) 

0.82 (0.77-0.87) 

All Array RF 0.85 (0.83-0.87) 0.89 (0.85-
0.92) 

0.84 (0.81-
0.87) 

0.86 (0.83-
0.89) 

0.80 (0.73-0.86) 

  

The top five ranking algorithms above (adaboost, random forest, lasso, SVM and ridge regression) 

were followed up with external validation. 

External Validation 
We tested the top five algorithms (adaboost, random forest, lasso, SVM and ridge regression) on 

independent, XPN batch-corrected data -- Confirmation 1 (defined in A2). We used previously defined 

knowledge to assess each model by first assigning molecular subtype labels using ssGSEA and the 

gene-set signatures published for CLOVAR(17) and the Australian ovarian cancer study (AOCS) 

dataset(15,16). Using these signatures in ssGSEA we assigned a molecular subtype label to 
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Confirmation 1 (see Fig SB1), that was concordant for both CLOVAR and AOCS signatures, for 

241/328 samples. We then used these labelled samples to evaluate predictions from our five all-array 

models. Performance was highly concordant across the board with accuracy ranging from 0.747 to 

0.784. As this information suggested all models performed similarly, we did not lock down on these 

criteria, but decided to examine consistency from genome-wide expression array to our target 

NanoString platform, in Confirmation 2, to lock down a final model for the All Array strategy. 

Second External Validation   
To lock down a final model we examined the performance of array-derived models on a subset of 

samples that existed in both the array and NanoString datasets and overlapped with the Tothill and 

TCGA publications (defined as Confirmation 2, Fig SB1). Here we found that the Adaboost model was 

ranked highly when comparing performance to published labels (adaboost: 0.91; lasso: 0.89; ridge: 

0.89; random forest: 0.88; SVM: 0.93). Similar results were obtained for pre-processed NanoString data 

(Adaboost: 0.79; lasso: 0.81; ridge: 0.81; random forest: 0.74; SVM: 0.26; see also section B.5 for 

NanoString pre-processing details) except for SVM, for which performance can be poor without tuning 

hyperparameters(46). While most models performed comparably, we felt the robust ensemble 

paradigm, and otherwise proven performance on difficult to classify specimens(47), was sufficient to 

justify lock down as our chosen model. 

Table SB7. Contingency table showing the relationship between all-array k-modes clustering and TCGA 
training (published) labels (n=434). 

A - Confusion Matrix 

 TCGA Published Labels 

All-Array K-modes Clustering Labels C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 79 6 2 4 
C2.IMM 36 76 19 13 
C4.DIF 2 9 101 23 
C5.PRO 3 1 3 57 

B - Overall Metrics 

Metric 
 

P value 
accuracy 0.72 (0.68 - 0.76) < 0.001 

kappa 0.63 (0.57 - 0.68)  

C – By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.66 0.96 0.87 0.88 0.75 0.21 0.81 
C2.IMM 0.83 0.80 0.53 0.94 0.64 0.33 0.81 
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C4.DIF 0.81 0.89 0.75 0.92 0.78 0.31 0.85 
C5.PRO 0.59 0.98 0.89 0.89 0.71 0.15 0.78 

 

Software and Computational Resources  
R version 3.5.1 (2018-07-02) was used on a Beowulf-style cluster with 500 compute nodes, each with 

12 cores and 48 GB RAM, for a total of 6,000 cores (12,000 threads) and 20 TB RAM. All nodes are 

running CentOS 5.4 and are using open-source Sun Grid Engine 6.2u5 as their scheduler. Each node 

has 160 GB local temp space, as well as access over an InfiniBand 40Gbps network to a dedicated 

storage system running GPFS. The file system has 700 TB usable scratch space and is served by 8 

IBM x3850 servers. The code is available on GitHub: https://github.com/AlineTalhouk/PrOType. 

B.2.2 TCGA APPROACH  
Normalization 
The normalized and batch corrected data for 476 unique Ovarian Cancer samples were obtained 

directly from the TCGA data portal (http://firebrowse.org/?cohort=OV&download_dialog=true)(12). From 

this, we removed samples that were suspected non-HGSOC (25) leaving 434 unique array specimens 

for training (Training 2 – see Fig SB1). 

Batch Effects Correction 
The data from the TCGA portal was already batch-corrected and normalized according to a reference 

sample approach and combined from gene-expression array platforms as outlined in their original study 

(12042 genes)(12). As such, no further pre-processing of the data was needed. 

Class Labels 
Class labels were NOT derived de novo and were obtained directly from TCGA data portal. 

Supervised Learning  
The gene expression data for all the genes common to the OTTA NanoString platform and the TCGA 

dataset (n=438/513 possible genes on the NanoString platform) were used to build the classification 

model.  The expression data were standardized gene-wise to have zero mean and unit variance (note: 

see also supplement B, standardization was also applied in the NanoString expression data when 

applying models derived from the TCGA strategy).  

Several classification algorithms known to work efficiently with gene expression data based 

classification including Diagonal Linear discriminant analysis (DLDA), K-Nearest Neighbor (KNN), 

Support Vector Machines (SVM), Gradient Boosting Machines (GBM) and Random Forests (RF) were 

explored to predict the subtype label assigned by the TCGA project.  

Internal Validation 
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A different internal validity approach was used here. The accuracies of the different classifiers were 

estimated using a k-fold cross-validation approach(48). In k-fold cross-validation, the original sample is 

randomly partitioned into k equal sized subsamples.  

Of the k subsamples, a single subsample is retained as the validation data for testing the model, and 

the remaining k − 1 subsamples are used as training data.  

The predicted labels are then compared to that of the TCGA original labels. The accuracy of the 

classification models was estimated using 10-fold cross validation. Results are outlined in Table SA6. 

Table SB8. Measures of accuracy of all generated models from the TCGA  approach in internal validation. 
For all metrics, a higher score indicates increased accuracy. 

Strategy Algorithm Metrics (median; 95% CI) 
Overall 
Accuracy 

F1-score 
C1.MES 

F1-score 
C2.IMM 

F1-score 
C4.DIF 

F1-score 
C5.PRO 

TCGA DLDA 0.87 (0.84-0.90) 0.94 0.82 0.85 0.86 

TCGA KNN 0.88 (0.84-0.91) 0.92 0.85 0.86 0.86 

TCGA SVM 0.87 (0.83-0.90) 0.90 0.85 0.86 0.85 

TCGA GBM 0.86 (0.83-0.91) 0.90 0.86 0.86 0.85 

TCGA RF 0.87 (0.83-0.90) 0.90 0.85 0.86 0.85 

Among the classification algorithms tested, Random Forest (RF) and SVM provided the best 

performance metrics. RF was chosen due to processing speed advantage. 

External Validation 
The dataset from Tothill et al.(15) with published subtype labels were used as the external dataset to 

assess the classifier accuracy. The RMA normalized data and log2 transformed expression data was 

downloaded from GEO (GSE9899). Gene expression data were then standardized to have zero mean 

unit variance. The transformed data was then used as an input to obtain the subtype labels of the 

samples.  The published labels of the samples were then used to compute the accuracy of the 

classifier. 

Table SB9. Contingency table showing the relationship between the TCGA strategy predicted labels (row) 
and the published labels (column) (n=215). 

A - Confusion Matrix 

 AOCS Published Labels 

AOCS Predicted Labels C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 76 3 0 1 
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C2.IMM 4 42 0 1 
C4.DIF 0 5 46 1 
C5.PRO 3 0 0 33 

B - Overall Metrics 

Metric 
 

P value 
accuracy 0.92 (0.87 - 0.95) < 0.001 

kappa 0.88 (0.83 - 0.94)  

C - By-Class Metrics 
Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 

C1.MES 0.92 0.97 0.95 0.95 0.93 0.37 0.94 
C2.IMM 0.84 0.97 0.89 0.95 0.87 0.22 0.90 
C4.DIF 1.00 0.96 0.88 1.00 0.94 0.24 0.98 

C5.PRO 0.92 0.98 0.92 0.98 0.92 0.17 0.95 
 

Software and Computational Resources  
The supervised approach using the TCGA dataset as the learning set was also developed using R 

version 3.5.1.  The code is available on GitHub: https://github.com/AlineTalhouk/PrOType. 

B.3 PLATFORM PORTABILITY OF THE ARRAY CLASSIFIER 
Using the final locked-down models from each of the two strategies (All array and TCGA; see 

supplemental A.5), and the data overlapping the NanoString platform (see section A.1 and Fig SA1), 

we compared the subtype predictions generated from the array data and the NanoString data to assess 

model portability across platforms. Table SB10 and SB11 compares the cross-platform predictions from 

the All-array and the TCGA strategies, respectively. When we consider, the consensus label from both 

models obtained in NanoString with a small subset of cases (the overlap set; Fig SA1) the agreement is 

excellent (94% accuracy and 0.92 kappa; Table SB12). 

Table SB10. All Array model portability comparing predictions on NanoString to predictions on Array.   

A - Confusion Matrix 

 Predicted on Array  
Predicted on 
NanoString 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 21 2 1 3 
C2.IMM 2 13 4 0 
C4.DIF 2 5 20 2 
C5.PRO 3 2 1 16 

https://github.com/AlineTalhouk/PrOType
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B - Overall Metrics 
Metric  P value 

accuracy 0.72 (0.62 - 0.81) < 0.001 
kappa 0.63 (0.51 – 0.75)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.75 0.91 0.78 0.90 0.76 0.28 0.83 
C2.IMM 0.59 0.92 0.68 0.88 0.63 0.20 0.76 
C4.DIF 0.77 0.87 0.69 0.91 0.73 0.30 0.82 

C5.PRO 0.76 0.92 0.73 0.93 0.74 0.23 0.84 
 

Table SB11. TCGA model portability comparing predictions on a subset of samples from the Tothill et al. 
dataset performed on Affymetrix Array data versus those done on NanoString data. 

A - Confusion Matrix 

 Predicted on Array  
Predicted on 
NanoString 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 21 2 1 2 
C2.IMM 1 7 2 1 
C4.DIF 1 7 19 1 
C5.PRO 0 1 1 18 

B - Overall Metrics 

Metric  P value 
accuracy 0.76 (0.66 - 0.85) < 0.001 

kappa     0.68 (0.56 – 0.80)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.91 0.92 0.81 0.97 0.86 0.31 0.92 
C2.IMM 0.41 0.94 0.64 0.86 0.50 0.13 0.68 
C4.DIF 0.83 0.85 0.67 0.93 0.75 0.33 0.84 

C5.PRO 0.82 0.97 0.90 0.94 0.86 0.24 0.89 
 

Table SB12. Comparing consensus samples predictions with published labels. 

(note: 76 samples from array data had consensus labels, CL, however only 67 of these had published labels in 
original studies(12,15)) 
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A - Confusion Matrix 

 Published Labels 

Consensus Labels C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 20 1 0 0 
C2.IMM 0 10 1 0 
C4.DIF 0 1 17 1 
C5.PRO 0 0 0 16 

B - Overall Metrics 

Metric  P value 
accuracy 0.94 (0.85 - 0.98) < 0.001 

kappa 0.92 (0.84 - 1)  

 

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 1.00 0.98 0.95 1.00 0.98 0.31 0.99 
C2.IMM 0.83 0.98 0.91 0.96 0.87 0.16 0.91 
C4.DIF 0.94 0.96 0.89 0.98 0.92 0.28 0.95 

C5.PRO 0.94 1.00 1.00 0.98 0.97 0.24 0.97 
 

B.4 SUBTYPE ASSIGNMENT IN THE NANOSTRING DATA 
Agreement between the TCGA and All array models 
The locked down models from each of two strategies, All array and TCGA models are used to assign 

subtypes to all of the NanoString data that passed QC. Since no gold standard exists, the predictions 

from the two models were compared to one another (Table SB13). Agreement between models was 

79.1% and we took this consensus to be the de facto standard for downstream design of a minimal-

gene classifier. 

Table SB13. Comparison of subtypes predictions from the all array model and the TCGA model. 

A - Confusion Matrix 

 Predicted Labels - TCGA model 
Predicted Labels- 
All-array model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 922 94 17 44 
C2.IMM 149 619 148 41 
C4.DIF 0 170 923 37 
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C5.PRO 21 15 63 566 
B - Overall Metrics 

Metric  P value 
accuracy 0.79 (0.78 - 0.8) < 0.001 

kappa 0.72 (0.7 – 0.74)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.84 0.94 0.86 0.94 0.85 0.28 0.89 
C2.IMM 0.69 0.88 0.65 0.90 0.67 0.25 0.79 
C4.DIF 0.80 0.92 0.82 0.92 0.81 0.30 0.86 

C5.PRO 0.82 0.97 0.85 0.96 0.84 0.17 0.90 
 

Predictive Entropy 
For each sample, each of the two models resulted in four probabilities that quantify the likelihood of the 

sample to belong to each subtype. Subtype assignment is by default the subtype with the highest 

probability.  This is not indicative of how certain the assignment of the subtype with the highest 

probability is in comparison to the other subtypes, therefore we quantified and compared each of the 

model’s uncertainty using predictive entropy.(49) The idea of entropy is rooted in information theory and 

is used to quantify the expected “surprise”. Entropy is lowest when the probability for one class is 100% 

and highest when the probabilities are uniform among the four classes. The formula for entropy is 

defined as:  𝐻𝐻(𝑋𝑋|𝑌𝑌) = −∑ 𝑝𝑝�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� log 𝑝𝑝�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�
𝑝𝑝�𝑦𝑦𝑗𝑗�𝑖𝑖,𝑗𝑗  

Where 𝑝𝑝�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� is the probability that 𝑋𝑋 = 𝑥𝑥𝑖𝑖 and 𝑌𝑌 = 𝑦𝑦𝑗𝑗. For a four-class prediction model, and using 

log base 2, entropy will vary between 0, when the model predicts a single class with 100% probability 

(and the other classes with 0 probability), and 2 when each of the classes are assigned equally 25% 

probability. In Fig SB4, we depict the entropy from predictions generated from the TCGA and All array 

models on the entire NanoString dataset and the samples where there was disagreement in class 

assignment. Within each model (all-array and TCGA) the predictive entropy was significantly different 

among samples that were assigned the same label by the two models in comparison to those that had 

different labels (P value < 0.0001 in both cases using the Mann-Whitney U Test). 
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Figure SB4. Entropy from the two models on the entire NanoString data highlighting the points where the 
two models agree/disagree 

 

Figure SB5. Entropy from the two models on the entire NanoString data highlighting the four subtypes as 
classified by the All-array and TCGA model 



 35 

 

In Fig SB5, we compare the TCGA and All array entropy across subtypes. It is evident that for both 

methods it was more difficult to classify the C2.IMM subtype. The C1.MES subtype had lower entropy 

especially within the TCGA modeling approach.  

Technical Variability between consensus and non-consensus labelled samples 
We examined potential sources of technical variability between consensus and non-consensus labelled 

specimen. Only signal-to-noise ratio (below ratio of 1000) was significantly different between consensus 

and non-consensus samples. This is consistent with lower quality of RNA input and hence inaccuracy 

of gene expression measurements in a subset of sample. Nonetheless only a relatively small fraction of 

non-consensus samples had lower S/N (<1000) and low S/N was also present in a subset of consensus 

labelled samples (5% of CL vs 7.5% of non-CL; see table below). Overall this suggested that technical 

variability due to platform processing was responsible for only a very small percentage of 

disagreements between All Array and TCGA final models. 

COMPARISON OF CONSENSUS VS. NON-CONSENSUS FOR TECHNICAL AND BIOLOGICAL VARIABLES 
Cohort characteristics for all cases by sample label 

Variable Levels CL non-CL Total PValue 

 N (%) 2667 
(78.7%) 

720 
(21.3%) 

3387 
(100.0%) 

OneWay_Test 

Age at Diagnosis Mean (sd) 60.2 (10.5) 59.8 
(10.6) 

60.1 (10.5) 0.3862 

 Median 
(IQR) 

60 (53 - 67) 60 (52 - 
67) 

60 (53 - 67)  

 Missing 50 15 65  

     PearsonChi_square 

Cellularity 0-20 22 (0.9%) 10 (1.5%) 32 (1.0%) 0.1287 

 21-40 126 (5.0%) 26 (3.8%) 152 (4.8%)  

 41-60 340 
(13.5%) 

88 
(12.9%) 

428 (13.4%)  

 61-80 963 
(38.4%) 

290 
(42.5%) 

1253 
(39.2%) 

 

 81-100 1060 
(42.2%) 

268 
(39.3%) 

1328 
(41.6%) 

 

 Missing 156 38 194  
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Necrosis none 636 
(30.3%) 

153 
(26.0%) 

789 (29.4%) 0.0839 

 <=20% 1313 
(62.6%) 

386 
(65.5%) 

1699 
(63.3%) 

 

 >20% 147 (7.0%) 50 (8.5%) 197 (7.3%)  

 Missing 571 131 702  

RNA Absorbance High 1071 
(96.8%) 

290 
(96.3%) 

1361 
(96.7%) 

0.8096 

 Low 35 (3.2%) 11 (3.7%) 46 (3.3%)  

 Missing 1561 419 1980  

Hybridization Window Long 1165 
(49.4%) 

323 
(50.9%) 

1488 
(49.7%) 

0.5306 

 Short 1195 
(50.6%) 

312 
(49.1%) 

1507 
(50.3%) 

 

 Missing 307 85 392  

Percent of Genes above Limit of 
Detection 

High 2554 
(95.8%) 

690 
(95.8%) 

3244 
(95.8%) 

1.0000 

 Low 113 (4.2%) 30 (4.2%) 143 (4.2%)  

Signal to Noise Ratio High 2533 
(95.0%) 

666 
(92.5%) 

3199 
(94.4%) 

0.0130 

 Low 134 (5.0%) 54 (7.5%) 188 (5.6%)  

 

Survival 
For each model, both All Array and TCGA, we calculated the overall (OS) and progression-free survival 
(PFS) once the models had been applied to NanoString data. Survival differences were significant 
between molecular subtypes using both models and reflective of previous reports, showing C2.IMM and 
C4.DIF with the best survival and C1.MES having the worst (Figures SB6 and SB7). The same pattern 
was also observed with the consensus between each approach (Figure SB8).  Differences in survival 
between subtypes were also significant in samples that were discordant between models, however 
samples in this category did not follow the typical pattern (Figure SB9 and SB10).  
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Figure SB6. Kaplan-Meier survival curves of predicted subtypes using the all-array model 
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Figure SB7. Kaplan-Meier survival curves of predicted subtypes using the TCGA model 
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Figure SB8. Kaplan-Meier survival curves of predicted subtypes where the all-array and the TCGA models 
are in agreement 
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Figure SB9. Kaplan-Meier survival curves of predicted subtypes where the two models are in disagreement 
(labelled according to the all-array model) 



 41 

 

Figure SB10. Kaplan-Meier survival curves of predicted subtypes where the two models are in 
disagreement (labelled according to the TCGA model  
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C: DEVELOPMENT OF A MINIMAL PREDICTIVE MODEL ON NANOSTRING DATA 

C.1 DATA BREAKDOWN FOR DOWNSTREAM ANALYSIS 
We followed a series of best-practice guidelines to enable the training, confirmation, and validation of 

an optimized minimal gene prediction model(50). The NanoString data was split into 4 groups by 

studies, as outlined in Fig SA1, with the consensus labels derived from agreement between our two 

array-based strategies as the gold standard (79.1% agreement across all NanoString samples). 

Training Group 1, the largest group, was composed of 8 studies 1191 consensus labelled sample. This 

was used to train a minimal gene list model using the consensus labels (described below). Three 

subsequent validations were performed including confirmation and further optimization of the number of 

genes in Confirmation 1 (5 studies, 837 consensus labelled samples), and final validations in Validation 

1 (4 studies, 719 consensus labelled samples) and Validation 2 (3 studies, 283 consensus labelled 

samples). The latter deliberately left as an independent group due to its composition of clinical trial 

studies. 

C.2 MINIMAL MODEL DEVELOPMENT  
In order to train a minimal gene classifier, using the training data, consisting of 1135 samples with 

consensus labels, from 8 studies, we adopted a leave one study out validation scheme (see Fig SC1), 

where samples from each study are predicted using a model that was built using all the samples from 

all the other seven studies as illustrated in each row of in the figure below. This created 8 subsets of the 

data. 

Figure SC1. Schematic diagram explaining the experimental design to derive 
the optimal gene list model 
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Within each partition, corresponding to a row in Fig SC1: 

1. We resampled with replacement 500 times, using bootstrap approach, excluding the 

validation (left-out) study with white background.  

(i) On each of the 500 resamplings, we trained a model using all the genes and 

three different algorithms: Random Forest, Lasso, Adaboost. 

(ii) For each algorithm and each of the 500 resamplings, we computed a gene 

importance score by sorting the Gini feature importance, for Random Forest and 

Adaboost, and counting the genes with non-zero coefficients for Lasso.  

2. We obtained a final ranking, by considering the proportion of times a gene is included in 

the top 100 most important genes (as ranked in 1 (ii) above). This resulted in 3 ranked 

lists, one for each algorithm (Table SC1). 

3. Lastly, we obtained predictions of the left-out study (with the white background in Fig 

SC1) by going down each of the ranked lists from 2 (above), and fitting models of 

increasing complexity by increasing the numbers of genes (i.e. iterating over a sequence 

between 4 and 100, increasing in steps of 5 genes). 

The aggregate accuracy was computed by concatenating the prediction of studies when in the left-out 

position (as described above)  and comparing them with the consensus labels (Fig SC2 and SC3).  

Results show a clear advantage to the Lasso and Random forest algorithms. The Lasso and Random 

Forest algorithms both more or less plateau around ~ 30 genes whereas the Adaboost algorithm is 

significantly lower. 
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Figure SC2. The aggregate accuracy (for all samples in all studies) obtained by increasing number of genes 
and using the top n genes from each frequency list computed above, where n varied from 4 to 100. Note 
that the top n genes from each study are not necessarily the same.   
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Figure SC3. The aggregate F1- score by subtype, describing a combined measure of sensitivity and positive 
predictive value, with increasing number of genes. 
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Figure SC4. Boxplots of the prediction accuracy by study using the Lasso and the Random forest algorithm. 
Each point in the boxplot corresponds to the individual study prediction (when left-out). 

 



 47 

 

Figure SC5. Heatmap depicting the importance rank of the top 50 ranking genes from each  
study iteration, indicates that random forest showed a more stable ranking across predicted studies in 
comparison with Lasso. 
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Fig SC4 illustrates prediction accuracy by study with the Lasso and the Random forest algorithms. The 
variation in prediction accuracy across studies using the Lasso algorithm is generally constant as a 
function of increasing number of genes. In contrast, the Random Forest algorithm showed a much 
smaller variability across study especially as the number of genes used for modeling exceeded ~40.   

Random Forest showed a more stable ranking across predicted studies in comparison with Lasso (Fig 
SC5). As such, the Random Forest algorithm was selected and an overall ranking was obtained by 
averaging the proportions for each gene across study iterations then sorting by the Random Forest 
ranking and then by Lasso to break ties.  

C.3 FIRST CONFIRMATION 
Using the final overall gene list ranking obtained in the previous step, we fit models of increasing 
complexity on the entire training set (group 1) by considering the top 40-78 genes from list by 
increasing the sequence one gene at a time. These models were then used to predict the confirmation 
set (group 2). The prediction accuracy in this group was excellent, even when using a small number of 
genes. The accuracy was negligibly increasing with the number of genes used in the model varying 
between 95% and 97% (Fig SC6).  

 

Figure SC6. Overall prediction accuracy in group 2 
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Figure SC7. F1-score in group 2 by subtype 

The F1-score indicating the reliability of prediction by class mirrored the same pattern (Fig SC7) with 
C1.MES and C4.DIF having the highest prediction accuracy and C2.IMM and C5.PRO were lowest. All 
accuracy measures were above 95%.  

Limited gains can be obtained by adding more genes. We pragmatically decided that 55 genes would 
be a safe cut-off option, to balance good accuracy and redundancy of genes to allow for potential 
probe-specific failures, without adding extensive complexity or cost to the final assay.   

C.4 VALIDATION 
We selected the top 55 genes after removing one gene (CTHRC1) for which there was no probe 
available in the TCGA array platform. The omission of this gene was done to allow backward 
compatibility to this Affymetrix array platform and was tested to ensure its omission does not impact 
accuracy. 

Tables SC2-SC6 compare the predictions from the final model with the consensus labels of the training 
set (group 1), the confirmation set (group 2) and the two validation sets (groups 3 and 4) and the set 
that overlaps the array respectively. Predictions remain very strong using the minimal gene set. 

Samples that were not assigned a consensus label were predicted using the final model and the 
entropy compared with those sampled that had consensus. Figure SB6 indicated that on average those 
samples had significantly higher entropy in comparison with samples that had consensus labels (P 
value < 0.001, Mann-Whitney U Test). 
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Table SC2.  Comparison of final model predictions with consensus labels from the training set (group 1) 

A - Confusion Matrix 

 Consensus Label 
Predicted with  
Final Model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 391 0 0 0 
C2.IMM 0 256 0 0 
C4.DIF 0 0 319 0 
C5.PRO 0 0 0 169 

B - Overall Metrics 

Metric  P value 
accuracy 1 (1 - 1) < 0.001 

kappa 1 (1 – 1)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 1 1 1 1 1 0.34 1 
C2.IMM 1 1 1 1 1 0.23 1 
C4.DIF 1 1 1 1 1 0.28 1 

C5.PRO 1 1 1 1 1 0.15 1 
 

Table SC3.  Comparison of final model predictions with consensus labels from the confirmation set (group 
2) 

A - Confusion Matrix 

 Consensus Labels 
Predicted with  
Final Model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 191 4 0 0 
C2.IMM 1 147 1 6 
C4.DIF 0 2 285 10 
C5.PRO 1 1 4 164 

B - Overall Metrics 

Metric  P value 
accuracy 0.96 (0.95 - 0.98) < 0.001 

kappa 0.95 (0.93 – 0.97)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
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C1.MES 0.99 0.99 0.98 1.00 0.98 0.24 0.99 
C2.IMM 0.95 0.99 0.95 0.99 0.95 0.19 0.97 
C4.DIF 0.98 0.98 0.96 0.99 0.97 0.36 0.98 

C5.PRO 0.91 0.99 0.96 0.98 0.94 0.21 0.95 
 

Table SC4.  Comparison of final model predictions with consensus labels from the first validation set 
(group 3) 

A - Confusion Matrix 

 Consensus Labels 
Predicted with  
Final Model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 211 4 0 4 
C2.IMM 3 145 8 2 
C4.DIF 0 1 210 7 
C5.PRO 1 0 4 119 

 
B - Overall Metrics 

Metric  P value 
accuracy 0.95 (0.93 - 0.97) < 0.001 

kappa 0.94 (0.91 – 0.96)  
 
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.98 0.98 0.96 0.99 0.97 0.30 0.98 
C2.IMM 0.97 0.98 0.92 0.99 0.94 0.22 0.97 
C4.DIF 0.95 0.98 0.96 0.98 0.95 0.30 0.96 

C5.PRO 0.90 0.99 0.96 0.98 0.93 0.17 0.95 
 

Table SC5.  Comparison of final model predictions with consensus labels from the second validation set 
(group 4) 

A - Confusion Matrix 

 Consensus Labels 
Predicted with  
Final Model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 97 2 0 1 
C2.IMM 1 47 1 3 
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C4.DIF 0 2 67 5 
C5.PRO 0 0 1 56 

B - Overall Metrics 

Metric  P value 
accuracy 0.94 (0.91 - 0.97) < 0.001 

kappa 0.92 (0.89 – 0.96)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 0.99 0.98 0.97 0.99 0.98 0.35 0.99 
C2.IMM 0.92 0.98 0.90 0.98 0.91 0.18 0.95 
C4.DIF 0.97 0.97 0.91 0.99 0.94 0.26 0.97 

C5.PRO 0.86 1.00 0.98 0.96 0.92 0.20 0.93 
 

Table SC6.  Comparison of final model predictions with consensus labels from the overlap set  

A - Confusion Matrix 

 Consensus Labels 
Predicted with  
Final Model 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 25 0 0 0 
C2.IMM 0 8 0 0 
C4.DIF 0 0 23 0 
C5.PRO 0 0 0 20 

B - Overall Metrics 

Metric  P value 
accuracy 1 (0.95 - 1) < 0.001 

kappa 1 (1 – 1)  
C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 1 1 1 1 1 0.33 1 
C2.IMM 1 1 1 1 1 0.11 1 
C4.DIF 1 1 1 1 1 0.30 1 

C5.PRO 1 1 1 1 1 0.26 1 
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C.5 GENES IN THE CLASSIFIER 
The final 55 genes (Table SC7) retained representation from many of the pathways originally identified 

as enriched (12,14-17,42,51). The majority of genes and pathway they are representative of could be 

grouped into 5 major clusters using functional annotation clustering (DAVID 6.7(52,53) and major 

annotation databases: BIOCARTA, KEGG_PATHWAY, PANTHER_MF_ALL, PANTHER_PATHWAY, 

and REACTOME_PATHWAY (Figure SC9 A). Herein we could observe pathway clusters dominated by 

extracellular matrix components, immune function and immune cell markers, surface receptors and 

kinases, chemokine and cytokine signalling, and cell morphology and angiogenesis related genes. 

NetworkAnalyst(54,55) visualization of Reactome(56,57) annotated genes also suggests the many of 

the represented pathways are interlinked (Figure SC9 B). 

  

Figure SC8. Predictive entropy of the final model by consensus and non-
consensus labels and by subtype. 
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Figure SC9. Pathways represented in the minimal gene classifier represent much of the same biology as 
network and pathway analysis has previously revealed from genome-wide studies. (A) Major represented 
functional gene clusters in the final 55-gene classifier as defined by functional annotation clustering using 
the DAVID 6.7 database. (B) Visualization of Reactome annotated genes in a network diagram generated 
though NetworkAnalyst.  
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C.6 GENE EXPRESSION DISTRIBUTION ON TOP GENES 
NanoString 

 

  Figure SC10. Gene expression distribution on top genes in NanoString Data 
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All-Array 

 

  Figure SC11. Gene expression distribution on top genes in All-Array Data 
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TCGA 

 

 

 

  

Figure SC12. Gene expression distribution on top genes in TCGA Data 
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D: BIOLOGICAL CORRELATES OF MOLECULAR SUBTYPES  

D.1 TECHNICAL VARIABILITY AND POTENTIAL SOURCES OF BIAS 
Previous studies of NanoString data have suggested the platform is robust to most technical variability 
“within CodeSet”(21,22,58-60) and the reference-based strategy we have employed has been 
previously shown to correct for substantial processing bias across CodeSets, similar to the strategy 
currently employed in the NanoString Prosigna assay(22). Nonetheless, given the scale of our study a 
number of controls, replicates and sub-analyses was performed to address technical variability that 
may have been attributable to differences in processing at contributing sites, technical bias, real 
biological heterogeneity, and cross-CodeSet variability. Control subsets are also described in section 
B.5 with reproducibility of overall data across sites described in section B.6. The following sections will 
address if any remaining variability, post normalization to reference pools, affected prediction of 
HGSOC molecular subtypes in the final model. Experimental cohorts used in technical and biological 
control experiments, and replication within and across NanoString CodeSets is described in Fig SD1. 

Figure SD1. Schematic representation of control experiments using technical or biological replicates to 
investigate potential sources of bias. (A) Illustrates our strategy of repeating sample across sites to ensure 
NanoString processing did not affect data output. Here each site (VAN = University of British Columbia, 
Vancouver; USC = University of Southern California, Los Angeles, and AOC = Australian Ovarian Cancer 
study group, Peter MacCallum Cancer Centre, Melbourne) selected samples at random and sent these to 
be rerun at the other two sites. 23 samples were selected from Vancouver (VAN) and 12 from each of AOC 
(Melbourne) and USC (Los Angeles) sites. Of these 47 samples, 141 output data files were generated and 
35 are represented in the unique clinical data, 70 are replicates of these 35 from other run sites, and the 
remaining 36 are triplicate (12 samples run at each site) control only specimens. See also Figure SA1. (B) 
Illustrates controls for repeated measures using 89 technical replicates selected from the total pool of 
HGSOC samples. Samples were then re-run at their original co-ordinating site. (C) Illustrates our strategy 
to investigate biological bias related to the anatomical source of tissue being assayed. Here we examined 
53 paired specimens taken from the same patient at the initial debulking surgery and compared molecular 
subtype prediction from adnexal sourced tissue to omental sourced tissue. While we attempted to source 
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the majority of our tissue from the site of origin (ovary/tube – adnexa) the omentum was the second most 
common source. 

 

D.1.1 WITHIN CODESET REPLICATION  
We randomly selected 89 samples to repeat, to ensure consistency within CodeSets. Table SD1 shows 
very good within site replicability with overall accuracy at 94% and kappa at 0.92, 95% CI (0.86 – 0.99). 
Because these samples were selected at random they varied in their entropy. We compared the 
entropy upon replication (Fig SD2) and note there was disagreement, with the entropy larger as would 
be expected. 

Table SD1. Comparison of within site replicates on 89 samples  

A - Confusion Matrix 
 Final Originals 

Predicted Replicates C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 21 0 0 0 

C2.IMM 0 17 3 0 

C4.DIF 0 0 26 1 

C5.PRO 0 0 1 20 

B - Overall Metrics 

Metric  P value 

accuracy 0.94 (0.87 – 0.98) < 0.001 

kappa 0.92 (0.86 – 0.99)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 

C1.MES 1.00 1.00 1.00 1.00 1.00 0.24 1.00 

C2.IMM 1.00 0.96 0.85 1.00 0.92 0.22 0.98 

C4.DIF 0.87 0.98 0.96 0.94 0.91 0.30 0.92 

C5.PRO 0.95 0.99 0.95 0.99 0.95 0.24 0.97 
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Figure SD2. Entropy of within CodeSet replicates. The blue dots indicate where classification disagree upon 
replication. The dashed line is the identity line. 

 

D.1.2 CROSS-SITE REPLICATION  
36 samples were randomly selected and repeated at the three different sites; a single replicate failed 
QC leaving 35 samples for analysis (see also Fig SD1). Classification results matched 100% across the 
three sites. 

 
D.1.3 CROSS CODESET REPLICATION  
In order to evaluate consistent accuracy across CodeSets and our reference-based normalization, 
single-sample processing strategy, we replicated a number of samples across two additional CodeSets 
(Tables SD2 – SD4). One CodeSet, the Mixed CodeSet, contained probes for our 55 classifer genes, 
controls, and other probes unrelated to classification. The other CodeSet contained exclusively our 55 
classifier gene probes and controls: “Classifier Only CodeSet” (see Fig SD1 - D). Accuracy was high in 
all pairwise comparisons of the three CodeSets, and the addition of additional genes did not impact 
prediction. This suggests in a research context that our classifier could be effectively combined with 
other research parameters without negative effect. 
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Table SD2. Comparison of predictions from the “OTTA original” CodeSet with the “OTTA Classifier Only” 
CodeSet (n=103) 

A - Confusion Matrix 

 Predicted Original Labels 

Predicted Classifier Only 

CodeSet Labels 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 37 0 1 0 

C2.IMM 0 22 1 0 

C4.DIF 1 0 26 0 

C5.PRO 0 0 0 15 

B - Overall Metrics 

Metric  P value 

accuracy 0.97 (0.92 - 0.99) < 0.001 

kappa 0.96 (0.91 - 1)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 

C1.MES 0.97 0.98 0.97 0.98 0.97 0.37 0.98 

C2.IMM 1.00 0.99 0.96 1.00 0.98 0.22 0.99 

C4.DIF 0.93 0.99 0.96 0.97 0.95 0.26 0.96 

C5.PRO 1.00 1.00 1.00 1.00 1.00 0.15 1.00 

 

Table SD3. Comparison of predictions from the “OTTA original” CodeSet with the “OTTA Mixed” CodeSet 
(n=100) 

A - Confusion Matrix 

 Predicted Original Labels 

Predicted Mixed Codeset 

Replicate Labels 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 25 1 0 0 

C2.IMM 0 20 0 0 
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C4.DIF 1 0 34 0 

C5.PRO 0 0 1 18 

B - Overall Metrics 

Metric  P value 

accuracy 0.97 (0.91 - 0.99) < 0.001 

kappa 0.96 (0.91 - 1)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 

C1.MES 0.96 0.99 0.96 0.99 0.96 0.26 0.97 

C2.IMM 0.95 1.00 1.00 0.99 0.98 0.20 0.98 

C4.DIF 0.97 0.98 0.97 0.98 0.97 0.35 0.98 

C5.PRO 1.00 0.99 0.95 1.00 0.97 0.19 0.99 

 

Table SD4. Comparison of predictions from the “OTTA Mixed” CodeSet with the “OTTA Classifier Only” 
CodeSet (n=80) 

A - Confusion Matrix 

 Predicted Mixed CodeSet Labels 

Predicted Classifier Only 

CodeSet Labels 

C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 20 0 0 1 

C2.IMM 1 15 1 0 

C4.DIF 0 0 27 0 

C5.PRO 0 0 0 15 

B - Overall Metrics 

Metric  P value 

accuracy 0.96 (0.89 - 0.99) < 0.001 

kappa 0.95 (0.89 - 1.01)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
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C1.MES 0.95 0.98 0.95 0.98 0.95 0.26 0.97 

C2.IMM 1.00 0.97 0.88 1.00 0.94 0.21 0.98 

C4.DIF 0.96 1.00 1.00 0.98 0.98 0.34 0.98 

C5.PRO 0.94 1.00 1.00 0.98 0.97 0.19 0.97 

 

Excellent agreement was observed between samples that were evaluated in the 78 samples (Fig SD1 – 
D) that were predicted in all three CodeSets (Fleiss’ Kappa 0.95; P value <0.001). We also calculated 
Fleiss' Kappa for the 98 unique samples that were repeated in more than one CodeSet with missing 
values, ignoring repeats. In this case Fleiss’ Kappa was a little weaker at 0.78 but still significant (P 
value <0.001). 

D.2 ANATOMICAL SITE VARIABILITY 
There were 53 samples (LAX n=25, VAN n=21, BRO n=7) that had paired adnexal and omentum 
samples which were both evaluated (Table SD5). We noted that 44/53 (83%) samples that were 
distributed across the subtypes when specimens were obtained from the adnexal became C1.MES 
when classified from specimens obtained from the omentum. 

In examination of our clinical series of unique HGSOC samples we were also able to obtain anatomical 
sampling site information on 2182 samples (Table SD6), and the rest were presumed adnexal. This 
presumption appears valid as the comparison of subtype distribution with known adnexal sites was not 
significant (Table SD7, Chi-Squared P value=0.09). 

The vast majority of samples were adnexal (n=1740; defined as ovary and/or tube, or adnexal without 
further detail), however the second most common sampling site was the omentum (n=355). A bias in 
C1.MES subtype prediction was significant (Table SD7, Chi-Squared P value <0.001) in the omentum 
sampling: 71.5% C1.MES as opposed to 24.6% C1.MES from known adnexal samplings (Table SD6). 
Specimens were presumed adnexal based on our request to contributing studies for treatment naïve, 
primary ovarian or tubal high-grade serous tubo-ovarian carcinoma specimens, but where a specific 
sampling site was not reported by the contributing study. Additional sites of sampling were accepted if 
defined: peritoneal specimens included all peritoneal sites, including peritoneal lymph nodes, unless 
omentum was specifically denoted. In the latter case omentum was specified as the site of sampling. 
Upper gynecological tract included specimens acquired from uterine and/or cervical sites where the 
diagnosis was still consistent with primary high-grade serous tubo-ovarian carcinoma. Lower 
gynecological tract included specimens acquired from the vagina. 

Table SD5. Comparison of anatomical site, 53 matched pairs adnexa and omentum 

A - Confusion Matrix 

 Final Adnexal 

Predicted Omentum C1.MES C2.IMM C4.DIF C5.PRO 

C1.MES 14 7 15 8 
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C2.IMM 0 2 3 3 

C4.DIF 0 1 0 0 

C5.PRO 0 0 0 0 

B - Overall Metrics 

Metric  P value 
accuracy 0.3 (0.18 - 0.44) 0.76 

kappa 0.06 (-0.1 - 0.23)  

C - By-Class Metrics 

Class Sensitivity Specificity PPV NPV F1 Detection Prevalence Balanced Accuracy 
C1.MES 1.0 0.23 0.32 1.00 0.48 0.83 0.62 
C2.IMM 0.2 0.86 0.25 0.82 0.22 0.15 0.53 
C4.DIF 0.0 0.97 0.00 0.65 NA 0.02 0.49 

C5.PRO 0.0 1.00 NA 0.79 NA 0.00 0.50 
 

Table SD6. Molecular subtype by anatomical sampling site 
 

ADNEXAL PRESUMED 
ADNEXAL 

OMENTUM LOWER 
GENITAL 
TRACK 

UPPER 
GENITAL 
TRACK 

PERITONEAL 

C1.MES 429 (24.7%) 394 (23.9%) 256 (72.1%) 0 (0.0%) 8 (50.0%) 32 (45.7%) 

C2.IMM 447 (25.7%) 389 (23.6%) 69 (19.4%) 1 (100.0%) 2 (12.5%) 16 (22.9%) 

C4.DIF 550 (31.6%) 574 (34.9%) 23 (6.5%) 0 (0.0%) 2 (12.5%) 12 (17.1%) 

C5.PRO 314 (18.0%) 290 (17.6%) 7 (2.0%) 0 (0.0%) 4 (25.0%) 10 (14.3%) 

Total 1740 (45.4%) 1647 (43.0%) 355 (9.3%) 1 (0.0%) 16 (0.4%) 70 (1.8%) 

 

Table SD7. Comparison of subtype distribution by anatomical site 

Comparison Statistic P Value df Method 

Adnexal vs Omentum 325.6 <0.0001 3 Pearson’s Chi-squared test 

Adnexal vs Presumed Adnexal 4.428 0.2188 3 Pearson’s Chi-squared test 

Adnexal vs Other 21.79 <0.0001 3 Pearson’s Chi-squared test 

 

D.3 BIOLOGICAL CHARACTERIZATION OF THE SUBTYPES 
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D.3.1 CORRELATION WITH CLINICAL AND PATHOLOGICAL PARAMETERS 
The distribution of subtypes within pathogenic BRCA mutation status was relatively consistent (Table 
SD8). C1.MES and C4.DIF were the majority classes whether a wildtype or mutation was observed. 

In known and presumed adnexal sites, the distribution of year of diagnosis was similar across all 
subtypes (Fig SD3). 

We looked for univariable associations between subtype and clinicopathological parameters in known 
and presumed adnexal sites (Table SD9) and known adnexal sites only (Table SD10). Age at 
diagnosis, stage, residual disease, cellularity, necrosis, and CD8 were significant for both data sources 
(P value <0.001). Race was only significant when considering both known and presumed adnexal sites 
(P value=0.03). 

 

Table SD8. Molecular subtype by pathogenic BRCA mutation. 

Levels all wildtypes 
pathogenic BRCA1 

mutation 
pathogenic BRCA2 

mutation 
pathogenic BRCA1/BRCA2/NOS 

mutation 

C1.MES 202 (30.1%) 45 (34.1%) 22 (30.6%) 68 (33.0%) 

C2.IMM 151 (22.5%) 28 (21.2%) 13 (18.1%) 41 (19.9%) 

C4.DIF 205 (30.6%) 50 (37.9%) 25 (34.7%) 76 (36.9%) 

C5.PRO 113 (16.8%) 9 (6.8%) 12 (16.7%) 21 (10.2%) 
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Figure SD3. Boxplot of year of diagnosis by subtype 

 
 
Table SD9. Cohort characteristics for known and presumed adnexal sites by subtype 

 C1.MES C2.IMM C4.DIF C5.PRO Total PValue 
N (%) 823 (24.3%) 836 (24.7%) 1124 (33.2%) 604 (17.8%) 3387 (100.0%)  

Age at Diagnosis 
Mean (sd) 61 (10.4) 60.4 (10.6) 57.8 (10.2) 62.7 (10.3) 60.1 (10.5) < 0.0001 
Median (IQR) 62 (54 - 68) 60 (53 - 68) 58 (50 - 65) 63 (56 - 70) 60 (53 - 67)  

Missing 13 15 22 15 65  

Stage 
Low 52 (6.5%) 164 (20.7%) 281 (26.4%) 95 (16.4%) 592 (18.3%) < 0.0001 
High 746 (93.5%) 627 (79.3%) 783 (73.6%) 484 (83.6%) 2640 (81.7%)  

Missing 25 45 60 25 155  

Residual Disease 
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None 100 (27.5%) 143 (39.7%) 210 (43.4%) 116 (41.4%) 569 (38.2%) < 0.0001 
Any 264 (72.5%) 217 (60.3%) 274 (56.6%) 164 (58.6%) 919 (61.8%)  

Missing 459 476 640 324 1899  

Cellularity 
0-20 15 (1.9%) 10 (1.3%) 1 (0.1%) 6 (1.1%) 32 (1.0%) < 0.0001 

21-40 85 (10.7%) 33 (4.1%) 17 (1.6%) 17 (3.0%) 152 (4.8%)  

41-60 187 (23.6%) 129 (16.2%) 63 (6.1%) 49 (8.6%) 428 (13.4%)  

61-80 312 (39.3%) 329 (41.3%) 410 (39.7%) 202 (35.6%) 1253 (39.2%)  

81-100 195 (24.6%) 296 (37.1%) 543 (52.5%) 294 (51.8%) 1328 (41.6%)  

Missing 29 39 90 36 194  

Necrosis 
None 216 (31.7%) 178 (26.1%) 261 (30.5%) 134 (28.8%) 789 (29.4%) 0.0010 

<=20% 432 (63.4%) 431 (63.2%) 542 (63.3%) 294 (63.1%) 1699 (63.3%)  

>20% 33 (4.8%) 73 (10.7%) 53 (6.2%) 38 (8.2%) 197 (7.3%)  

Missing 142 154 268 138 702  

BRCA1/BRCA2 
Wildtype 153 (79.7%) 134 (79.3%) 201 (74.2%) 111 (84.1%) 599 (78.4%) 0.1518 
BRCA1  26 (13.5%) 24 (14.2%) 47 (17.3%) 9 (6.8%) 106 (13.9%)  

BRCA2  13 (6.8%) 11 (6.5%) 23 (8.5%) 12 (9.1%) 59 (7.7%)  

Missing 631 667 853 472 2623  

Race 
White 515 (85.8%) 493 (81.4%) 669 (81.3%) 354 (86.1%) 2031 (83.2%) 0.0523 
Hispanic 82 (13.7%) 106 (17.5%) 150 (18.2%) 56 (13.6%) 394 (16.1%)  
Other 3 (0.5%) 7 (1.2%) 4 (0.5%) 1 (0.2%) 15 (0.6%)  
Missing 223 230 301 193 947  
CD8 
None 86 (21.2%) 19 (4.8%) 69 (11.6%) 132 (45.2%) 306 (18.1%) <0.0001 
Low 52 (12.8%) 19 (4.8%) 99 (16.6%) 65 (22.3%) 235 (13.9%)  
Med 210 (51.9%) 187 (47.1%) 297 (49.7%) 88 (30.1%) 782 (46.2%)  
High 57 (14.1%) 172 (43.3%) 132 (22.1%) 7 (2.4%) 368 (21.8%)  
Missing 418 439 527 312 1696  
Anatomical Site 
Adnexal 429 (52.1%) 447 (53.5%) 550 (48.9%) 314 (52.0%) 1740 (51.4%) 0.2188 
Presumed 
adnexal 

394 (47.9%) 389 (46.5%) 574 (51.1%) 290 (48.0%) 1647 (48.6%)  
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Table SD10. Cohort characteristics for known adnexal sites by subtype 

 C1.MES C2.IMM C4.DIF C5.PRO Total PValue 
N (%) 429 (24.7%) 447 (25.7%) 550 (31.6%) 314 (18.0%) 1740 (100.0%)  

Age at Diagnosis 
Mean (sd) 59.9 (9.4) 60.1 (10.6) 58.3 (10) 62.3 (9.9) 59.9 (10.1) < 0.0001 
Median (IQR) 61 (54 - 66) 60 (52 - 68) 58 (51 - 65) 63 (56 - 69) 60 (53 - 67)  
Missing 12 12 22 14 60  
Stage 
Low 28 (6.8%) 89 (21.0%) 141 (27.3%) 54 (18.2%) 312 (18.9%) < 0.0001 
High 383 (93.2%) 335 (79.0%) 376 (72.7%) 242 (81.8%) 1336 (81.1%)  
Missing 18 23 33 18 92  
Residual Disease 
None 26 (21.7%) 70 (40.7%) 100 (44.4%) 51 (40.8%) 247 (38.5%) 0.0004 
Any 94 (78.3%) 102 (59.3%) 125 (55.6%) 74 (59.2%) 395 (61.5%)  
Missing 309 275 325 189 1098  
Cellularity 
0-20 7 (1.6%) 4 (0.9%) 0 (0.0%) 1 (0.3%) 12 (0.7%) <0.0001 
21-40 64 (15.0%) 18 (4.0%) 8 (1.5%) 11 (3.5%) 101 (5.8%)  
41-60 106 (24.8%) 82 (18.3%) 39 (7.1%) 33 (10.5%) 260 (15.0%)  
61-80 165 (38.6%) 179 (40.0%) 242 (44.1%) 109 (34.8%) 695 (40.0%)  
81-100 86 (20.1%) 164 (36.7%) 260 (47.4%) 159 (50.8%) 669 (38.5%)  
Missing 1 0 1 1 3  
Necrosis 
None 154 (39.6%) 115 (28.2%) 185 (36.1%) 97 (34.6%) 551 (34.7%) 0.0030 
<=20% 215 (55.3%) 248 (60.8%) 295 (57.5%) 164 (58.6%) 922 (58.0%)  
>20% 20 (5.1%) 45 (11.0%) 33 (6.4%) 19 (6.8%) 117 (7.4%)  
Missing 40 39 37 34 150  
BRCA1/BRCA2 
Wildtype 68 (74.7%) 70 (78.7%) 77 (74.8%) 47 (87.0%) 262 (77.7%) 0.6937 
BRCA1  16 (17.6%) 14 (15.7%) 18 (17.5%) 5 (9.3%) 53 (15.7%)  
BRCA2 7 (7.7%) 5 (5.6%) 8 (7.8%) 2 (3.7%) 22 (6.5%)  
Missing 338 358 447 260 1403  
Race 
White 260 (83.9%) 241 (81.1%) 304 (84.2%) 155 (83.8%) 960 (83.3%) 0.5907 
Hispanic 48 (15.5%) 54 (18.2%) 57 (15.8%) 30 (16.2%) 189 (16.4%)  
Other 2 (0.6%) 2 (0.7%) 0 (0.0%) 0 (0.0%) 4 (0.3%)  
Missing 119 150 189 129 587  
CD8 
None 60 (20.1%) 12 (4.3%) 38 (10.5%) 89 (47.6%) 199 (17.7%) < 0.0001 
Low 35 (11.7%) 6 (2.2%) 55 (15.2%) 43 (23.0%) 139 (12.4%)  
Med 160 (53.5%) 134 (48.6%) 187 (51.5%) 54 (28.9%) 535 (47.6%)  
High 44 (14.7%) 124 (44.9%) 83 (22.9%) 1 (0.5%) 252 (22.4%)  
Missing 130 171 187 127 615  
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We observe more events and longer follow-up for overall survival than progression-free survival (Table 
SD11). 

 

Table SD11. Median Follow-up Time in Years and Events by Final Subtype 

 

 
Class 

Observation 
Time 

Censoring 
Time 

Reverse 
KM Events 

O
S 

All Cases 2.9 2.5 8.1 2533 

C1.MES 2.3 2.1 7.7 830 

C2.IMM 3.4 2.7 8.1 572 

C4.DIF 3.5 2.8 8.5 696 

C5.PRO 2.8 2.4 7.9 435 

PF
S 

All Cases 1.2 1.1 6.5 1710 

C1.MES 1.0 1.0 5.5 613 

C2.IMM 1.3 1.1 7.3 397 

C4.DIF 1.4 1.2 6.7 437 

C5.PRO 1.2 1.1 5.1 263 

 

D.3.2 CD8 TUMOR INFILTRATING LYMPHOCYTE ANALYSIS  
Previous studies have correlated molecular subtype with tumour infiltrating lymphocytes (TIL), in 
particular C2.IMM being the most enriched for TIL and C5.PRO being TIL-deficient(14,15). To 
corroborate the relationships between molecular subtype and immune response we examined CD8+ 
TIL in a subset of 1839 HGSOC tumors with existing data(11). In that previous study, CD8+ TIL data 
were summarized as four tiers of scores according to TMA staining results (0=none, 1=weak, 
2=moderate, and 3=high), and higher CD8 TIL score were significantly associated with better outcome. 
This finding provided the largest validation, as well as histotype-specific analysis, of previous 
observations related to improved outcome and increased immune cell infiltration(11). 

In a sensitivity analysis (Table SD12), we compared CD8-TIL score distributions with consensus 
(n=1443), and predicted subtyping results (n=1839). We found statistically significant associations of 
CD8 TIL data with consensus subtyping (p<0.001) and final subtyping data (p<0.001), according to chi-
square test. Specifically, more than 45% of HGSOC tumors with high CD8+ TIL levels were C2.IMM 
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subtype, validating previous findings, yet less than 6% of CD8 negative tumors were C2.IMM. In 
contrast, more than 40% of negative CD8 tumors were classified as C5.PRO subtype; less than 2% of 
the CD8 high tumors were classified as C5.PRO (Table SD12). Similar to previous reports the C4.DIF 
group had the second highest levels of immune infiltrate with the group representing ~35% of high 
CD8-TIL tumours, while this substantially lower (~10% less) than the proportion of C2.IMM tumours it 
was more than double the next highest subtype (C1.MES at ~16%). Suggesting this group is also likely 
influenced by immune infiltration. 

Table SD12. Distribution of HGSOC Molecular Subtype by CD8+ TIL Level, according to consensus subtyping 
(n=1443) and predicted subtyping data (n=1839) 

CD8 \ CONSENSUS 
SUBTYPE 
 

C1.MES C2.IMM C4.DIF C5.PRO P-VALUE 
(CHI 
SQUARE) 

0 = Negative 87 (29.90%) 16 (5.50%) 56 (19.24%) 132 
(45.36%) 

p<0.001 

1 = Low 72 (32.29%) 9 (4.04%) 81 (36.32%) 61 (27.35%) 

2 = Moderate 198 
(31.13%) 

134 
(21.07%) 

229 
(36.01%) 

75 (11.79%) 

3 = High 48 (16.38%) 134 
(45.73%) 

106 
(36.18%) 

5 (1.71%) 

 

CD8 SCORE 
PREDICTED SUBTYPE 

C1.MES C2.IMM C4.DIF C5.PRO P-VALUE 
(CHI 
SQUARE) 

0 = Negative 94 (29.28%) 21 (6.54%) 69 (21.50%) 137 (42.68%) p<0.001 

1 = Low 79 (29.48%) 21 (7.84%) 103 (38.43%) 65 (24.25%) 

2 = Moderate 245 (29.20%) 200 (23.84%) 304 (36.23%) 90 (10.73%) 

3 = High 94 (29.28%) 21 (6.54%) 69 (21.50%) 137 (42.68%) 

Similar to above, we conducted multivariate cox-regression accounting for age, molecular subtypes, 
stage and CD8 together, and found that the extent of CD8+ TIL levels remained an independent 
predictor of overall survival (Table SD13 and SD14) and elevated TIL was associated with improved 
survival in all subtypes. In addition, our model further suggested that subtype, independent of CD8+ TIL 
infiltration, was also prognostic. For example, molecular subtype was independent associated with OS 
and PFS in multivariable analysis and suggested C2.IMM, C4.DIF, and C5.PRO all had superior 
outcome to C1.MES even without CD8+ TIL infiltration (Table SD13 and SD14; second column in each, 
ref “no CD8 TIL”). This may suggest underlying molecular subtype features and CD8+ TIL mediated 
immunity play joint roles in determine patients’ prognosis and improved outcomes in C2.IMM and 
C4.DIF cannot be fully attributed to CD8+ TIL infiltration. 
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D.3.3 SURVIVAL ANALYSIS 
We also wanted to see how the subtypes from the two locked-down models correlated with survival. 
When comparing the final model subtype predictions between all adnexal sites and known adnexal 
sites only, the Kaplan-Meier survival curves appear slightly more compact in the latter, for both overall 
survival (OS) and progression-free survival (PFS) (Fig SD4-SD5). We censored survival time at 10 
years so patients with negligible differences at long follow-up times are not considered. 

Multivariable survival analysis was conducted for OS and PFS for all adnexal sites and known adnexal 
sites only (Table SD13-SD16), and for complete cases (Table SD17-SD20). Hazard ratios are shown 
with significance at 5% level indicated by an asterisk. Because of prominent missingness in some 
covariates, we compared different models using a “forward-selection” style approach. Final predicted 
subtypes, age at diagnosis, and stage were included in all models. We then added CD8, residual 
disease, and BRCA mutation to the model one by one, in order of increasing number of missing 
observations. Subtype is significant in all models that have only age and stage. In OS, subtype is no 
longer significant when residual disease enters the model. In PFS, the same is true when CD8 enters 
the model. The proportional hazards assumption is met for the full model with all covariates, tested 
using scaled Schoenfeld residuals. 
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Figure SD4. Kaplan-Meier survival curves of predicted subtypes using final model on all adnexal and 
presumed adnexal sites 
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Figure SD5. Kaplan-Meier survival curves of predicted subtypes using final model on known adnexal sites 
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Table SD13.  Multivariable survival analysis of overall survival, for known and presumed adnexal site 

 

 

 

 

 

 

 

  

# of events / n 2137 / 3203 1154 / 1650 424 / 643 143 / 213 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 1.04 (0.92-1.17)* 0.93 (0.79-1.09)* 1.1 (0.83-1.44) 0.88 (0.52-1.48) 

C5.PRO 1.21 (1.06-1.38) 0.91 (0.75-1.12) 1.23 (0.88-1.71) 0.88 (0.46-1.69) 

C1.MES 1.41 (1.25-1.59) 1.25 (1.05-1.49) 1.33 (0.98-1.79) 0.99 (0.6-1.64) 

Age 1.02 (1-1.03)* 1.03 (1.01-1.05)* 0.97 (0.94-1) 0.95 (0.89-1.01) 

Stage (ref low)     

high  3.12 (2.7-3.61)* 3.5 (2.85-4.3)* 2.22 (1.55-3.18)* 2.03 (0.98-4.2)* 

CD8 (ref none)     

low  1 (0.82-1.22)* 1.05 (0.75-1.47) 1.03 (0.56-1.91)* 

med  0.82 (0.7-0.97) 0.87 (0.65-1.16) 0.65 (0.38-1.11) 

high  0.65 (0.53-0.8) 0.77 (0.53-1.1) 0.37 (0.18-0.75) 

Residual Disease (ref none)     

any    1.72 (1.37-2.17)* 2.07 (1.37-3.13)* 

BRCA1/2 (ref wt)      

BRCA1    0.95 (0.56-1.62)* 

BRCA2    0.22 (0.09-0.52) 
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Table SD14.  Multivariable survival analysis of Progression-Free Survival, Known and Presumed Adnexal Sites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

# of events / n 1138 / 1471 525 / 656 448 / 570 152 / 184 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 1.05 (0.9-1.24)* 1.01 (0.79-1.3) 1.16 (0.88-1.52) 1.04 (0.6-1.82) 

C5.PRO 1.09 (0.91-1.31) 0.96 (0.71-1.29) 1.27 (0.92-1.77) 0.77 (0.4-1.5) 

C1.MES 1.3 (1.1-1.54) 1.2 (0.92-1.58) 1.16 (0.86-1.56) 0.74 (0.44-1.25) 

Age 1.18 (1.14-1.22)* 1.15 (1.1-1.21)* 1.12 (1.07-1.18)* 1.06 (0.97-1.16) 

Stage (ref low)     

high  3.22 (2.57-4.02)* 3.32 (2.39-4.62)* 2.67 (1.86-3.84)* 3.86 (1.85-8.06)* 

CD8 (ref none)     

low  1.17 (0.87-1.59) 1.26 (0.9-1.77) 1.24 (0.65-2.34) 

med  0.98 (0.76-1.27) 1.06 (0.79-1.42) 0.86 (0.49-1.51) 

high  0.76 (0.55-1.05) 0.98 (0.68-1.4) 0.84 (0.42-1.69) 

Residual Disease (ref none)     

any    1.72 (1.39-2.13)* 1.83 (1.24-2.7)* 

BRCA1/2 (ref wt)      

BRCA1    0.71 (0.41-1.21) 

BRCA2    0.66 (0.34-1.26) 
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Table SD15.  Multivariable survival analysis of Overall Survival, Known Adnexal Sites 

 

# of events / n 1146 / 1628 813 / 1110 238 / 333 79 / 107 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 0.98 (0.84-1.15)* 0.9 (0.74-1.09)* 0.92 (0.63-1.32) 0.67 (0.32-1.4) 

C5.PRO 1.16 (0.97-1.38) 0.91 (0.71-1.17) 1.09 (0.69-1.73) 0.57 (0.22-1.47) 

C1.MES 1.38 (1.18-1.62) 1.2 (0.98-1.46) 1.09 (0.71-1.69) 0.69 (0.33-1.48) 

Age 1.01 (0.99-1.03) 1.02 (0.99-1.05) 0.96 (0.92-1) 0.9 (0.81-1) 

Stage (ref low)     

high  3.86 (3.12-4.77)* 4.11 (3.14-5.38)* 2.52 (1.55-4.1)* 2.18 (0.84-5.65) 

CD8 (ref none)     

low  1.07 (0.83-1.37)* 1.11 (0.69-1.77) 0.88 (0.32-2.46) 

med  0.78 (0.63-0.95) 0.72 (0.48-1.08) 0.71 (0.32-1.6) 

high  0.71 (0.56-0.92) 0.72 (0.43-1.22) 0.26 (0.08-0.8) 

Residual Disease (ref none)     

any    1.83 (1.33-2.54)* 3.84 (2.06-7.15)* 

BRCA1/2 (ref wt)      

BRCA1    0.81 (0.39-1.68)* 

BRCA2    0.13 (0.04-0.43) 
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Table SD16.  Multivariable survival analysis of progression-free survival, known adnexal sites 

# of events / n 570 / 718 301 / 369 253 / 317 84 / 99 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 1.12 (0.9-1.4)* 0.97 (0.7-1.34) 1.02 (0.7-1.47) 0.76 (0.34-1.71) 

C5.PRO 1.17 (0.91-1.51) 0.87 (0.57-1.33) 1.04 (0.65-1.67) 0.35 (0.13-1) 

C1.MES 1.52 (1.19-1.94) 1.27 (0.87-1.87) 1.14 (0.74-1.77) 0.68 (0.3-1.55) 

Age 1.17 (1.12-1.22)* 1.14 (1.08-1.21)* 1.12 (1.06-1.18)* 1.07 (0.94-1.22) 

Stage (ref low)     

high  3.15 (2.36-4.19)* 2.85 (1.91-4.25)* 2.22 (1.42-3.46)* 2.85 (1.1-7.4)* 

CD8 (ref none)     

low  1.08 (0.71-1.64)* 0.95 (0.59-1.54) 1.47 (0.52-4.13) 

med  0.76 (0.53-1.08) 0.71 (0.47-1.06) 0.66 (0.3-1.47) 

high  0.52 (0.33-0.82) 0.58 (0.34-0.98) 0.31 (0.1-0.99) 

Residual Disease (ref none)     

any    1.99 (1.46-2.7)* 2.67 (1.46-4.89)* 

BRCA1/2 (ref wt)      

BRCA1    0.53 (0.25-1.12)* 

BRCA2    0.39 (0.16-0.96) 
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Table SD17.  Multivariable survival analysis of overall survival, complete cases with known or presumed adnexal sites 

  
# of events / n 143 / 213 143 / 213 143 / 213 143 / 213 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 0.9 (0.55-1.48) 0.76 (0.46-1.27) 0.82 (0.49-1.38) 0.88 (0.52-1.48) 

C5.PRO 1.03 (0.59-1.8) 0.76 (0.41-1.43) 0.95 (0.5-1.82) 0.88 (0.46-1.69) 

C1.MES 1.16 (0.73-1.85) 0.96 (0.59-1.58) 0.86 (0.52-1.42) 0.99 (0.6-1.64) 

Age 0.99 (0.93-1.05) 0.98 (0.92-1.05) 0.97 (0.91-1.04) 0.95 (0.89-1.01) 

Stage (ref low)     

high  2.89 (1.45-5.75)* 2.65 (1.32-5.31)* 1.99 (0.97-4.07)* 2.03 (0.98-4.2)* 

CD8 (ref none)     

low  1.08 (0.59-1.98) 1.18 (0.64-2.17) 1.03 (0.56-1.91)* 

med  0.77 (0.46-1.3) 0.8 (0.47-1.34) 0.65 (0.38-1.11) 

high  0.5 (0.25-0.99) 0.49 (0.24-0.98) 0.37 (0.18-0.75) 

Residual Disease (ref none)     

any    1.93 (1.29-2.88)* 2.07 (1.37-3.13)* 

BRCA1/2 (ref wt)      

BRCA1    0.95 (0.56-1.62)* 

BRCA2    0.22 (0.09-0.52) 
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 Table SD18.  Multivariable survival analysis of progression-free survival, complete cases with known or presumed adnexal sites 

  # of events / n 152 / 184 152 / 184 152 / 184 152 / 184 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 0.95 (0.57-1.59) 0.9 (0.52-1.55) 0.99 (0.57-1.72) 1.04 (0.6-1.82) 

C5.PRO 0.7 (0.39-1.24) 0.63 (0.33-1.2) 0.79 (0.41-1.54) 0.77 (0.4-1.5) 

C1.MES 0.82 (0.51-1.33) 0.79 (0.47-1.32) 0.71 (0.42-1.21) 0.74 (0.44-1.25) 

Age 1.1 (1.01-1.2)* 1.1 (1-1.19)* 1.07 (0.98-1.17) 1.06 (0.97-1.16) 

Stage (ref low)     

high  4.87 (2.42-9.8)* 4.61 (2.26-9.43)* 3.64 (1.75-7.6)* 3.86 (1.85-8.06)* 

CD8 (ref none)     

low  1.17 (0.62-2.22) 1.21 (0.64-2.28) 1.24 (0.65-2.34) 

med  0.87 (0.5-1.52) 0.87 (0.5-1.51) 0.86 (0.49-1.51) 

high  0.84 (0.42-1.68) 0.85 (0.42-1.7) 0.84 (0.42-1.69) 

Residual Disease (ref none)     

any    1.86 (1.26-2.74)* 1.83 (1.24-2.7)* 

BRCA1/2 (ref wt)      

BRCA1    0.71 (0.41-1.21) 

BRCA2    0.66 (0.34-1.26) 
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Table SD19.  Multivariable survival analysis of Overall Survival, Known Adnexal Sites, Complete Cases 

 

 

# of events / n 79 / 107 79 / 107 79 / 107 79 / 107 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 0.82 (0.43-1.58) 0.65 (0.32-1.33) 0.65 (0.31-1.35) 0.67 (0.32-1.4) 

C5.PRO 0.79 (0.36-1.71) 0.59 (0.24-1.43) 0.75 (0.3-1.85) 0.57 (0.22-1.47) 

C1.MES 0.94 (0.48-1.83) 0.74 (0.35-1.57) 0.51 (0.23-1.1) 0.69 (0.33-1.48) 

Age 1.01 (0.92-1.1) 1 (0.91-1.09) 0.96 (0.88-1.06) 0.9 (0.81-1) 

Stage (ref low)     

high  3.08 (1.3-7.31)* 2.67 (1.09-6.55)* 1.61 (0.64-4.06) 2.18 (0.84-5.65) 

CD8 (ref none)     

low  1.13 (0.43-2.96) 1.17 (0.45-3.05) 0.88 (0.32-2.46) 

med  0.88 (0.42-1.85) 1.01 (0.48-2.14) 0.71 (0.32-1.6) 

high  0.49 (0.16-1.48) 0.43 (0.14-1.33) 0.26 (0.08-0.8) 

Residual Disease (ref none)     

any    3.21 (1.78-5.81)* 3.84 (2.06-7.15)* 

BRCA1/2 (ref wt)      

BRCA1    0.81 (0.39-1.68)* 

BRCA2    0.13 (0.04-0.43) 
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Table SD20.  Multivariable survival analysis of Progression-Free Survival, Known Adnexal Sites, Complete Cases 

  # of events / n 84 / 99 84 / 99 84 / 99 84 / 99 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Final Subtype (ref C2.IMM)     

C4.DIF 0.86 (0.42-1.75) 0.64 (0.29-1.4) 0.69 (0.31-1.53) 0.76 (0.34-1.71) 

C5.PRO 0.54 (0.23-1.27) 0.34 (0.12-0.9) 0.4 (0.14-1.1) 0.35 (0.13-1) 

C1.MES 0.95 (0.46-1.96) 0.71 (0.32-1.58) 0.54 (0.24-1.23) 0.68 (0.3-1.55) 

Age 1.17 (1.04-1.32)* 1.16 (1.03-1.31)* 1.11 (0.98-1.26) 1.07 (0.94-1.22) 

Stage (ref low)     

high  4.26 (1.75-10.38)* 3.61 (1.43-9.11)* 2.44 (0.94-6.34) 2.85 (1.1-7.4)* 

CD8 (ref none)     

low  1.33 (0.48-3.68) 1.42 (0.52-3.92) 1.47 (0.52-4.13) 

med  0.7 (0.32-1.53) 0.76 (0.35-1.65) 0.66 (0.3-1.47) 

high  0.4 (0.13-1.25) 0.36 (0.11-1.15) 0.31 (0.1-0.99) 

Residual Disease (ref none)     

any    2.63 (1.46-4.75)* 2.67 (1.46-4.89)* 

BRCA1/2 (ref wt)      

BRCA1    0.53 (0.25-1.12)* 

BRCA2    0.39 (0.16-0.96) 
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E: RECOMMENDED STANDARD OPERATING PROCEDURES FOR THE 

PREDICTOR OF HIGH-GRADE SEROUS OVARIAN CARCINOMA MOLECULAR 

SUBTYPE (PROTYPE) 

STARTING MATERIAL  
is typically archival formalin-fixed (10% neutral buffered formalin) paraffin embedded (FFPE) 
tumour tissues 3 x 10 um sections, or approximate equivalent, that can be (a) scrolled directly 
into a tube, (b) scrapped from the surface of a glass slide, or (c) macrodissected from the 
surface of a glass slide. It is assumed the face size, or macrodissected face, for each section is 
≥1cm2 and minimal tumour content in the sampled area is > 20% (with invasive stroma but 
without adjacent normal organ tissue). 

Protocol modification for FFPE tissue cores: If FFPE tissue cores are to be used, 
pulverising the cores can increase deparaffinization and proteinase K digest efficiency 
resulting in higher nucleic acid yields. This modification should be undertaken prior to 
deparaffinization. 

Typically 1-5 cores (up to 1mm diameter) are frozen on dry ice in a microfuge tube. 
Cores are then crushed manually using a microfuge pestle (e.g. VWR Catalogue 
#47750-354 – or similar). Multiple rounds of re-freezing and crushing may be needed to 
fully pulverize the tissue depending on the size and nature of the FFPE tissue cores.  

RNA EXTRACTION: 
Protocol below is modified from the Qiagen miRNeasy FFPE kit (Catalogue # 217504). Other 
extraction methods/kits may provide suitable results, however, they have not been tested. 

DEPARAFFINIZATION OF ARCHIVAL SPECIMENS:  
Xylene based deparaffinization is the standardized method described below, however the 
remainder of the extraction protocol is compatible with other methods and our studies have 
used either xylene or melting (see appendix from Qiagen miRNeasy FFPE kit). If large numbers 
of sections are used, trimming of excess paraffin and/or adding additional solvent washes 
during deparaffinization may be required. 

Briefly: 
1. Add 1 ml Xylene to each microfuge tube, containing specimen to be extracted. Vortex 

vigorously for 10-15s, and centrifuge at full speed (~13500 rpm) for 2 min.  
2. Carefully remove the supernatant by pipetting without disturbing the pellet.  
3. Add 1 ml ethanol (96–100%) to the pellet, mix by vortexing, and centrifuge at full speed 

for 2 min. 
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4. Carefully remove the supernatant by pipetting without disturbing the pellet. Carefully 
remove any residual ethanol using a fine pipet tip. 

5. Keep the lid open & speedvac samples for 5-10 min at ambient temperature or until all 
residual ethanol has evaporated.  

6. Continue directly to the modified Qiagen Protocol below. 

MODIFIED MIRNEASY FFPE PROTOCOL 
All reagent buffer references below are to components of the Qiagen miRNeasy FFPE kit 
(catalogue #217504). Before starting shelf life of reagents, storage conditions and preparation 
of stock reagents noted in the Qiagen miRNeasy FFPE kit must be adhered to for this modified 
protocol. 

A. Prepare DNase I stock solution by dissolving the lyophilized DNase I (1500 Kunitz units) in 550 μl 
RNase-free water (provided). To avoid loss of DNase I, do not open the vial. Inject RNase-free water 
into the vial using an RNase-free needle and syringe. Mix gently by inverting the vial. Do not vortex.  

B. Prepare Buffer RPE by adding 4 volumes (44 ml) ethanol (96–100%) to the bottle containing 11 ml 
Buffer RPE concentrate. Before starting the procedure, mix reconstituted Buffer RPE by shaking.  

C. Turn on and set two dry-heat blocks: one at 56°C and one at 80°C 

1. LABEL ALL TUBES (including: 1 set of 2ml tubes, 1 set of 1.5ml tubes, all extraction 
columns, and final elution 1.5 ml microfuge tubes.) 

2. Resuspend deparaffinized tissue pellet in 150ul of buffer PKD, close the tube tightly and mix 
by vigorously inverting the tube 3-5 times (or by vortexing). Briefly spin down tube to collect. 

3. Add 10 μl proteinase K to the sample and mix gently by pipetting up and down.  

4. Incubate at 56°C for 45 min, then at 80°C for 15 min.  

5. Incubate on ice for 3 min. Then centrifuge for 15 min at 20,000 x g (13,500 rpm). 

6. Transfer supernatant to a new 2ml microcentrifuge tube taking care not to disturb the pellet. 

7. To the supernatant that has been transferred to the new 2ml microcentrifuge tube, add 16ul 
DNase Booster Buffer and 10 μl DNase I stock solution. Mix by inverting the tube. 
Centrifuge briefly to collect residual liquid from the sides of the tube. 

8. Incubate at room temperature for 10 min. 

9. Add 320 μl Buffer RBC and mix the lysate thoroughly by pipetting. 

10. Add 1120 μl ethanol (100%) to the sample, and mix well by pipetting. Do not centrifuge. 
Proceed immediately to the next step. Precipitates may be visible, this does not affect the 
procedure. 

11. Transfer 700 μl of the sample to an RNeasy MinElute spin column placed in a 2 ml collection 
tube (supplied w/ Qiagen Kit). Close the lid gently, and centrifuge for 15 seconds at ≥8000 x 
g (≥10,000 rpm). Discard the flow-through and use a new collection tube in the next step. 
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12. Repeat step 11 until the entire lysate/ethanol sample mix has passed through the RNeasy 
MinElute spin column. Use a new collection tube in the next step. 

13. Add 500 μl Buffer RPE to the RNeasy MinElute spin column. Close the lid gently, and 
centrifuge for 15 s at ≥8000 x g (≥10,000 rpm). Discard the flow-through and use a new 
collection tube in the next step. 

14. Add 500 μl Buffer RPE to the RNeasy MinElute spin column (in a new collection tube). 
Close the lid gently, and centrifuge for 2 min at ≥8000 x g (≥10,000 rpm) to wash the spin 
column membrane. Discard the collection tube with the flow-through. 

15. Place the RNeasy MinElute spin column in a new 2 ml collection tube. Open the lid of the 
spin column, and centrifuge at full speed for 5 min (note: when centrifuging with open 
collection tube it is recommended to leave an empty space between tubes and orient the lid 
to trail behind the column during the spin). Discard the collection tube with the flow-through. 

16. Place the RNeasy MinElute spin column in a new 1.5 ml collection tube. Add 30 μl RNase-
free water directly to the spin column membrane. Close the lid gently, allow incubation at 
room temperature ~1-2 min then centrifuge for 1 min at full speed to elute the RNA.  

17. Evaluate the concentration of the specimen by NanoDrop spectrophotometer. Specimens 
with absorbance A260:A280 ratio < 1.5 are not recommended for downstream application. 

18. Store RNA at -80°C until ready for use. 

NANOSTRING HYBRIDIZATION, PROCESSING AND SCANNING 
Protocol below is modified from the NanoString gene expression “XT” chemistry protocol. 
Details are provided for Gen1 and Gen2/Flex NanoString prep stations and digital analysers. 
Refer to Supplemental Table SC7 for CodeSet targets and design details, any changes in the 
CodeSet designs of individual probes, used for housekeeping or prediction, is not supported 
and may yield non-interpretable results.  

Sample Input – 500 ng total RNA as measured by NanoDrop following the recommended 
archival RNA extraction procedure outlined above. 

Store reagent components according to manufacturer recommendations. Note that reagents will 
come pre-aliquoted for preparation of experiments in multiples of 12, repeated freeze-thawing of 
reagents for processing samples outside of multiples of 12 is not recommended. 

Use only CodeSet reagents and consumables provided with the NanoString gene expression 
XT or Legacy CodeSet and Master Kits in prep station and digital analyser instruments. 

1. Prepare a sample sheet with all specimen and order they will be placed in 12-strip tubes 
(multiple sets of 12 may be processed at the same time). Keep this sheet as a reference 
when setting up your hybridization and sample information (CDF) files.  

2. Label NanoString Master Kit 12-well strip tubes and caps (0.2 ml thin-walled PCR tubes) 
with permanent marker. Optional: cut each 12-well strip tube and strip-caps in two equal 
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halves of 6-tubes/caps (this will permit the use of 8-tube benchtop micro-centrifuges for 
spinning reagents in your strip-tube). 

3. Thaw RNA on ice and dilute samples (if necessary) with nuclease-free sterile water to a 
concentration of 100 ng/ul (500 ng total RNA in 5 ul volume). Use of DEPC treated water is 
not recommended. 

4. Following exact manufacturer instruction for NanoString XT gene expression assays and 
using plasticware/disposables provided in NanoString custom CodeSet and master-kit 
sample processing kits: 

4.1. Mix NanoString custom CodeSet Reporter reagent with Master Kit hybridization buffer 
sufficient for the number of samples being processed at a ratio of 5ul of hybridization 
buffer per 3ul of Reporter CodeSet. 

If mixing directly in the provided custom CodeSet aliquots from NanoString then add 
70ul of hybridization buffer to 42ul of reporter provided in a 12-reaction reporter CodeSet 
tube (excess reagent is provided). Mix by flicking and spin down briefly. 

4.2. In each tube of the NanoString provided 12-well strip tube add 8ul of 
reporter/hybridization buffer from step 4.1. The pipette tip may be re-used for aliquoting 
this master mix in clean tubes. 

4.3. Next, add 5ul of total RNA (500 ng at 100ng/ul prepared in step 3) to each strip tube 
following the order from your sample setup sheet. A new pipette tip must be used for 
each specimen. 

4.4. To each tube then add 2 ul of NanoString custom CodeSet capture reagent mix. A new 
pipette tip must be used for each specimen. 

4.5. Seal all tubes, verify labels, and mix reagents by flicking tubes. Spin down contents 
briefly on a low-speed benchtop micro-centrifuge with a 0.2ml PCR strip-tube adaptor. 

4.6. Program and pre-heat thermal cycler for 65C with a heated lid at 70C (non-
programmable heated lids up to 110C are acceptable). 

4.7. Place strip tubes in a thermal cycler and incubate at 65C for 16 hours or 20 hours. 
Program the thermal cycler to ramp-down to 4C after the incubation period. 

4.8. Specimen may hold at 4C for no longer than 24hrs. It is recommended that samples are 
processed on the NanoString Prep Station immediately after hybridization. 

5. Automated Sample Prep on the nCounter Prep Station 
5.1. Remove wash plates and cartridge from freezers and allow to equilibrate to room 

temperature 20-30 minutes before opening packaging and setting up the prep station. 
5.2. Spin down wash plates per instructions on the NanoString prep station to ensure 

capture beads and reagents are not stuck to foil covers. 
5.3. Enter detail on number of samples to be processed on the NanoString nCounter prep 

station. If high-sensitivity mode is available on your system this should be selected. 
5.4. Follow the instructions on the prep station and place specimens in 12-strip tube, wash 

plate reagents, cartridge and plasticware in the indicated deck positions. 
5.5. Close the prep station cover and start the instrument. 
5.6. When sample prep program is complete, remove and seal the cartridge immediately 

using the Master Kit adhesive covers. Label cartridges on the top surface with caution 
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not to block the light path for cartridge lanes.  Scanning on the digital analyser 
immediately after processing is recommended. 

6. Scanning on the nCounter Digital Analyzer 
6.1. It is recommended that sample information be entered using pre-filled CDF files (see 

notes below on CDF File Setup and Naming Conventions). This information should 
be transferred to the NanoString Digital Analyzer in advance of sample processing. 

6.2. Place the sealed cartridge into 1 of the digital analyser positions, ensure it is aligned per 
manufacturers specification and close the lid. 

6.2.1. If you are using a Gen1 digital analyser cartridges must have oil applied before 
placing in the digital analyser. Follow NanoString guidelines for application of oil 
droplets to the under-surface of the cartridge. 

6.3. Follow the onscreen menus to select you pre-filled CDF sample processing file. 
6.3.1. Ensure the correct CodeSet file (RLF) and MAX FOV has been selected in your 

sample file (CDF) or manual setup: Gen1 this is 1155 FOV, Gen2/Flex is 555 FOV. 
6.4. Start the NanoString Digital Analyzer. 
6.5. Cartridges may be added mid-run following manufacturers guidelines. 
6.6. Remove and store scanned cartridges at 4C following scanning and until you have run 

quality control checks to verify scanning. Sealed cartridges may be stored up to 5 days 
at 4C for batch scanning or re-scanning in case of scan failures. 

7. Specimen Analysis can be performed using the PrOTYPE online tool or code provided in 
this manuscript (see RESOURCES – below). You will need: 
7.1.  Your HGSOC sample data (RCC file or files) on which you wish to predict molecular 

subtypes. 
7.2.  Reference data from POOL1, POOL2, and POOL3 (RCC files), multiple runs of 

references are acceptable. References MUST have been run on the exact same 
CodeSet (synthesis lot) as the HGSOC data file(s). 

To obtain aliquots of POOL1, POOL2, and POOL3 contact the corresponding authors. 
Use of other reference samples and/or re-use of reference sample data from non-
identical CodeSet/synthesis lots may render prediction data non-interpretable. 

CDF FILE SETUP AND NAMING CONVENTIONS: 
The following sample naming conventions have been adopted in our code and web tools. 
Deviation from these recommendations may cause our code to mis-interpret sample or 
reference input information and yield non-interpretable data. 

Samples and cartridge names can contain letters, numbers and the following symbols only: @ ^ 
+ - # % ( ~ &) 

The following fields of the standard NanoString CDF sample information file must be filled out by 
the user and transferred to the Digital Analyser. This information will be embedded in the output 
datafile (RCC) and used for sample identification and quality assurance in processing tools. 

Users must fill out values for: 
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1. CartridgeID We recommend following a nomenclature that identifies the project, site, 
and sequential run number. However, the cartridge ID can be any alphanumeric string 
do not add spaces or underscore characters. A cartridge ID structure identifying the 
project, sequential run number is recommended. 

2. SampleID This should be specimen identifier and may be alphanumeric, with NO 
spaces, or underscores (dashes are ok). 

a. Naming and running of Reference control pool RNA samples: There are 
three control pool RNA samples that are required for normalization. These 
references should be named exactly as provided: POOL1, POOL2, and POOL3 
(not case sensitive). Any experimental CodeSet wanting to run the PrOTYPE tool 
will require at least one of each reference pool to have been run in the SAME 
CodeSet (same probes and same synthesis lot) as the sample(s) being 
analyzed. 

3. Owner This field was used to identify the operator for a given run. 
4. Comment (optional) can contain any string. In our studies, this field was used to identify 

the hyb conditions for the given sample (e.g. “short-hyb” or “long-hyb”). 
5. Date use ONLY format YYYYMMDD 
6. FovCount use maximum fields 1155 for Gen1 scanner, 555 for Gen2/flex scanner 
7. GeneRLF identifies the CodeSet and synthesis, please input the RLF name exactly as 

provided by NanoString. (typically follows a format of  “NAME_IDCODE”)  
 

Data File Name: The CDF file will define how the scanner names the output data file (.RCC) for 
each sample. This will follow the format:  

ScanDate_CartridgeID_SampleID_Lane.RCC 

Resources: 

Code: https://github.com/AlineTalhouk/PrOType 

PrOType Web tool: https://ovcare.shinyapps.io/PrOType/ 

  

https://github.com/AlineTalhouk/PrOType
https://ovcare.shinyapps.io/PrOType/
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