Supplementary Information

Title:

27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer

progression.

Authors:

Liqian Ma¹, Lawrence Wang^{2,3}, Adam T. Nelson, Chaeyeon Han¹, Sisi He¹, Madeline A. Henn¹, Karan Menon¹,

Joy J. Chen¹, Amy E. Baek^{1,§}, Anna Vardanyan¹, Sayyed Hamed Shahoei, Sunghee Park⁴, David J. Shapiro^{2,5,6},

Som G. Nanjappa⁷, and Erik R. Nelson^{1,5,6,8*}

Affiliations:

¹Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL
²Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL
³University of Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL
⁴Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC
⁵Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL
⁶University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL
⁷Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL
⁸Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana, IL

[§] Current Affiliation: Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL

*To whom correspondence and reprint requests should be addressed: Erik R. Nelson. University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801. Phone: 217-244-5477. Fax: 217-333-1133. E-mail: <u>enels@illinois.edu</u>

Running Head: cholesterol metabolite works on myeloid cells to impair T cells.

			24hrs post	treatment			72hrs post	co-culture
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR
ENA-78	Veh	out of range	NA		Veh	3.46	0.85	
ENA-78	27HC	out of range	NA	NA	27HC	out of range	NA	NA
Eotaxin	Veh	out of range	NA		Veh	out of range	NA	
Eotaxin	27HC	out of range	NA	NA	27HC	out of range	NA	NA
G-CSF	Veh	out of range	NA	NIA	Veh	0.79	0.2	0 7000
G-CSF	27HC	0.58	0.1	NA	27HC	0.97	0.05	0.7898
GM-CSF	Veh	out of range	NA	NIA	Veh	out of range	NA	NIA
GM-CSF	27HC	out of range	NA	NA	27HC	out of range	NA	NA
GRO-alpha	Veh	99.19	1.81		Veh	109.46	3.48	0.0400
GRO-alpha	27HC	99.49	7.93	0.9820	27HC	69.8	2.89	0.0169
IFN-a	Veh	12.48	2.04	0 5004	Veh	15.43	1.8	0.0710
IFN-a	27HC	15.64	1.59	0.5984	27HC	14.17	2.49	0.8713
IFN-g	Veh	out of range	NA	NIA	Veh	out of range	NA	NIA
IFN-g	27HC	out of range	NA	INA	27HC	out of range	NA	NA
IL-10	Veh	2.65	0.58	0 4240	Veh	1.76	0.54	0 0053
IL-10	27HC	4.89	1.07	0.4249	27HC	1.63	0.15	0.9000
IL-12p70	Veh	out of range	NA	ΝΔ	Veh	out of range	NA	NΔ
IL-12p70	27HC	out of range	NA	IN/A	27HC	out of range	NA	NА
IL-13	Veh	out of range	NA	ΝΔ	Veh	out of range	NA	NIA
IL-13	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-15	Veh	out of range	NA	N 14	Veh	out of range	NA	
IL-15	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-17A	Veh	0.65	0.05	0 2276	Veh	1.08	0.25	0 4007
IL-17A	27HC	1.84	0.42	0.3270	27HC	1.65	0.09	0.4097
IL-18	Veh	out of range	NA	NA	Veh	out of range	NA	NA
IL-18	27HC	out of range	NA	IN/A	27HC	out of range	NA	
IL-1a	Veh	out of range	NA	NA	Veh	out of range	NA	NA

Supplemental Table 1a. Cytokine secretion of macrophages under two time points after Veh or 27HC treatment only.

			24hrs post	treatment			72hrs post	co-culture
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR
IL-1a	27HC	out of range	NA		27HC	out of range	NA	
IL-1b	Veh	out of range	NA		Veh	out of range	NA	
IL-1b	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-2	Veh	out of range	NA		Veh	out of range	NA	
IL-2	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-22	Veh	out of range	NA		Veh	out of range	NA	
IL-22	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-23	Veh	out of range	NA		Veh	out of range	NA	
IL-23	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-27	Veh	0.49	0.17	NIA	Veh	0.45	0.08	0 5 4 7 4
IL-27	27HC	0.76	0.14	NA	27HC	0.61	0.08	0.5474
IL-28	Veh	out of range	NA	NIA	Veh	out of range	NA	NIA
IL-28	27HC	out of range	NA	INA	27HC	out of range	NA	INA
IL-3	Veh	out of range	NA		Veh	out of range	NA	
IL-3	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-31	Veh	out of range	NA		Veh	6.07	1.06	
IL-31	27HC	out of range	NA	NA	27HC	6.39	0.74	NA
IL-4	Veh	out of range	NA		Veh	out of range	NA	
IL-4	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-5	Veh	out of range	NA		Veh	out of range	NA	
IL-5	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-6	Veh	out of range	NA		Veh	1.29	0.57	
IL-6	27HC	7.76	2.81	NA	27HC	1.03	0.42	NA
IL-9	Veh	out of range	NA		Veh	out of range	NA	
IL-9	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IP-10	Veh	192.42	13.49	• • · - ·	Veh	104.84	15.2	
IP-10	27HC	147.53	26.31	0.5474	27HC	69.28	4.98	0.4011

			24hrs post	treatment			72hrs post	co-culture
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR
LIF	Veh	2.13	0.55	0 7000	Veh	5.37	0.05	
LIF	27HC	2.6	0.16	0.7898	27HC	5.29	0.27	NA
M-CSF	Veh	out of range	NA	NIA	Veh	out of range	NA	N 1 4
M-CSF	27HC	out of range	NA	NA	27HC	out of range	NA	NA
MCP-1	Veh	91.16	10.89		Veh	33.07	3.49	
MCP-1	27HC	196.22	28.23	0.1965	27HC	16.51	3.21	0.1306
MCP-3	Veh	77.84	7.56	0.0004	Veh	152.97	8.23	0.4005
MCP-3	27HC	114.25	12.78	0.2824	27HC	91.99	13.8	0.1335
MIP-1a	Veh	4.39	0.12	0.0450	Veh	3.16	0.05	0.0505
MIP-1a	27HC	6.49	0.09	0.0156	27HC	3.22	0.1	0.8595
MIP-1b	Veh	38.27	1.77	0.0070	Veh	27.17	0.86	0 0202
MIP-1b	27HC	62.35	2.55	0.0279	27HC	27.76	0.24	0.8392
MIP-2	Veh	519.17	23.68	0.2000	Veh	284.96	7.8	NIA
MIP-2	27HC	604.1	29.96	0.3009	27HC	191.19	6.02	NA
RANTES	Veh	23.3	2.25	0.2400	Veh	24.32	1.39	0.0624
RANTES	27HC	15.47	2.25	0.2409	27HC	10.81	0.45	0.0034
TNF-a	Veh	32.95	2.88	0.6104	Veh	15.76	0.23	NA
TNF-a	27HC	39.88	5.14	0.0104	27HC	15.13	0.73	NA

*concentration as pg/ml

ueaunei	11.								
			24hrs post	treatment		72	2hrs post co	o-culture	
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR	
ENA-78	Veh	174.47	12.86	0 8508	Veh	69.14	4.59	0 7000	
ENA-78	27HC	182.74	11.45	0.0590	27HC	84.88	19.94	0.7990	
Eotaxin	Veh	out of range	NA	NIA	Veh	out of range	NA	NA	
Eotaxin	27HC	out of range	NA	INA	27HC	out of range	NA	NА	
G-CSF	Veh	5.34	0.61	0.0052	Veh	3.92	0.43	0 5474	
G-CSF	27HC	5.71	1.08	0.9053	27HC	3.06	0.39	0.5474	
GM-CSF	Veh	7.92	0.28	NIA	Veh	out of range	NA		
GM-CSF	27HC	8.18	0.44	NA	27HC	out of range	NA	NA	
GRO-	Veh	1993.92	119.05		Veh	566.87	31.96		
GRO- alpha	27HC	1614.83	55.72	0.2409	27HC	847.87	86.06	0.2409	
IFN-a	Veh	15.38	4.05	0 5004	Veh	15.98	2.48	0.0405	
IFN-a	27HC	21.24	0.03	0.5984	27HC	16.62	3.16	0.9105	
IFN-g	Veh	4.29	0.45	0 1005	Veh	0.84	0.47	0 6104	
IFN-g	27HC	1.61	0.17	0.1095	27HC	0.22	0.05	0.0104	
IL-10	Veh	1058.73	18.36	NIA	Veh	21.79	1.53	0 5004	
IL-10	27HC	1052.2	13.84	NA	27HC	18.65	2.08	0.5984	
IL-12p70	Veh	6.83	0.25	NIA	Veh	0.7	0.18	0.0740	
IL-12p70	27HC	6.98	0.15	NA	27HC	0.92	0.54	0.8713	
IL-13	Veh	2.95	0.03	0.6104	Veh	0.92	0.09	0.6760	
IL-13	27HC	3.04	0.06	0.0104	27HC	1.16	0.22	0.0709	
IL-15	Veh	26.45	0.9	0 5474	Veh	13.43	0.37	0 1005	
IL-15	27HC	24.73	0.89	0.5474	27HC	10.78	0.5	0.1095	
IL-17A	Veh	14.08	0.95	0 9820	Veh	2.89	0.51	NA	
IL-17A	27HC	14.12	1.19	0.3020	27HC	3.33	0.93	14/3	
IL-18	Veh	879.91	46.17	0.1260	Veh	212.34	8.59	0.0674	
IL-18	27HC	1143.92	12.38	0.1200	27HC	144.8	10.31	0.0074	
IL-1a	Veh	111.48	7.24	0.0279	Veh	85.53	3.38	0.1260	
IL-1a	27HC	238.05	1.44	0.0270	27HC	105.1	4.1	0.1260	

Supplemental Table 1B. Cytokine secretion of macrophages under two time points after LPS and Veh or 27HC treatment.

		2	24hrs post	treatment	72hrs post co-culture			o-culture
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR
IL-1b	Veh	274.45	6.14	0.0156	Veh	30.6	0.7	0.0156
IL-1b	27HC	378.89	7.54	0.0100	27HC	11.18	1.24	0.0156
IL-2	Veh	out of range	NA		Veh	out of range	NA	
IL-2	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-22	Veh	176.97	20.57	0 40 40	Veh	46.84	2.37	
IL-22	27HC	226.03	19.66	0.4249	27HC	33.48	2.27	NA
IL-23	Veh	26.03	3.01	0 0 0 0 0 0 0	Veh	5.04	2.2	NIA
IL-23	27HC	23.87	0.94	0.8303	27HC	1.16	0.28	NA
IL-27	Veh	141.61	4.34	NIA	Veh	9.7	0	0 1225
IL-27	27HC	119.44	4.31	NA	27HC	6.95	0.48	0.1550
IL-28	Veh	308.37	34.4	0.9105	Veh	127.24	16.28	
IL-28	27HC	300.85	31.42		27HC	99.97	42.92	0.6595
IL-3	Veh	out of range	NA		Veh	out of range	NA	
IL-3	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-31	Veh	17.72	0.99		Veh	10.01	1.12	0.0500
IL-31	27HC	19.49	0.84	NA	27HC	8.96	1.6	0.8598
IL-4	Veh	out of range	NA		Veh	out of range	NA	
IL-4	27HC	out of range	NA	NA	27HC	out of range	NA	NA
IL-5	Veh	7.69	0.56	0.0700	Veh	4.16	0.49	
IL-5	27HC	8.43	0.51	0.6769	27HC	3.26	0.43	NA
IL-6	Veh	7600.34	164.28	0.0674	Veh	347.71	41.42	NIA
IL-6	27HC	5766.51	13.33	0.0074	27HC	368.53	32.73	NA
IL-9	Veh	28.88	2.27		Veh	out of range	NA	
IL-9	27HC	29.87	3.82	NA	27HC	out of range	NA	NA
IP-10	Veh	714.98	31.69	0.0074	Veh	817.83	11.48	
IP-10	27HC	703.04	13.19	0.00/1	27HC	777.67	72.42	NA
LIF	Veh	17.01	0.65	0 6464	Veh	8.88	0.6	0 7000
LIF	27HC	17.97	0.63	0.0404	27HC	9.67	0.88	0.7898
M-CSF	Veh	1.08	0.02	0 8713	Veh	0.83	0.11	0 4240
M-CSF	27HC	1.07	0.02	0.8713	27HC	0.6	0.05	0.4249

		2	24hrs post	treatment		7	′2hrs post co	-culture
Cytokine	Treatment	Average Concentration*	SEM	FDR	Treatment	Average Concentration	SEM	FDR
MCP-1	Veh	10177.69	1525.3 7	NIA	Veh	1508.6	21.21	0 1570
MCP-1	27HC	9294.78	919.08	NA	27HC	1266.96	57.22	0.1570
MCP-3	Veh	472	23.77	NIA	Veh	312.62	7.3	0.0052
MCP-3	27HC	483.91	49.4	NA	27HC	315.95	14.05	0.9053
MIP-1a	Veh	39.22	0.51	NIA	Veh	4.54	0.21	0.7500
MIP-1a	27HC	31.39	0.42	NA	27HC	5.17	0.65	0.7508
MIP-1b	Veh	684.83	34.65	0 4050	Veh	16.94	0.82	0 4050
MIP-1b	27HC	538.14	25.19	0.1350	27HC	30.42	2.79	0.1350
MIP-2	Veh	7852.33	241.26	0.0070	Veh	4145.43	330.06	
MIP-2	27HC	7462.6	294.32	0.6670	27HC	3787.83	353.77	NA
RANTES	Veh	679.87	20.08	0.0004	Veh	620.1	6.97	0.0407
RANTES	27HC	661.36	17.96	0.8084	27HC	625.15	34.76	0.9187
TNF-a	Veh	1493.98	41.81	NIA	Veh	194.18	0.21	NIA
TNF-a	27HC	1472.32	38.99	NA	27HC	196.34	10.98	NA

*concentration as pg/ml

Supplemental Table 2. LXR and/or ER ligands

Ligand	Class	Documente d Activity	Identified Activity	Literature
4βНС	oxysterol	LXR ligand	putative ER ligand	[124]
20(S)HC	oxysterol	LXR ligand	•	[124, 125]
22(R)HC	oxysterol	LXR ligand		[124, 126, 133]
24(S)HC	oxysterol	LXR ligand		[124, 126]
25HC	oxysterol	LXR ligand, ER ligand		[124, 126, 128]
27HC	oxysterol	LXR ligand, ER ligand		[22, 108, 124, 129, 130]
24, 25EC	oxysterol	LXR ligand		[126]
7KC	oxysterol	LXR ligand, ER ligand		[127, 131]
Dendrogenin A	conjugation of 5,6α-epoxy- cholesterol with histamine	LXR ligand		[132, 133]
Desmosterol	cholesterol precursor	LXR ligand	putative ER ligand	[134, 135]
GW3965	synthetic LXR agonist	LXR ligand	J	[133]
T091317	synthetic LXR agonist	LXR ligand		[125, 133]

Supplemental Figure Legends:

Supplemental Figure 1. 27HC-treated macrophages suppress T cell expansion. (A) Representative histograms from flow cytometry. CD3+ T cells were isolated from the spleen of OT-1 mice, stained with CFSE, were co-cultured with BMDMs treated with $OVA_{257-264}$ and either vehicle- or 27HC. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. This data is from Fig. 3E, and is also representative of **Figs. 2D&E**. **(B)** Naïve T cells were isolated from the spleen of wildtype C57BL/6 mouse, chemically activated and cultured in the presence of conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean ± SEM and asterisks (*) indicate statistical significance from the vehicle control (N=3/group for T cell only control, N=6/group for conditioned media two-tailed t-test, p < 0.05). **(C)**. CD3+ T cells were isolated from the spleen of wildtype C57BL/6 mice, labeled with CFSE, chemically activated and cultured with conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were isolated from the spleen of wildtype C57BL/6 mice, labeled with CFSE, chemically activated and cultured with conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean ± SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for T cell only controls, for conditioned-media conditions, N=5-6/group). (two-tailed t-test, p < 0.05). This subfigure is an independent repeat of **Fig. 1I**.

Supplemental Figure 2. Blockade of MHCII does not attenuate pro-colonizing effects of 27HC. Mice were pretreated with placebo or 27HC (20mg/kg/d) for 5d, as in [23]. 36h and 12h prior to cell graft, mice were injected (i.p) with an isotype control antibody (IgG) or an antibody against murine I-A/I-E. Mice were then grafted with Met1 cells expressing iRFP. Resulting cancer colonies within the lung were quantified by *ex vivo* imaging for iRFP fluorescence. Different letters denote statistical significance, N=8/group. (one-way ANOVA followed by Neuman-Kuels multiple comparison test, p < 0.05).

Supplemental Figure 3. Expression of granzyme B (GZMB) and perforin (PRF1) normalized to CD8A expression was modestly but significantly correlated with CYP7B1 expression. mRNA expressions from Human RNA sequencing data from TCGA Pan Cancer for invasive breast carcinoma were log2 transformed and Pearson's correlation was assessed (N=1077 in (A) and 1081 in (B)). These data partner with Fig. 3L and M.

Supplemental Figure 4. Cholesterol efflux from macrophages unlikely to mediate the suppressive effect of 27HC on T cells. CD3+ T cells were isolated from wildtype C57BL/6 or LDLR^{-/-} mice, labeled with CFSE and chemically activated. They were then co-cultured with vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean \pm SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for all T cell only controls, for co-culture conditions, N=5/group). (two-tailed t-test, p < 0.05).

Supplemental Figure 5. ELISA analysis of TGF β after macrophages were treated with LPS and either vehicle or 27HC. BMDMs were treated with LPS and either vehicle or 27HC for 24hrs. Conditioned media was harvested and TGF β was quantified by ELISA (R&D, DY1679-05).

Supplemental Figure 6. Previously reported pathways involved in myeloid cell suppression of T cells (PI3K, AKT, NOTCH and CaMKK2) were ruled out from the suppressive mechanism of 27HC-treated macrophages. BMDMs were treated with vehicle \pm indicated inhibitors or 27HC \pm indicated inhibitors for 24hrs. CD3+ T cells were then isolated from wildtype C57BL/6 mouse, labeled with CFSE and chemically activated at the time of co-culture with pre-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean \pm SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for all T cell only controls, for co-culture conditions, N=3-4/group). (two-tailed t-test, p < 0.05).

Supplemental Figure 7. Estrogenic activity of 13 ligands. T47D cells stably expressing a ERE luciferase reporter were treated with indicated compounds and the activation of ER was measured by luciferase activity. Data are presented as mean ± SEM (N=4/treatment).

Supplemental Figure 8. LXR-activating activity of 12 cholesterol metabolites, synthetic LXR ligands and E2. BMDMs were treated with indicated compounds and mRNA expression of (top) ABCA1 (N=3/group for all

cholesterol metabolites and synthetic LXR ligands, N=5 or 6/group for E2) and **(bottom)** ABCG1 (N=3/group), were quantified by qPCR. Data are presented as mean ± SEM relative to the respective vehicle control.

Supplemental Figure 9. Knockdown or inhibition of LXR isoforms attenuates immunosuppressive effects of 27HC and the synthetic LXR agonist, GW3965 (A) Representative LXR α and β expression after siRNA knockdown for 48hrs as measured by qPCR (N=3/group; This corresponds with Fig. 5G). (B) LXR α and β expression after lentivirus-delivered shRNA knockdown for 96hrs as measured by qPCR (N=2/group; this corresponds with Fig. 5H). (C) T cell proliferation was restored with the LXR antagonist, GSK2033. After 24hrs, the treatments were washed off and treated BMDMs were co-cultured with chemically activated wildtype T cells for 72hrs. T cells were labeled with CFSE and proliferation measured by flow cytometry (N=3/group for T cell only controls, for co-culture conditions, N=4/group). Data are presented as mean ± SEM and asterisks (*) indicate statistical significance from the respective vehicle control. (two-tailed t-test, p < 0.05). This corresponds with Fig. 5I.

Supplemental Figure 10. 27HC-treated macrophages induce T cell apoptosis. (A) Representative flow cytometry dot plots of **Fig. 6B** (48hrs), where T cells were harvested and labeled with Annexin V and PI, after co-culture with vehicle- (top) or 27HC-treated BMDMs (bottom) for 48hrs. **(B)** Representative flow cytometry dot plots of **Fig. 6C** (48hrs), where T cells were harvested and labeled with FLICA-FAM and PI, after co-culture with vehicle- (top) or 27HC-treated BMDMs (bottom) for 48hrs.

Supplemental Figure 11. CYP27A1^{fl/fl};**LysMCre+ mice do not express CYP27A1 in bone marrow-derived macrophages.** Tissues were harvested from 3 separate CYP27A1^{fl/fl};LysMCre+ and 3 CYP27A1^{+/+};LysMCre⁺ (control) male mice. Tissue was harvested from a traditional (global) CYP27A1^{-/-} mouse as a control. Bone marrow was harvested and used to derive macrophages. (A) Genotyping analysis indicating presence of floxed alleles in the CYP27A1 gene (smaller PCR amplicon). **(B)** Protein was extracted in RIPA buffer and run on SDS-page for Western analysis using anti-CYP27A1 (Abcam 126785) or cyclophilin B (Cyp B; Santa Cruz Biotechnology sc-517566) as an internal control. As can be noted, CYP27A1 was not expressed in macrophages, but continued to be expressed in the liver, spleen and lungs of CYP27A1^{fl/fl};LysMcre⁺ mice.

Supplemental Figure 12. Absence of myeloid CYP27A1 decreased tumor growth post T-cell graft. Mice with myeloid cell knockout of CYP27A1 (CYP27A1^{fl/fl};LysMCre⁺) exhibited lower level of antigen-specific primary tumor growth. CYP27A1^{fl/fl};LysMCre⁺ mice (N=8) and their replete controls (N=7) were grafted orthotopically with E0771-OVA cells and tumors allowed to grow to ~200 mm³. Control (CYP27A1^{+/+};LysMCre⁺) mice received an adoptive transfer of CD3+ T cells isolated from OT-I mice 12 days post-cancer graft (first dashed line), and CYP27A1^{fl/fl};LysMCre⁺ mice received an adoptive transfer of CD3+ T cells isolated from OT-I mice 12 days post-cancer graft. Control and CYP27A1^{fl/fl};LysMCre⁺ mice were euthanized 25 days after initial cancer cell graft respectively. **(A)** Tumor volumes were measured through time by digital calipers and plotted as mean ± SEM. Two way ANOVA followed by Sidak's multiple comparison test on data up to and including day 25 found a statistically significant difference between the groups on day 25 (p < 0.05, denoted by asterisk). **(B)** Growth of tumors post T cell transfer. This is the same data from **(A), but** adjusted for time post T cell transfer. Data were then fit to a curve with non-linear regression (four parameter variable slope). This corresponds with **Fig. 7A**.

Supplemental Figure 1. 27HC-treated macrophages suppress T cell expansion. (A) Representative histograms from flow cytometry. CD3+ T cells were isolated from the spleen of OT-1 mice, stained with CFSE, were co-cultured with BMDMs treated with $OVA_{257-264}$ and either vehicle- or 27HC. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. This data is from Fig. 3E, and is also representative of Figs. 2D&E. (B) Naïve T cells were isolated from the spleen of wildtype C57BL/6 mouse, chemically activated and cultured in the presence of conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean \pm SEM and asterisks (*) indicate statistical significance from the vehicle control (N=3/group for T cell only control, N=6/group for conditioned media two-tailed t-test, p < 0.05). (C). CD3+ T cells were isolated from the spleen of wildtype C57BL/6 mice, labeled with CFSE, chemically activated and cultured with conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry. CD3+ T cells were isolated from the spleen of wildtype C57BL/6 mice, labeled with CFSE, chemically activated and cultured with conditioned media harvested from vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean \pm SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for T cell only controls, for conditioned-media conditions, N=5-6/group). (two-tailed t-test, p < 0.05). This subfigure is an independent repeat of Fig. 1I.

Supplemental Figure 2. Blockade of MHCII does not attenuate pro-colonizing effects of 27HC. Mice were pretreated with placebo or 27HC (20mg/kg/d) for 5d, as in [23]. 36h and 12h prior to cell graft, mice were injected (i.p) with an isotype control antibody (IgG) or an antibody against murine I-A/I-E. Mice were then grafted with Met1 cells expressing iRFP. Resulting cancer colonies within the lung were quantified by *ex vivo* imaging for iRFP fluorescence. Different letters denote statistical significance, N=8/group. (one-way ANOVA followed by Neuman-Kuels multiple comparison test, p < 0.05).

B. PRF1/CD8A

Supplemental Figure 3. Expression of granzyme B (GZMB) and perforin (PRF1) normalized to CD8A expression was modestly but significantly correlated with CYP7B1 expression. mRNA expressions from Human RNA sequencing data from TCGA Pan Cancer for invasive breast carcinoma were log2 transformed and Pearson's correlation was assessed (N=1077 in (A) and 1081 in (B)). These data partner with Fig. 3L and M.

Supplemental Figure 4. Cholesterol efflux from macrophages unlikely to mediate the suppressive effect of 27HC on T cells. CD3+ T cells were isolated from wildtype C57BL/6 or LDLR^{-/-} mice, labeled with CFSE and chemically activated. They were then co-cultured with vehicle- or 27HC-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean \pm SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for all T cell only controls, for co-culture conditions, N=5/group). (two-tailed t-test, p < 0.05).

Supplemental Figure 5. ELISA analysis of TGF β after macrophages were treated with LPS and either vehicle or 27HC. BMDMs were treated with LPS and either vehicle or 27HC for 24hrs. Conditioned media was harvested and TGF β was quantified by ELISA (R&D, DY1679-05).

Supplemental Figure 6. Previously reported pathways involved in myeloid cell suppression of T cells (PI3K, AKT, NOTCH and CaMKK2) were ruled out from the suppressive mechanism of 27HC-treated macrophages. BMDMs were treated with vehicle ± indicated inhibitors or 27HC ± indicated inhibitors for 24hrs. CD3+ T cells were then isolated from wildtype C57BL/6 mouse, labeled with CFSE and chemically activated at the time of co-culture with pre-treated BMDMs. 72hrs after co-culture, T cells were harvested for flow cytometry analysis. Data are presented as mean ± SEM and asterisks (*) indicate statistical significance from the respective vehicle control (N=3/group for all T cell only controls, for co-culture conditions, N=3-4/group). (two-tailed t-test, p < 0.05).

Supplemental Figure 7. Estrogenic activity of 13 ligands. T47D cells stably expressing a ERE luciferase reporter were treated with indicated compounds and the activation of ER was measured by luciferase activity. Data are presented as mean ± SEM (N=4/treatment).

ABCG1

6 Fold Change 4 2 -...,^{N3965}311 Ven LEOH*N Perforterol 0 2⁴⁽⁵⁾HC ABHC 14C 22(8)40 2⁴ 2550 2540 Ven DNSOFE O.H. 2740 2015)HC

Supplemental Figure 8. LXR-activating activity of 12 cholesterol metabolites, synthetic LXR ligands and E2. BMDMs were treated with indicated compounds and mRNA expression of **(top)** ABCA1 (N=3/group for all cholesterol metabolites and synthetic LXR ligands, N=5 or 6/group for E2) and **(bottom)** ABCG1 (N=3/group), were quantified by qPCR. Data are presented as mean ± SEM relative to the respective vehicle control.

Supplemental Figure 9. Knockdown or inhibition of LXR isoforms attenuates immunosuppressive effects of 27HC and the synthetic LXR agonist, GW3965 (A) Representative LXR α and β expression after siRNA knockdown for 48hrs as measured by qPCR (N=3/group; This corresponds with Fig. 5G). (B) LXR α and β expression after lentivirus-delivered shRNA knockdown for 96hrs as measured by qPCR (N=2/group; this corresponds with Fig. 5H). (C) T cell proliferation was restored with the LXR antagonist, GSK2033. After 24hrs, the treatments were washed off and treated BMDMs were co-cultured with chemically activated wildtype T cells for 72hrs. T cells were labeled with CFSE and proliferation measured by flow cytometry (N=3/group for T cell only controls, for co-culture conditions, N=4/group). Data are presented as mean ± SEM and asterisks (*) indicate statistical significance from the respective vehicle control. (two-tailed t-test, p < 0.05). This corresponds with Fig. 5I.

Supplemental Figure 10. 27HC-treated macrophages induce T cell apoptosis. (A) Representative flow cytometry dot plots of Fig. 6B (48hrs), where T cells were harvested and labeled with Annexin V and PI, after co-culture with vehicle- (top) or 27HC-treated BMDMs (bottom) for 48hrs. (B) Representative flow cytometry dot plots of Fig. 6C (48hrs), where T cells were harvested and labeled with FLICA-FAM and PI, after co-culture with vehicle- (top) or 27HC-treated BMDMs (bottom) for 48hrs.

Protein by Western Analysis

Supplemental Figure 11. CYP27A1^{fl/fl};**LysMCre+ mice do not express CYP27A1 in bone marrow-derived macrophages.** Tissues were harvested from 3 separate CYP27A1^{fl/fl};LysMCre+ and 3 CYP27A1^{+/+};LysMCre⁺ (control) male mice. Tissue was harvested from a traditional (global) CYP27A1^{-/-} mouse as a control. Bone marrow was harvested and used to derive macrophages. (A) Genotyping analysis indicating presence of floxed alleles in the CYP27A1 gene (smaller PCR amplicon). **(B)** Protein was extracted in RIPA buffer and run on SDS-page for Western analysis using anti-CYP27A1 (Abcam 126785) or cyclophilin B (Cyp B; Santa Cruz Biotechnology sc-517566) as an internal control. As can be noted, CYP27A1 was not expressed in macrophages, but continued to be expressed in the liver, spleen and lungs of CYP27A1^{fl/fl};LysMcre⁺ mice.

Supplemental Figure 12. Absence of myeloid CYP27A1 decreased tumor growth post T-cell graft. Mice with myeloid cell knockout of CYP27A1 (CYP27A1^{fl/fl};LysMCre⁺) exhibited lower level of antigen-specific primary tumor growth. CYP27A1^{fl/fl};LysMCre⁺ mice (N=8) and their replete controls (N=7) were grafted orthotopically with E0771-OVA cells and tumors allowed to grow to ~200 mm³. Control (CYP27A1^{fl/fl};LysMCre⁺) mice received an adoptive transfer of CD3+ T cells isolated from OT-I mice 12 days post-cancer graft (first dashed line), and CYP27A1^{fl/fl};LysMCre⁺ mice received an adoptive transfer of CD3+ T cells isolated from OT-I mice 12 days post-cancer graft. Control and CYP27A1^{fl/fl};LysMCre⁺ mice were euthanized 25 days after initial cancer cell graft respectively. (A) Tumor volumes were measured through time by digital calipers and plotted as mean ± SEM. Two way ANOVA followed by Sidak's multiple comparison test on data up to and including day 25 found a statistically significant difference between the groups on day 25 (p < 0.05, denoted by asterisk). (B) Growth of tumors post T cell transfer. This is the same data from (A), but adjusted for time post T cell transfer. Data were then fit to a curve with non-linear regression (four parameter variable slope). This corresponds with Fig. 7A.