Figure or results section	Experiment	Does random effect of litter significantly improve LMM?	Does including heterogenous error variances significantly improve LMM?	Treatment	Sex	Treatment*Sex	Do residuals pass Normality test (p > 0.05)?	Mann-Whitney U: Exposure	Mann-Whitney U: Sex
Figure 1B	Effect of ethanol exposure on Catwalk LF/RH coupling	No	Yes	F(1,45.903) = 18.822 p < 0.0001 g = 1.127	F(1,45.903) = 1.039 p = 0.3134 g = 0.279	F(1,45.903) = 2.208 p = 0.1442	Yes	-	-
Figure 2	Effect of ethanol exposure on Triple Horizontal Bar cumulative time	No	No	F(1,60) = 4.805 p = .0323 g = 0.505	F(1,60) = 0.674 p = 0.4151 g = 0.209	F(1,60) = 1.280 p = 0.2624	Yes	-	-
Figure 3A	Effect of ethanol exposure on Rotorod time to fall- training day	Yes	Yes	F(1,10.277) = 0.723 p = 0.4145 g = 0.263	F(1,43.097) = 0.886 p = 0.3519 g = 0.033	F(1,43.097) =0.244 p = 0.6241	No	U(n1 = 28, n2 = 33) = 425, p = 0.5923, r = 0.069	U(n1 = 36, n2 = 25) = 443, p = 0.9182, r = 0.013
Figure 3B	Effect of ethanol exposure on Rotorod time to fall- test day	No	No	F(1,58) = 4.875 p = .0312 g = 0.619	F(1,58) = 1.724 p = 0.1944 g = 0.333	F(1,58) = 1.474 p = 0.2297	No	U(n1 = 30, n2 = 32) = 324.5, p = .0285, r = 0.278	U(n1 = 37, n2 = 25) = 372.5, p = 0.1965, r = 0.164
Figure 3C	Effect of ethanol exposure on Rotorod RPMs before falling- training day	Yes	Yes	F(1,10.396) = 0.926 p = 0.3578 g = 0.308	F(1,43.678) = 1.200 p = 0.2794 g = 0.002	F(1,43.678) = 0.344 p = 0.5607	No	U(n1 = 28, n2 = 33) = 412, p = 0.4690, r = 0.093	U(n1 = 36, n2 = 25) = 447, p = 0.9649, r = 0.006
Figure 3D	Effect of ethanol exposure on Rotorod RPMs before falling- test day	No	No	F(1,58) = 5.797 p = .0193 g = 0.674	F(1,58) = 1.334 p = 0.2528 g = 0.292	F(1,58) = 1.501 p = 0.2255	No	U(n1 = 30, n2 = 32) = 311.5, p = .0176, r = 0.302	U(n1 = 37, n2 = 25) = 386.5, p = 0.2752, r = 0.139

Supplemental Table 1: Detailed statistics from LMM analyses. Specifics from LMM model construction are presented, showing if including random intercepts for litter or heterogenous error variances for exposure condition significantly improved each LMM. F-ratios and p-values are presented for treatment and sex effects, including Hedges' g effect sizes for main effects. Mann-Whitney U tests are shown for exposure and sex effects from any LMM with residuals that did not pass (p > 0.05) the Shapiro-Wilkes normality test. Effect sizes for Mann-Whitney U tests are shown as r.