Supporting Information

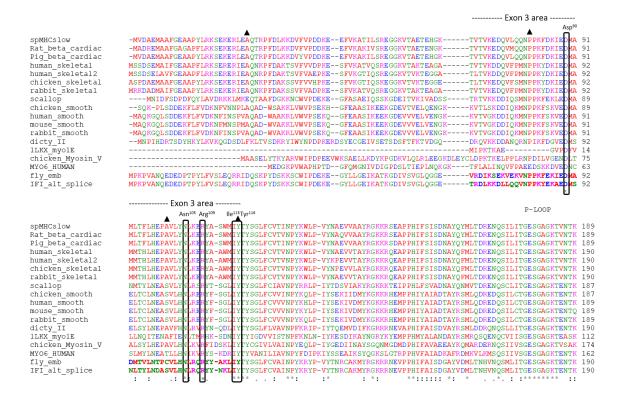
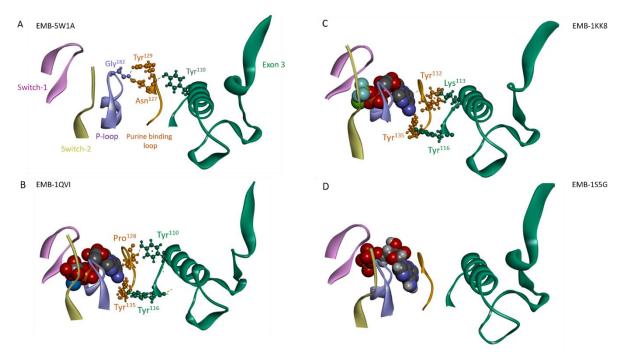
Alternative N-terminal regions of *Drosophila* myosin heavy chain II regulate communication of the purine binding loop with the essential light chain

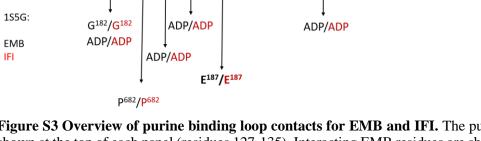
Marieke J. Bloemink^{1,3}, Karen H. Hsu², Michael A. Geeves^{1*} and Sanford I. Bernstein^{2*}

¹Department of Biosciences at the University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom, ²Department of Biology, Molecular Biology Institute, and SDSU Heart Institute at San Diego State University, San Diego, California 92182-4614, ³current address: Biomolecular Research Group, School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom.

Running title: Myosin alternative N-terminal domains influence kinetics

^{*}Corresponding authors: M. Geeves: M.A.Geeves@kent.ac.uk; S. Bernstein: sbernstein@sdsu.edu


Figure S1: Sequence alignment of the N-termini of various myosins. Conserved residues in the exon 3-encoded region are labelled explicitly by rectangles. "*" indicates that the residues are identical in all sequences in the alignment. ":" represents conserved substitutions, whereas "." indicates semiconserved substitutions. The corresponding human β -myosin cardiomyopathy sites in the exon 3-encoded domains (Pro81, Ala100 and Tyr115) and the short N-terminal helix (Ala26) are indicated with a \triangle .

Interaction between the exon 3 region and the purine binding loop depends on conformational state of the myosin head (Figures S2/S3).

The rigor-like EMB crystal structure (5W1A, Figures S2A/S3A) has contacts between the exon 3 area (Tyr¹¹⁰ and Lys¹¹³) and the purine binding loop (Asn¹²⁷ and Tyr¹³²). In the pre-power stroke conformation (EMB-1QVI, figure S2B/S3B), the EMB homology structure maintains contacts between the exon 3 area (Tyr¹¹⁰ and Tyr¹¹⁶) and the purine binding loop (Pro¹²⁸ and Tyr¹³⁵). Homology models of the ADP-bound near rigor state (1S5G template, figure S2D/S3D) show that all direct contacts between the exon 3 area and the purine binding loop are lost, whereas in the post-power stroke conformation (EMB-1KK8, figure S2C/3C) contacts are maintained between exon 3 (Lys¹¹³, Tyr¹¹⁶) and the purine binding loop (Tyr¹³², Tyr¹³⁵). For IFI very similar contacts are found between exon 3 and the purine binding loop (see Figure S3 for summary of interactions). Taken together, the crystal structures and homology models suggest that exon 3 is involved in regulating the conformation of the purine binding loop, as the myosin head goes through the various conformational states during the cross-bridge cycle. However, the interactions between the purine binding loop and the exon 3 area are very similar for IFI and EMB.

Figure S2: Overview of exon 3 region – purine-binding loop contacts throughout the cross-bridge cycle for EMB. (A) In the near-rigor state exon 3 residue Tyr¹¹⁰ interacts with the purine binding loop (PDB: 5W1A). (B) In the pre-power stroke state exon 3 residues Tyr110 and Tyr116 both interact with the purine-binding loop (1QVI used as template). (C) In the post-power stroke state exon 3 residues Lys113 and Tyr116 contact the purine-binding loop (1KK8 used as template). (D) In the ADP-bound near-rigor state no contacts are seen between exon 3 and the purine-binding loop (1S5G used as template).

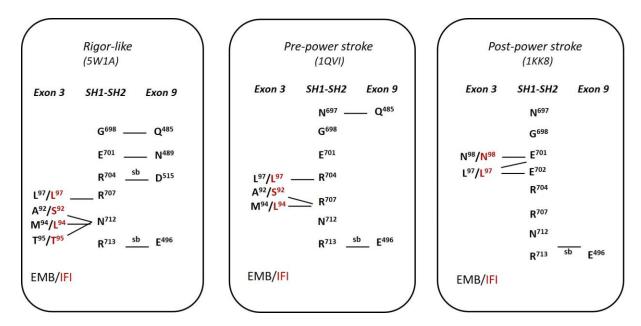

N127p128y129K130R131y132p133\/134y135

Figure S3 Overview of purine binding loop contacts for EMB and IFI. The purine binding loop is shown at the top of each panel (residues 127-135). Interacting EMB residues are shown below in black, IFI residues are in red. Shaded residues are in the exon 3 area. (A) **rigor-like state** using 5W1A EMB crystal structure as template for IFI. (B) **pre-power stroke state** using 1QVI as template for both EMB and IFI (C) **post-power stroke** state using 1KK8 as template (D) **ADP-bound near-rigor state** using 1S5G as template. In addition to contacts with exon 3 residues (Tyr110, Lys113 and Tyr116), the purine binding loop interacts with the P-loop (Gly182, Glu187) and the bound nucleotide (ADP).

D

Interactions of the SH1-SH2 helix with the exon 3 region are conserved for IFI and EMB.

The EMB crystal structure in the rigor-like state (5W1A) shows that the exon 3 region has no direct contacts with any of the other variable domains in the myosin head (Figure 1A). However, the SH1-SH2 helix is wedged between the exon 3 and exon 9 (relay loop) regions and makes contacts with both variable domains. Since *Drosophila* EMB and IFI share the same SH1-SH2 sequence, the two variable regions could potentially interact differently with this element, thereby altering the myosin properties. An overview of interactions between SH1-SH2 and the exon 3/9 regions is summarized in Figure S4 (see below) In addition to conserved exon 3 residues L⁹⁷ and N⁹⁸, two variable residues between EMB and IFI (A⁹²/S⁹² and M⁹⁴/L⁹⁴) interact with the SH1-SH2 region in the rigor-like state (left panel) and the pre-power stroke state (middle panel). However, for both residues it is the backbone oxygen that is involved in the contacts with the SH1-SH2 element, and thus not expected to significantly change the exon 3 – SH1-SH2 interaction. Overall for the three conformational states of the myosin molecule investigated here (near-rigor, pre-power stroke and post-power stroke state), the homology models show very similar interactions between the two Drosophila myosin isoforms, indicating that the interaction of exon 3 with SH1-SH2 is highly conserved for EMB and IFI.

Figure S4: Interactions of the SH1-SH2 helix with the exon 3 region are conserved for IFI and EMB. Residues of SH1-SH2 and the exon 9-encoded relay loop are shown in black for both EMB and IFI. Exon 3 residues are shown in black (EMB) and red (IFI). Left panel: Rigor-like state using the EMB crystal structure (5W1A) as template for IFI. Middle panel: pre-power stroke state for IFI and EMB homology models based on scallop crystal structure (1QVI). Right panel: Post-power stroke state of IFI and EMB homology models based on scallop crystal structure (1KK8).

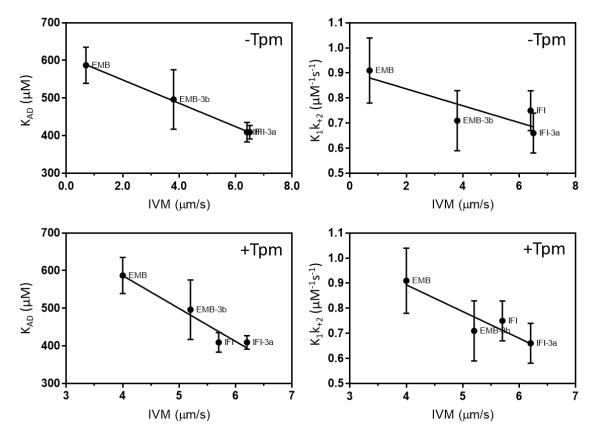


Figure S5: Comparison of kinetic data with *in vitro* motility (IVM) as a function of K_{AD} or K_1k_{+2} for *Drosophila* myosin isoforms IFI, IFI-3a, EMB and EMB-3b. Left two panels: K_{AD} correlation with motility; linear fits give slopes of -32 ± 1 (R^2 =0.99) and -88 ± 15 (R^2 =0.94) in the absence (-Tpm) and presence (+Tpm) of tropomyosin, respectively. Right two panels: K_1k_{+2} correlation with motility; slopes of -0.03 ± 0.01 (R^2 =0.72) and -0.11 ± 0.03 (R^2 =0.86) without and with tropomyosin respectively were determined. IVM data is from Swank *et al* 2003.

References for supplementary materials:

Swank, D. M., Knowles, A. F., Kronert, W. A., Suggs, J. A., Morrill, G. E., Nikkhoy, M., Manipon, G. G., and Bernstein, S. I. (2003) Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate