### Supplemental information

## The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells

#### Authors:

Avishek Prasai<sup>1</sup>, Marketa Schmidt Cernohorska<sup>1</sup>, Klara Ruppova<sup>1</sup>, Veronika Niederlova<sup>1</sup>, Monika Andelova<sup>1</sup>, Peter Draber<sup>1</sup>, Ondrej Stepanek<sup>1\*</sup>, Martina Huranova<sup>1\*</sup>

#### Affiliation:

<sup>1</sup> Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic

\* Corresponding author: Martina Huranova, <u>martina.huranova@img.cas.cz</u> Ondrej Stepanek, <u>ondrej.stepanek@img.cas.cz</u>

**Supplemental Figure Legends** 

**Supplemental Figures S1-S5** 

**Supplemental Tables S1-S5** 

### **Supplemental Figure Legends**

# Figure S1. Localization of the YFP-tagged BBSome subunits in the WT and *BBS* KO RPE1 cell lines.

Micrographs of the YFP-tagged BBSome subunits in the *BBS* KO RPE1 cells. YFP-tagged BBSome subunits localize to primary cilia (Ac-tub) in WT, but not in the *BBS* KO cell lines. Note that YFP-BBS1 localizes to the ciliary base and YFP-BBS4 localizes to the PS in all the cell lines. DAPI was used to mark the cell nucleus. Scale bar, 5µm.

# Figure S2. Functionality and relative expression of the YFP-tagged BBSome subunits in the WT and *BBS* KO RPE1 cell lines.

(A) Micrographs of the endogenous BBS9 localization in WT, *BBS* KO and *BBS* KO cell line reconstituted with the respective YFP-tagged BBSome subunit. Endogenous BBS9 localizes to the primary cilia in WT and reconstituted *BBS* KO cell lines but is absent from the primary cilia in *BBS* KO cells. Scale bar, 5µm. (B) Analysis of the relative expression levels of the YFP-tagged BBSome subunits compared to expression of the endogenous proteins in WT and *BBS* KO cells. Representative western blots out of two independent experiments are shown. Actin was used as a loading control. '\*' marks the position of the signal of the endogenous BBSome subunits in WT cells. BBS1<sup>HIGH</sup> and BBS5<sup>HIGH</sup> depict higher exposure for better visualization. Bar graphs depict the quantification of the relative expression levels of the endogenous and YFP-tagged BBSome subunits in WT and *BBS* KO cells. Protein amounts were quantified using the Fiji ImageJ. Protein expression was first normalized to actin and then to endogenous expression levels. Means and SD of two experiments are shown. (C) Bar graphs depicting relative expression of the YFP-tagged BBSome subunits in WT and *BBS* KO cell lines analyzed by flow cytometry. Geometric means of the fluorescence intensity were obtained from the YFP positive histograms and normalized to WT. Means and SD from three independent experiments are shown.

#### Figure S3. The BBSome subunits are interdependent.

(A) Expression levels of endogenous BBSome subunits in the parental RPE1 cells and in the cell lines deficient in BBS1, BBS2, BBS4, BBS7, BBS8, BBS9, or BBS18 (see Table S1). Equal protein amounts were loaded into each lane. Actin is used as the loading control. Representative blots out of three independent experiment are shown. (B) Bar graphs depicting the relative expression levels of the endogenous BBSome subunits in the WT and *BBS* deficient cell lines. Protein amounts were quantified using the Fiji ImageJ. Protein expression was first normalized to actin and then to WT levels. Average and SD of three independent experiments is shown.

#### Figure S4. FCS measures the *in vivo* mobility of the BBSome subcomplexes in the cytoplasm.

(A) Bar graphs depicting abundance of primary cilia in YFP-BBS4 WT cell line either not starved and/or starved for 24 h in media without FBS. Average and SD of three independent experiments is shown. (B) Plots show the diffusion time,  $\tau$ , obtained by fitting the ACFs acquired from FCS measurements in YFP-BBS8, YFP-BBS5 and BBS7-YFP WT and *BBS* KO cell lines. Statistical significance was calculated using two-tailed Mann-Whitney test. Medians with interquartile range of n>10 are shown. p<0.05. (C, D, E) Plots (left) show the diffusion time,  $\tau$ , obtained by fitting the ACFs acquired from FCS measurements (right) of YFP-BBS1 (C), YFP-BBS18 (D) and BBS9-YFP (E) in WT and *BBS* KO cell lines. Statistical significance was calculated using two-tailed Mann-Whitney test. Medians with interquartile range of n>10 are shown. \*p<0.05, \*\*\*\*p<0.0001. Plots on the right show the ACFs in case p<0.05. The ACFs were fitted with one-component anomalous 3D diffusion model. The means of n>10 measurements are shown. Arrows indicate possible presence of a second component.

#### Figure S5. BBS1 is required for completion of the BBSome at the ciliary base.

(A) Micrographs of YFP-BBS4 in non-ciliated and ciliated (Ac-tub) cells showing the localization of YFP-BBS4 at the PS (PCM-1) in WT RPE1 cells. Scale bar,  $5\mu$ m. (B) Endogenous BBS9 and BBS2 localize to the cilia in WT RPE1 cells but are accumulated at the PS in *BBS1* KO RPE1 cells. DAPI was used to stain the cell nucleus. Scale bar,  $5\mu$ m. (C) Micrographs (left) and quantification (right) of the abundance of the YFP-tagged BBSome subunits at the centrosome in non-ciliated WT cells. Ninein and acetylated tubulin staining visualizes the centrosome and tubular meshwork. Scale bar,  $5\mu$ m. Bar graph shows average and SD of three independent experiments and the total number of counted cells

for each BBSome subunit. (D, E) Bar graphs depict the recovery halftimes (s) of the YFP-tagged BBSome subunits in the ciliary tip and base (Fig. 5 B and C). YFP-BBS1 shows a significantly faster recovery at the ciliary base when compared to the other BBSome subunits. Means of 20-30 measurements from three independent experiments are shown. Error bars represent the 90% confidence interval.



|          | BBS9-YFP |            |       | YFP-BBS18 |           |       |  |
|----------|----------|------------|-------|-----------|-----------|-------|--|
|          | YFP      | Ac-tub     | merge | YFP       | Ac-tub    | merge |  |
| WT       | 1        | 1          | 1     | -         | -         | -     |  |
| BBS1 KO  | 4        | the total  | X     |           | X         | X     |  |
| BBS2 KO  |          | K          | X     |           | 4         | -     |  |
| BBS4 KO  |          | The second | No.   |           | - All     | 2     |  |
| BBS7 KO  |          | ale .      | 1     |           |           | Ŕ     |  |
| BBS8 KO  |          | X          | Y     |           | d.        | Ż     |  |
| BBS9 KO  |          |            |       |           | the state |       |  |
| BBS18 KO |          | YA         | Y     |           |           |       |  |









## **Supplemental Tables**

Table S1. Genetic modifications in RPE-1 cell line obtained by utilizing CRISPR/Cas9 to knockout the BBSome subunits. Table comprises the DNA modifications in ORFs of the individual *BBS* genes in the established *BBS* KO cell lines and the derived protein sequences. ORF – open reading frame, KO – knockout, A1 – first allele, A2 – second allele, bold - change in aminoacid sequence, \* - stop codon.

| RPE-1    | GENE ID      | ORF nucleotide modification 5' to 3'  | protein sequence from the START to STOP codon                                |  |  |
|----------|--------------|---------------------------------------|------------------------------------------------------------------------------|--|--|
| PPSIKO   | NM 024640    | A1: deletion A (65)                   | MAAASSSDSDACGAESNEANSGWMRTTTQWPISTPFLPA*                                     |  |  |
| DD51 KU  | INM_024049   | A2: deletion ATTCGAAGTGGTTGGA (59-75) | MAAASSSDSDACGAESNEAMRTTTQWPISTPFLPA*                                         |  |  |
| PPSIKO   | NM 021995    | A1: insertion A (72)                  | MLLPVFTLKLRHKISPRMVAIGR*                                                     |  |  |
| DD52 KU  | NM_031885    | A2: deletion CG (72-73)               |                                                                              |  |  |
| BBS4 KO  | NM_033028    | A1, A2: deletion GC (19-20)           | MAEERV <b>DENSISCIY</b> *                                                    |  |  |
| BBS7 KO  | NM_176824    | A1 A2: deletion TTTAC (180, 184)      | MDLILNRMDYLQVGVTSQKTMKLIPASRHRATQKVVIGDHDGVVM                                |  |  |
|          |              | A1, A2. deletion 111AC (180-184)      | CFGMKKGEAAAVFKTRAEDCKAGTGRGYQHTSGENFYCCSI*                                   |  |  |
| BBS8 KO  | NM_001288781 | A1, A2: insertion A (107)             | MSSEMEPLLLAWSYFRRRKFQLCADLCTQMLEKSP*                                         |  |  |
| PPSOVO   | NM 109429    | A1: insertion T (40)                  | MSLFKARDWWSTI <b>SGR</b> *                                                   |  |  |
| DD39 KU  | INIM_198428  | A2: deletion CTACTATTCT (32-41)       | MSLFKARDWWWEIKKNLIKAVCVWLMLTIVEMDKIK*                                        |  |  |
|          | NM_001195305 | A1: deletion AGTCAATGTTCCGGGA (80-95) | MLKAAAKRPELSGKNTISNNSDMAEVKFFQSKGHCLWKI*                                     |  |  |
| BBS18 KO |              | A2: deletion AGTCAATGTTCCGGGAAGTTCTTC | Splicing defect – deletion of the intron3-4 5'-splice site – nucleotides GTA |  |  |
|          |              | CAAAGCAAG (80-112)                    |                                                                              |  |  |

|     | l                       |                                    | I         |
|-----|-------------------------|------------------------------------|-----------|
| No. | Name                    | Genetic background                 | Transgene |
| 1.  | YFP-BBS1                | RPEI                               | YFP-BBS1  |
| 2.  | YFP-BBS4                | RPEI                               | YFP-BBS4  |
| 3.  | YFP-BBS5                | RPEI                               | YFP-BBS5  |
| 4.  | BBS7-YFP                | RPE1                               | BBS7-YFP  |
| 5.  | YFP-BBS8                | RPE1                               | YFP-BBS8  |
| 6.  | BBS9-YFP                | RPE1                               | BBS9-YFP  |
| 7.  | YFP-BBS18               | RPE1                               | YFP-BBS18 |
| 8.  | BBSI KO                 | RPE1 BBS1 KO                       | -         |
| 9.  | BBS2 KO                 | RPE1 BBS2 KO                       | -         |
| 10. | BBS4 KO                 | RPE1 BBS4 KO                       | -         |
| 11. | BBS7 KO                 | RPE1 BBS7 KO                       | -         |
| 12. | BBS8 KO                 | RPE1 BBS8 KO                       | -         |
| 13. | BBS9 KO                 | RPE1 BBS9 KO                       | -         |
| 14. | BBS18 KO                | RPE1 BBS18 KO                      | -         |
| 15. | BBS1 BBS4 dKO           | RPE1 <i>BBS1</i> KO <i>BBS4</i> KO | -         |
| 16. | YFP-BBS1 <i>BBS1</i> KO | RPE1 BBS1 KO                       | YFP-BBS1  |
| 17. | YFP-BBS4 <i>BBS1</i> KO | RPE1 BBS1 KO                       | YFP-BBS4  |
| 18. | YFP-BBS5 BBS1 KO        | RPE1 BBS1 KO                       | YFP-BBS5  |
| 19. | BBS7-YFP BBS1 KO        | RPE1 BBS1 KO                       | BBS7-YFP  |
| 20. | YFP-BBS8 <i>BBS1</i> KO | RPE1 BBS1 KO                       | YFP-BBS8  |
| 21. | BBS9-YFP BBS1 KO        | RPE1 BBS1 KO                       | BBS9-YFP  |
| 22. | YFP-BBS18 BBS1 KO       | RPE1 <i>BBS1</i> KO                | YFP-BBS18 |
| 23. | YFP-BBS1 BBS2 KO        | RPE1 <i>BBS2</i> KO                | YFP-BBS1  |
| 24. | YFP-BBS4 <i>BBS2</i> KO | RPE1 <i>BBS2</i> KO                | YFP-BBS4  |
| 25. | YFP-BBS5 <i>BBS2</i> KO | RPE1 <i>BBS2</i> KO                | YFP-BBS5  |
| 26. | BBS7-YFP <i>BBS2</i> KO | RPE1 <i>BBS2</i> KO                | BBS7-YFP  |
| 27. | YFP-BBS8 <i>BBS2</i> KO | RPE1 <i>BBS2</i> KO                | YFP-BBS8  |
| 28. | BBS9-YFP BBS2 KO        | RPE1 BBS2 KO                       | BBS9-YFP  |
| 29. | YFP-BBS18 BBS2 KO       | RPE1 <i>BBS2</i> KO                | YFP-BBS18 |
| 30. | YFP-BBS1 BBS4 KO        | RPE1 <i>BBS4</i> KO                | YFP-BBS1  |
| 31. | YFP-BBS4 <i>BBS4</i> KO | RPE1 <i>BBS4</i> KO                | YFP-BBS4  |
| 32. | YFP-BBS5 BBS4 KO        | RPE1 BBS4 KO                       | YFP-BBS5  |
| 33. | BBS7-YFP BBS4 KO        | RPE1 <i>BBS4</i> KO                | BBS7-YFP  |
| 34. | YFP-BBS8 <i>BBS4</i> KO | RPE1 BBS4 KO                       | YFP-BBS8  |
| 35. | BBS9-YFP BBS4 KO        | RPE1 BBS4 KO                       | BBS9-YFP  |
| 36. | YFP-BBS18 BBS4 KO       | RPE1 BBS4 KO                       | YFP-BBS18 |
| 37. | YFP-BBS1 BBS7 KO        | RPE1 BBS7 KO                       | YFP-BBS1  |
| 38. | YFP-BBS4 BBS7 KO        | RPE1 BBS7 KO                       | YFP-BBS4  |
| 39. | YFP-BBS5 BBS7 KO        | RPE1 BBS7 KO                       | YFP-BBS5  |
| 40. | BBS7-YFP BBS7 KO        | RPE1 BBS7 KO                       | BBS7-YFP  |
| 41. | YFP-BBS8 BBS7 KO        | RPE1 BBS7 KO                       | YFP-BBS8  |
| 42. | BBS9-YFP BBS7 KO        | RPE1 BBS7 KO                       | BBS9-YFP  |
| 43. | YFP-BBS18 BBS7 KO       | RPE1 BBS7 KO                       | YFP-BBS18 |
| 44. | YFP-BBS1 BBS8 KO        | RPE1 BBS8 KO                       | YFP-BBS1  |
| 45. | YFP-BBS4 BBS8 KO        | RPE1 BBS8 KO                       | YFP-BBS4  |
| 46. | YFP-BBS5 BBS8 KO        | RPE1 BBS8 KO                       | YFP-BBS5  |
| 47. | BBS7-YFP BBS8 KO        | RPE1 BBS8 KO                       | BBS7-YFP  |
| 48. | YFP-BBS8 BBS8 KO        | RPE1 BBS8 KO                       | YFP-BBS8  |
| 49. | BBS9-YFP BBS8 KO        | RPE1 BBS8 KO                       | BBS9-YFP  |

**Table S2. List of RPE1 cell lines used in this study.** YFP position in name of the YFP-tagged BBSome subunit indicates either the N-terminal (YFP-BBS) or C-terminal tagging (BBS-YFP), KO – knockout.

| 50. | YFP-BBS18 BBS8 KO       | RPE1 BBS8 KO        | YFP-BBS18 |
|-----|-------------------------|---------------------|-----------|
| 51. | YFP-BBS1 <i>BBS9</i> KO | RPE1 <i>BBS9</i> KO | YFP-BBS1  |
| 52. | YFP-BBS4 <i>BBS9</i> KO | RPE1 BBS9 KO        | YFP-BBS4  |
| 53. | YFP-BBS5 <i>BBS9</i> KO | RPE1 BBS9 KO        | YFP-BBS5  |
| 54. | BBS7-YFP <i>BBS9</i> KO | RPE1 BBS9 KO        | BBS7-YFP  |
| 55. | YFP-BBS8 <i>BBS9</i> KO | RPE1 BBS9 KO        | YFP-BBS8  |
| 56. | BBS9-YFP <i>BBS9</i> KO | RPE1 BBS9 KO        | BBS9-YFP  |
| 57. | YFP-BBS18 BBS9 KO       | RPE1 BBS9 KO        | YFP-BBS18 |
| 58. | YFP-BBS1 BBS18 KO       | RPE1 BBS18 KO       | YFP-BBS1  |
| 59. | YFP-BBS4 BBS18 KO       | RPE1 BBS18 KO       | YFP-BBS4  |
| 60. | YFP-BBS5 BBS18 KO       | RPE1 BBS18 KO       | YFP-BBS5  |
| 61. | BBS7-YFP BBS18 KO       | RPE1 BBS18 KO       | BBS7-YFP  |
| 62. | YFP-BBS8 BBS18 KO       | RPE1 BBS18 KO       | YFP-BBS8  |
| 63. | BBS9-YFP BBS18 KO       | RPE1 BBS18 KO       | BBS9-YFP  |
| 64. | YFP-BBS18 BBS18 KO      | RPE1 BBS18 KO       | YFP-BBS18 |

Table S3. Calculated parameters derived from FCS measurements in WT and *BBS* KO RPE1 cells expressing YFP-tagged BBSome subunits. Diffusional mobility of BBSome subunits was measured in the cytoplasm by FCS. Diffusion time  $\tau$  was obtained by fitting the autocorrelation function with the one-component anomalous diffusion fit. The mean  $\pm$  SD from n>10 is shown. n.a., not applicable, n.d., not determined

|           | Diffusion time $\tau \pm \tau_{SD}$ [µs] |          |          |          |          |          |           |
|-----------|------------------------------------------|----------|----------|----------|----------|----------|-----------|
| Cell line | YFP-BBS1                                 | YFP-BBS4 | YFP-BBS5 | BBS7-YFP | YFP-BBS8 | BBS9-YFP | YFP-BBS18 |
| WT        | 867±272                                  | 850±299  | 602±280  | 467±92   | 641±158  | 516±123  | 372±84    |
| BBS1 KO   | n.a.                                     | 676±217  | 522±87   | 465±133  | 651±218  | 616±103  | 385±70    |
| BBS2 KO   | 830±156                                  | 810±313  | 560±114  | n.d.     | 646±139  | n.d.     | n.d.      |
| BBS4 KO   | 902±401                                  | n.a.     | 536±133  | 436±101  | 695±278  | 586±124  | 357±88    |
| BBS7 KO   | 701±205                                  | 672±180  | 505±92   | n.a.     | 564±109  | n.d.     | 336±63    |
| BBS8 KO   | n.d.                                     | n.d.     | 540±113  | n.d.     | n.a.     | n.d.     | 395±86    |
| BBS9 KO   | 636±150                                  | 610±466  | 523±138  | n.d.     | 687±164  | n.a.     | 341±66    |
| BBS18 KO  | 815±152                                  | 917±258  | 568±85   | n.d.     | 591±110  | 666±114  | n.a.      |

Table S4. Calculated parameters derived from FRAP analysis of the BBSome subunits at the pericentriolar satellites and the centrosome/basal body. Dynamic turnover of the BBSome subunits was measured at the pericentriolar satellites and centrosome/basal body by FRAP. Halftime  $T_{1/2}$  and mobile fraction  $F_m$  were obtained by fitting the recovery curves with the one component association fit. The mean and 95% confidence intervals (CI) of 20-30 measurements is shown.

| DDE1                         | Cell line | Protein   | Hal   | ftime T <sub>1/2</sub> [s] | Mobile fraction F <sub>m</sub> [%] |                  |
|------------------------------|-----------|-----------|-------|----------------------------|------------------------------------|------------------|
| KFE1                         |           | analysed  | mean  | 95% CI                     | mean                               | 95% CI           |
| Pericentriolar<br>satellites | WT        | YFP BBS4  | 20.75 | 15.06 to 33.39             | 0.1606                             | 0.1493 to 0.1718 |
|                              | BBS1 KO   | YFP BBS4  | 15.11 | 12.36 to 19.42             | 0.1783                             | 0.1724 to 0.1843 |
|                              | BBS1 KO   | YFP BBS5  | 11.67 | 7.787 to 23.26             | 0.3041                             | 0.2900 to 0.3182 |
|                              | BBS1 KO   | BBS7 YFP  | 14.34 | 9.264 to 31.73             | 0.3811                             | 0.3518 to 0.4104 |
|                              | BBS1 KO   | YFP BBS8  | 11.19 | 8.819 to 14.75             | 0.2115                             | 0.2046 to 0.2183 |
|                              | BBS1 KO   | BBS9 YFP  | 8.24  | 5.637 to 15.30             | 0.4335                             | 0.4188 to 0.4482 |
|                              | BBS1 KO   | YFP BBS18 | 13.10 | 8.542 to 28.08             | 0.3474                             | 0.3230 to 0.3717 |
| Centrosome/                  | WT        | YFP BBS1  | 4.812 | 4.078 to 5.869             | 0.7095                             | 0.7025 to 0.7166 |
| basal body                   | BBS4 KO   | YFP BBS1  | 4.028 | 3.657 to 4.483             | 0.8309                             | 0.8261 to 0.8357 |

Table S5. Calculated parameters derived from FRAP analysis of the BBSome subunits in ciliary base and ciliary tip. Dynamic turnover of the BBSome subunits was measured in the base and tip of the primary cilia by FRAP. Halftime  $T_{1/2}$  and mobile fraction  $F_m$  were obtained by fitting the recovery curves with the one component association fit. The mean and 90% confidence intervals (CI) of 20-30 measurements is shown.

| DDE1 WT | Protein   | Halftime T <sub>1/2</sub> [s] |                | <b>Mobile fraction F</b> <sub>m</sub> [%] |                  |  |
|---------|-----------|-------------------------------|----------------|-------------------------------------------|------------------|--|
| KFEI WI | analysed  | mean                          | 90% CI         | mean                                      | 90% CI           |  |
|         | YFP BBS1  | 1.806                         | 1.399 to 2.548 | 0.4147                                    | 0.4122 to 0.4171 |  |
|         | YFP BBS4  | 3.373                         | 2.120 to 8.260 | 0.3572                                    | 0.3537 to 0.3607 |  |
| Ciliany | YFP BBS5  | 3.843                         | 2.544 to 7.856 | 0.3390                                    | 0.3363 to 0.3417 |  |
| DASE    | BBS7 YFP  | 4.216                         | 3.416 to 5.505 | 0.2974                                    | 0.2951 to 0.2998 |  |
| DASE    | YFP BBS8  | 6.223                         | 4.617 to 9.543 | 0.2437                                    | 0.2408 to 0.2466 |  |
|         | BBS9 YFP  | 2.783                         | 1.776 to 6.433 | 0.2791                                    | 0.2764 to 0.2817 |  |
|         | YFP BBS18 | 3.454                         | 2.421 to 6.024 | 0.3254                                    | 0.3230 to 0.3277 |  |
|         | YFP BBS1  | 3.488                         | 2.728 to 4.836 | 0.5600                                    | 0.5566 to 0.5635 |  |
|         | YFP BBS4  | 2.308                         | 1.545 to 4.564 | 0.5410                                    | 0.5376 to 0.5444 |  |
| Ciliany | YFP BBS5  | 2.045                         | 1.373 to 4.002 | 0.5187                                    | 0.5157 to 0.5218 |  |
|         | BBS7 YFP  | 2.626                         | 1.927 to 4.123 | 0.3995                                    | 0.3959 to 0.4031 |  |
| IIF     | YFP BBS8  | 2.993                         | 2.226 to 4.567 | 0.3850                                    | 0.3814 to 0.3885 |  |
|         | BBS9 YFP  | 1.823                         | 1.215 to 3.649 | 0.4534                                    | 0.4500 to 0.4568 |  |
|         | YFP BBS18 | 2.310                         | 1.578 to 4.305 | 0.5192                                    | 0.5162 to 0.5223 |  |