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Results 

SI-1: Model Validation 
Table S1: Cross-validation results for overall, spatial, temporal (monthly and yearly), and null 
model performance of random forest predicting WNV presence/absence in Cx. quinquefasciatus 
pools. Overall results reflect predictive performance on randomly withheld observations. 
Blocked k-fold cross-validation on withheld years, months, and surveillance sites generated 
estimates of performance in novel temporal and spatial domains. Null model predictions assume 
WNV is either present (Null - All Present) or absent (Null - All Absent) in all samples. 

  AUC Sensitivity Specificity Accuracy Balanced Acc. 

Overall 0.88 0.82 0.80 0.80 0.81 

Spatial 0.87 0.80 0.79 0.79 0.79 

Monthly 0.87 0.77 0.80 0.79 0.79 

Yearly 0.85 0.72 0.81 0.80 0.76 

Null - All 
Absent 

0.50 0.00 1.00 0.88 0.50 

Null - All 
Present 

0.50 1.00 0.00 0.12 0.50 
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SI-2: Predictor Importance and Marginal Effects of Temperature 
 

 
Figure S1. Random forest model variable importance of the ten best predictors according to (a) 
Gini index and (b) mean decrease in model accuracy. Variable names on y-axis include the 
temporal aggregation (week, month, quarter) and lag (1-3) or buffer radius of the predictor. 
Weekly, monthly and quarterly aggregations represent the average over 7, 30, and 90 days 
respectively. 
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Figure S2: Marginal effects plots showing the marginal change in the predicted probability of 
WNV presence in Cx. quinquefasciatus pools (Cx. infection probability) associated with: (a) 
diurnal temperature variation (sum of effects of one-month lag and one-season lag); and (b) all 
temperature predictors in the random forest model (including all lags and daily, weekly, monthly, 
and quarterly aggregations). Observations in (b) in which the average diurnal variation in the 
month prior to sampling was greater than 18°C are highlighted in red. Vertical dashed lines 
denote the transitional range (21°C-22.7°C). Points in (a) and (b) represent all observations over 
the study period. The smoothed marginal effects curves were generated with a generalized 
additive model. 
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Figure S3: Geographic variability in the (a) marginal effects of mean temperature (one-month 
lag), (b) marginal effects of all temperature predictors including all lags and temporal 
aggregations, and (c) predicted probability of WNV presence in Cx. quinquefasciatus pools 
across the LA metro area. Points represent all observations at mosquito surveillance sites 
randomly jittered to limit point overlap. 
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Figure S4: Weekly trends in (a) monthly mean temperature and (b) Cx. infection probability 
from 2006-2016. The yellow box in (a) marks transitional temperatures (21.0 - 22.7°C) between 
the inhibitory and favorable temperature ranges.  
 
 
 



 6 

 
 
Figure S5: The fitted linear relationships between the difference in monthly mean temperature 
compared to the regional average and the average monthly Cx. infection probability for each 
metropolitan LA climate zone in August and September (left) and July and October (right). 
Slopes estimated separately by zone (color). 
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SI-3: Future Climate Projections 
 

 

Figure S6: Projected mid-century (2040 to 2069) changes in mean temperature in a) August 
and September and b) July and October derived from an ensemble of four global climate 
projections of daily minimum and maximum temperature following Representative Concentration 
Pathway 4.5. The four models used (HadGEM2-ES, CNRM-CM5, CanESM2, and MIROC5) 
were selected by California’s Climate Action Team Research Working Group to represent a 
range of possible simulations (17). Global models were downscaled to ~6 km resolution using 
the "Localized Constructed Analogs” statistical technique (18). Projected changes represent the 

a 

b 
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difference between mean temperature at mid-century (2040 to 2069) and during a 30-year 
period centered on the study period (1996-2025). 
 
 
 
 
 
 
 

 
Figure S7: Histograms of observed monthly mean temperature conditions (grey bars) and the 
expected distribution if observed temperatures increased by mid-century (2040 to 2069) 
according to conservative Representative Concentration Pathway 4.5 projections (red bars). 
Separate histograms are provided for each climate zone (rows) from July through October 
(columns). Vertical dashed lines identify the bounds of the transitional temperature range (21.0 - 
22.7°C). The four models used (HadGEM2-ES, CNRM-CM5, CanESM2, and MIROC5) were 
selected by California’s Climate Action Team Research Working Group to represent a range of 
possible simulations (17). Global models were downscaled to ~6 km resolution using the 
"Localized Constructed Analogs” statistical technique (18) and averaged over each climate 
zone.  
 

Methods 

SI-4: Mosquito Surveillance Data and Human WNV Cases 
CalSurv data were acquired via a data request for mosquito traps and pools, which 

provide information on trapping efforts to survey mosquito abundance and efforts to detect WNV 
within these mosquitos, respectively. We included data from several vector control agencies in 
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the Los Angeles metropolitan area (LA metro), including the Greater LA County Vector Control 
District (N=15,971 trap nights), West Valley Mosquito and Vector Control District (N=1,393 trap 
nights), LA County West Vector and Vector-borne Disease Control District (N=1,081 trap 
nights), San Bernardino Mosquito and Vector Control Program (N=291 trap nights), and the 
Long Beach Vector Control Program (N= 148 trap nights). These data were subsetted to include 
only adult female Cx. quinquefasciatus surveillance records. Further information on the reason 
for excluding Cx. tarsalis from our analysis is available in the main text. Additionally, several 
other nationally/globally important WNV vectors, Cx. pipiens and Cx. restuans, were not 
detected in our study area.  

To account for potential differences in trapping and processing methodology, we 
included dummy variables for each agency and for observations with an unreported agency 
(N=17,577 trap nights). A dummy predictor variable was also included for trap type to account 
for differences in the abundance of female Cx. quinquefasciatus captured and differences in the 
probability detecting WNV in pools among the two trap types (1, 2). Trap data were collected 
from January-December, although the trapping frequency differed between surveillance sites (N 
= 928 sites) and ranged from 1-441 observations (mean=39.2) over the 11 year study period. 
The location and operational period of surveillance sites were determined based on the specific 
priorities of the vector control agencies and differed between years. We only included 
observations that employed RT-PCR assays to test for WNV in mosquito pools, because it is 
considered the gold standard for detecting WNV (3).  

WNV presence/absence in female Cx. quinquefasciatus pools was the outcome variable 
in the random forest model. Maximum likelihood estimates of daily vector infection rates (MLE-
IR)—a common alternative outcome—could not be calculated from our dataset comprising 
many single pools typically collected on one trap-night (>75% of observations had only one 
pool); sampling at individual traps was also too infrequent to generate temporally aggregated 
MLE-IR estimates at individual traps across the study area. Likewise, estimates of minimum 
infection rate (MIR), in which only one mosquito from each infected pool is assumed to be 
infected, contained significant outliers in cases where pools size was very small and offered no 
substantive advantage over presence/absence estimates since pool size was included as a 
predictor in the model. 

The geographic location of human West Nile non-neuroinvasive and neuroinvasive 
disease cases was attributed to the census tract in which the individual resided. Though 
exposure to WNV may not have occurred in an individual’s census tract of residence, it is likely 
to be a reasonable approximation of the location of exposure given that Culex vectors are most 
active at dawn and dusk when individuals are likely to be in closer proximity to their home. WNV 
cases in California are identified through clinical and laboratory criteria reported to CDPH, which 
subsequently confirms that they meet the Council of State and Territorial Epidemiologists case 
definition (4). We imputed missing onset dates (n=11, 0.4% of cases) by estimating them to be 
four days prior to known hospitalization dates, based on the average difference between onset 
and hospitalization in cases where both dates were available. In general, onset dates can be 
unreliable because they may depend on individual patients remembering when symptoms 
began, but for the purposes of our analysis we attributed cases to months rather than specific 
days. 
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SI-5: Climate and Land Cover Data 
Daily values for all gridded temporal predictors (temperature [°C], precipitation [mm], and 

drought status [mm]) from 2005-2016 were determined by extracting the value of the raster cell 
containing the coordinates of each mosquito surveillance site (raster package in R version 
3.5.1). Average percent forest cover, average percent impervious cover, average elevation (m), 
and total palustrine and riverine wetland area (m2) were estimated within radial buffers (10m, 
100m, and 1000m) surrounding mosquito surveillance sites (raster package in R version 3.5.1). 
Daily temperature, and precipitation were aggregated and lagged to generate several additional 
predictors, including average daily (1, 2, 3 day lags), average weekly (1-7, 8-14, 15-21 day lag), 
average monthly (1-30, 31-60, 61-90 day lags), and average quarterly (1-90, 91-180, 181-270 
day lags) values during the period that preceded the date of collection at a mosquito 
surveillance trap. Drought/total column soil moisture was calculated at average weekly (1-7, 8-
14, 15-21 day lags), monthly (1-30, 31-60, 61-90 day lags) and quarterly (1-90, 91-180, 181-270 
days lags) aggregations. Large quarterly lags of temperature, precipitation and drought were 
included in order to account for the effects of climate conditions in the months prior to the WNV 
transmission season, including the preceding winter and fall. We did not resample the gridded 
datasets because they were never directly compared in the analysis and any adjustments to the 
resolution would have introduced error or sacrificed information. 
 
 
Climate and land cover predictor variables were derived from weather stations, aerial 
photography, and satellite monitoring data: 

1. Temperature: Gridded daily minimum and maximum temperature (°C) at 800m 
resolution were acquired from TopoWX (Data Version 2016.1; 5). We also derived daily 
gridded mean temperature ((maximum+minimum)/2) and diurnal variation (maximum-
minimum) at 800m resolution using this dataset. 

2. Precipitation: Gridded daily total precipitation (mm) at 4km resolution were acquired from 
PRISM (6). 

3. Drought: We quantified drought using two related metrics: daily total column soil 
moisture (mm) and daily anomalies in total column soil moisture at 1/16 degree (~6km) 
spatial resolution. Soil moisture in three soil strata, spanning the surface to ~1.5m deep 
(~0-10cm, ~10-50cm, ~50-150cm), were estimated using the Variable Infiltration 
Capacity (VIC) hydrologic model (7). Baseline total column soil moisture for calculating 
total column anomalies was estimated at each mosquito surveillance site as the average 
total column soil moisture for each day of the year (1-365) across the entire study period 
(2006-2016), VIC-based soil moisture simulations compare well with standard drought 
indices like Palmer Drought Severity Index, and are available at higher spatial and 
temporal resolution (8, 9). 

4. Wetland Cover: Palustrine and riverine wetland cover were acquired from the U.S. Fish 
and Wildlife Service National Wetlands Inventory (NWI), which created vectorized 
outlines of wetlands using at least 1:40,000 scale (1-meter ground resolution) aerial 
imagery captured in 2005 or 2006 (10).  
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5. Forest Cover: Gridded 30m spatial resolution percent canopy cover during peak growing 
season (circa 2010) was acquired from the United States Geological Survey (USGS) 
2010 Global Tree Canopy Cover Landsat-based dataset (11).  

6. Impervious Cover: Gridded 30m resolution percent impervious surface cover (circa 
2011) was acquired from the USGS 2011 Landsat-based National Land Cover Database 
Percent Developed Imperviousness layer (12). 

7. Elevation: Gridded 10m resolution digital elevation data (based on digitized contour 
maps and, where available, other sources like aircraft-based lidar) were acquired from 
the USGS National Elevation Dataset (13).  
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Table S3: Predictor variables included in random forest model.  
 
Model Predictors Spatial 

Resolution 
Temporal 
Resolution 

Data Source 

Climate (3 lags at daily, weekly, 
monthly, quarterly aggregations) 

      

Mean Temperature 800m Daily TopoWX 
Minimum Temperature 800m Daily TopoWX 
Maximum Temperature 800m Daily TopoWX 
Diurnal Variation 800m Daily TopoWX 
Total Precipitation 4km Daily PRISM 
Drought (total column soil 
moisture/total column anomaly) 

~6km Daily Variable Infiltration 
Capacity (VIC) Model 

Land-cover (quantified within 10, 
100, 1000m buffers) 

      

  Palustrine and Riverine Wetland  Vectorized — National Wetlands 
Inventory (NWI) 

   Canals and ditches Vectorized — National Hydrography 
Dataset (NHD) 

   Impervious surfaces 30m — National Land Cover 
Dataset (NLCD) 

   Canopy cover 30m — USGS Global Tree 
Canopy Cover 

   Elevation 10m — National Elevation 
Dataset (NED) 

Non-Environmental Predictors       
# Collected Cx. quinquefasciatus — 1 trap-night California Vectorborne 

Disease Surveillance 
System 

# Pooled Cx. quinquefasciatus — 1 trap-night California Vectorborne 
Disease Surveillance 
System 

Trap Latitude — — — 
Trap Longitude — — — 
Year — — — 
Month — — — 
Week of Year — — — 
Vector Control Agency — — California Vectorborne 

Disease Surveillance 
System 

Trap Type — — California Vectorborne 
Disease Surveillance 
System 
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SI-6: Model Tuning 
A grid search designed to optimize several random forest hyperparameters, including 

the bootstrap sample size and the appropriate level of undersampling to correct class 
imbalance, was conducted on a dataset consisting of a random subsample of 20% of 
observations. Models were built using ensembles of 500 trees, which was sufficient for 
classification accuracy to stabilize in both classes. Out-of-bag (OOB) cross validation (i.e., 
predictions on observations not included in bootstrap samples employed in tree construction) 
was used to select the hyperparameter set that maximized the balanced accuracy of model 
predictions (14). The best performing hyperparameter set included a 50/50 class balance and a 
bootstrap sample size equal to 25% of the observations in the minority class. All predictor 
variables were included as candidates at each split (maximum mtry) to improve interpretability 
of marginal effects.  

The remaining 80% of observations were used to evaluate model performance and 
assess the importance and marginal effects of predictors. OOB validation was used to calculate 
overall performance of the model, including measures of AUC (area under the receiver 
operating characteristic curve), sensitivity, specificity and accuracy. Blocked k-fold cross 
validation was used to estimate the dependence of model predictions on temporal, spatial, and 
repeated measure structures (15). These error estimates helped to determine the 
generalizability of model predictions, or the anticipated error on novel predictions in spatial or 
temporal domains.  

To assess temporal prediction error, we generated separate cross-validation folds, each 
representing all observations collected in one of the years or months of mosquito collection. We 
trained a model on all years or months except one, then predicted WNV presence/absence for 
observations in the hold-out fold. Each year or month was held out once and the hold-out AUC, 
sensitivity, specificity, and accuracy were calculated (15, 16).  

To estimate combined spatial and repeated measures prediction error, each surveillance 
site with at least 10 independent observations (enough to generate robust error estimates) and 
all sites within a 10km radius of that site were iteratively withheld from a training model. Over 
the 11 years, there were 456 surveillance sites with at least 10 independent observations. 
Predictions were then generated on the hold-out observations and the AUC, sensitivity, 
specificity, and accuracy were calculated. This method ensured that predictions on the hold-out 
sites were not informed by observations from that site (repeated measures) or nearby sites 
(spatial autocorrelation). The removal of sites within a 10km radius was a conservative measure 
to ensure that spatial dependencies between nearby sites did not inform predictions.  

A consequence of the rarity of WNV detection in pools (12% positive, 88% negative) and 
the desire to achieve balanced sensitivity and specificity is the model’s tendency to overpredict 
the presence of WNV; 80% accuracy for both presence and absence leads to many more false 
positives than false negatives (18% and 2% of all observations were false positive and false 
negatives, respectively).  
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