Environ Health Perspect

DOI: 10.1289/EHP6635

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

The 'SELection End points in Communities of bacTeria' (SELECT) Method: A Novel Experimental Assay to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the Environment

Aimee K. Murray, Isobel C. Stanton, Jessica Wright, Lihong Zhang, Jason Snape, and William H. Gaze

Table of Contents

Table S1. All primers and gBlocks used in this study for targeting 16S rRNA, *CTX-M* group, *ermF*, *qnrS* and *int11* genes.

Figure S1. Risk Quotients (RQs) = lowest determined SELECT predicted no effect concentration for resistance (PNEC^R)/maximum measured environmental concentration (MEC_{max}) or median measured environmental concentration (MEC_{med}). MEC_{med} values include the non-detects. Measured environmental concentrations were extracted for all antibiotics except gentamicin from the UmweltBundesamt (2019) pharmaceuticals in the environment database. For gentamicin, predicted environmental concentration data were used. Risk was broadly classified in a traffic light colour system. Red, bold triangle = High risk (RQ >1), using MEC_{max}; red, empty triangle = high risk (RQ >1), using MEC_{med}; orange, bold square = medium risk (RQ > 0.1 and <1), using MEC_{max}; green, bold circle = low risk (RQ < 0.1), using MEC_{max}; green, empty circle = low risk (RQ < 0.1), using MEC_{med}. Exact RQ values are reported.

Figure S2. Predicted no effect concentrations for resistance (PNEC^Rs,logged) determined using the SELECT (blue triangle) and qPCR methods (pink circle). Error bars represent the test concentrations directly above and directly below the NOECs used to calculate the PNEC^Rs. All SELECT PNEC^Rs were determined by taking the no observed effect concentrations and applying an assessment factor of 10. For all qPCR PNEC^Rs, the *intI1* gene target is presented. QPCR PNEC^Rs for azithromycin, clarithromycin, erythromycin and ciprofloxacin were taken from Stanton *et al.* (2020).

Figure S3. Bland-Altman analysis to compare the SELECT and qPCR-derived PNEC^Rs. QPCR PNEC^Rs for azithromycin, clarithromycin, erythromycin and ciprofloxacin were taken from Stanton *et al.* (2020).

Figure S4. SELECT predicted no effect concentrations for resistance (PNEC^Rs, logged) were determined for four antibiotics, using wastewater samples from two different time points (2016 and 2018), two different wastewater treatment plants (WWTPs 'A' serving circa. 43,000, and 'B' serving circa. 77,000) and two different wastewater types (influent and effluent). Bars represent the test concentrations directly above and below the no observed effect concentrations used to determine the PNEC^R.

Figure S5. Logged SELECT predicted no effect concentrations for resistance (PNEC^Rs) were determined for four antibiotics using wastewater treatment plant (WWTP) A influent (2018) samples using Iso-sensitest broth or artificial sewage, at 20 °C or 37 °C. Bars represent the test concentrations directly above and below the no observed effect concentrations used to determine the PNEC^R.

References

Additional File- Excel Document

Table S1. All primers and gBlocks used in this study for targeting 16S rRNA, *CTX-M* group, *ermF*, *qnrS* and *intI1* genes.

Gene target	Forward	Reverse	Product size	gBlock sequence and length	References
	primer (5' to	primer (5' to	(bp)	(bp)	
	3')	3')			
16S rRNA	CGGTGAAT	GGWTACC	142	ACGGTGAATACGTTCCCG	(Suzuki et al.
	ACGTTCYC	TTGTTACG		GGCCTTGTACACACCGCC	2000)
	GG	ACT		CGTCACACCATGGGAGTG	(Murray et al.
				GGTTGCAAAAGAAGTAGG	2018)
				TAGCTTAACCTTCGGGAG	
				GGCGCTTACCACTTTGTG	
				ATTCATGACTGGGGTGAA	
				GTCGTAACAAGGTAACCG	
				- 144	
CTX-M	ATGTGCAG	ATCACKC	~300	GATGTGCAGCACCAGTAA	(Birkett et al.
group	YACCAGTA	GGRTCG		AGTGATGGCCGCGGCCG	2007)
	ARGTKATG	CCXGGR		CGGTGCTGAAGAAAAGTG	(Murray et al.
	GC	AT		AAAGCGAACCGAATCTGT	2018)
				TAAATCAGCGAGTTGAGA	
				TCAAAAAATCTGACCTTGT	
				TAACTATAATCCGATTGCG	
				GAAAAGCACGTCAATGGG	
				ACGATGTCACTGGCTGAG	
				CTTAGCGCGGCCGCGCT	
				ACAGTACAGCGATAACGT	
				GGCGATGAATAAGCTGAT	
				TGCTCACGTTGGCGGCC	
				CGGCTAGCGTCACCGCG	
				TTCGCCCGACAGCTGGG	
				AGACGAAACGTTCCGTC	
				TCGACCGTACCGAGCCG	
				ACGTTAAACACCGCCATT	

			CCGGGCGATCCGCGTGA	
			TA - 338	
ermF	TCTGGGAG	ACTTTCAG	TCTGATGCCCGAAA	(Stanton et al.
	GTTCCATT	GACCTAC	TGTTCAAGTTGTCG	2020)
	GTCCT	CTCATAGA	GTTGTGATTTTAGG	
			AATTTTGCAGTTCC	
			GAATTTCCTTTCAA	
			AGTGGTGTCAAATA	
			TTCTTATGGCATTA	
			CTTCCGATATTTTC	
			AAAATCTGATGTTT	
			GAGAGTCTTGGAA	
			ATTTTCTGGGAGGT	
			TCCATTGTCCTTCA	
			ATTAGAACCTACAC	
			AAAAGTTATTTTCGA	
			GGAAGCTTTACAAT	
			CCATATACCGTTTT	
			CTATCATACTTTTT	
			TTGATTTGAAACTT	
			GTCTATGAGGTAG	
			GTCCTGAAAGTTT	
			CTTGCCACCGCCA	
			-294	
qnrS	CGACGTGC	GGCATTGT	TTCGACGTGCTAACT	(Colomer-
	TAACTTGC	TGGAAACT	TGCGTGATACGACAT	Lluch et al.
	GTGA	TGCA	TCGTCAACTGCAAG	2014)
			TTCATTGAACAGGGT	(Stanton et al.
			GATATCGAAGGCTG	2020)
			CCACTTTGATGTCG	
			CAGATCTTCGTGAT	
			GCAAGTTTCCAACA	
			ATGCCAACTT - 125	

intl1	GCCTTGAT	GATCGGT	GGCCTTGATGTTACCC	(Barraud et al.
	GTTACCCG	CGAATGC	GAGAGCTTGGCACCC	2010)
	AGAG	GTGT	AGCCTGCGCGAGCAG	(Stanton et al.
			CTGTCGCGTGCACGG	2020)
			GCATGGTGGCTGAAG	
			GACCAGGCCGAGGG	
			CCGCAGCGGCGTTG	
			CGCTTCCCGACGCC	
			CTTGAGCGGAAGTA	
			TCCGCGCGCCGGG	
			CATTCCTGGCCGTG	
			GTTCTGGGTTTTTG	
			CGCAGCACACGCA	
			TTCGACCGATCC - 198	

For Excel Tables S1, S2, S3 & S4 see attached excel sheet.

Figure S1. Risk Quotients (RQs) = lowest determined SELECT predicted no effect concentration for resistance (PNEC^R)/maximum measured environmental concentration (MEC_{max}) or median measured environmental concentration (MEC_{med}). MEC_{med} values include the non-detects. Measured environmental concentrations were extracted for all antibiotics except gentamicin from the UmweltBundesamt (2019) pharmaceuticals in the environment database. For gentamicin, predicted environmental concentration data were used. Risk was broadly classified in a traffic light colour system. Red, bold triangle = High risk (RQ >1), using MEC_{max}; red, empty triangle = high risk (RQ >1), using MEC_{med}; orange, bold square = medium risk (RQ > 0.1 and <1), using MEC_{max}; green, bold circle = low risk (RQ < 0.1), using MEC_{max}; green, empty circle = low risk (RQ < 0.1), using MEC_{med}. Exact RQ values are reported.

Figure S2. Predicted no effect concentrations for resistance (PNEC^Rs,logged) determined using the SELECT (blue triangle) and qPCR methods (pink circle). Error bars represent the test concentrations directly above and directly below the NOECs used to calculate the PNEC^Rs. All SELECT PNEC^Rs were determined by taking the no observed effect concentrations and applying an assessment factor of 10. For all qPCR PNEC^Rs, the *intI1* gene target is presented. QPCR PNEC^Rs for azithromycin, clarithromycin, erythromycin and ciprofloxacin were taken from Stanton *et al.* (2020).

Figure S3. Bland-Altman analysis to compare the SELECT and qPCR-derived PNEC^Rs. QPCR PNEC^Rs for azithromycin, clarithromycin, erythromycin and ciprofloxacin were taken from Stanton *et al.* (2020).

Figure S4. SELECT predicted no effect concentrations for resistance (PNEC^Rs, logged) were determined for four antibiotics, using wastewater samples from two different time points (2016 and 2018), two different wastewater treatment plants (WWTPs 'A' serving circa. 43,000, and 'B' serving circa. 77,000) and two different wastewater types (influent and effluent). Bars represent the test concentrations directly above and below the no observed effect concentrations used to determine the PNEC^R.

Figure S5. Logged SELECT predicted no effect concentrations for resistance (PNEC^Rs) were determined for four antibiotics using wastewater treatment plant (WWTP) A influent (2018) samples using Iso-sensitest broth or artificial sewage, at 20 °C or 37 °C. Bars represent the test concentrations directly above and below the no observed effect concentrations used to determine the PNEC^R.

References

Barraud O, Baclet MC, Denis F, Ploy MC. 2010. Quantitative multiplex real-time pcr for detecting class 1, 2 and 3 integrons. The Journal of antimicrobial chemotherapy 65:1642-1645. Birkett CI, Ludlam HA, Woodford N, Brown DFJ, Brown NM, Roberts MTM, et al. 2007. Real-time taqman pcr for rapid detection and typing of genes encoding ctx-m extended-spectrum β -lactamases. Journal of Medical Microbiology 56:52-55.

Colomer-Lluch M, Jofre J, Muniesa M. 2014. Quinolone resistance genes (qnra and qnrs) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. The Journal of antimicrobial chemotherapy 69:1265-1274.

Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, et al. 2018. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio 9.

Stanton IC, Murray AK, Zhang L, Snape J, Gaze WH. 2020. Evolution of antibiotic resistance at low antibiotic concentrations: Selection below the minimal selective concentration. Communications Biology.

Suzuki MT, Taylor LT, DeLong EF. 2000. Quantitative analysis of small-subunit rrna genes in mixed microbial populations via 5'-nuclease assays. Applied and Environmental Microbiology 66:4605-4614.

UmweltBundesamt. 2019. Pharmaceuticals in the environment. (UBA, ed).