Inferring Tumor Progression in Large Datasets: Supporting Information 1 Mohammadreza Mohaghegh Neyshabouri, Seong-Hwan Jun, Jens Lagergren

Likelihood calculation details

We want to calculate $p(Y | \mathcal{P}, \sigma_{1:M}, \epsilon, \delta)$, where $Y = \{Y_m : m \in \{1, ..., M\}\}\$ is our observation matrix, $\sigma_{1:M} = (\sigma_1, \ldots, \sigma_M)$ is the given vector of progression stages of the tumors, and $\mathcal{P} =$ $(D_1, D_2, \ldots, D_L, P)$ is our pathway progression model. Since the tumors are independent given P and $\sigma_{1:M}$,

$$
p(Y|\mathcal{P}, \sigma_{1:M}, \epsilon, \delta) = \prod_{m=1}^{M} p(Y_m|\mathcal{P}, \sigma_m, \epsilon, \delta).
$$

We separate the bits corresponding to different pathways as:

$$
p(Y_m|\mathcal{P}, \sigma_m, \epsilon, \delta) = p(Y_{m,P}|\mathcal{P}, \sigma_m, \epsilon, \delta) \prod_{l=1}^{L} p(Y_{m,D_l}|\mathcal{P}, \sigma_m, \epsilon, \delta)
$$
\n(1)

In order to calculate each term of form $p(Y_{m,S}|\mathcal{P}, \sigma_m, \epsilon, \delta)$ in (1), we marginalize over all possible noise-free vectors $Y_{m,S}^*$:

$$
p(Y_{m,S}|\mathcal{P}, \sigma_m, \epsilon, \delta) = \sum_{Y_{m,S}^*} p(Y_{m,S}^*|\mathcal{P}, \sigma_m) p(Y_{m,S}|Y_{m,S}^*, \epsilon, \delta)
$$
\n(2)

If $S \in \{D_1, \ldots, D_{\sigma_m}\}, Y_{m,S}^*$ has to be a one-hot binary vector of length $|S|$. Denoting the number of ones in the observed $Y_{m,S}$ by r, we have:

$$
p(Y_{m,S}|\mathcal{P}, \sigma_m, \epsilon, \delta) = \frac{r}{|S|} (1 - \delta) \epsilon^{r-1} (1 - \epsilon)^{|S|-r} + \frac{|S|-r}{|S|} \delta \epsilon^r (1 - \epsilon)^{|S|-r-1}.
$$
 (3)

The first summand in this expression corresponds to the probability of the 1 in the latent $Y_{m,S}^*$ being among our r observed 1's in $Y_{m,S}$ (which is the case with probability of $r/|S|$), times the probability of getting to $Y_{m,S}$ from such a $Y_{m,S}^*$. In this case, $Y_{m,S}$ is obtained by the 1 in $Y_{m,S}^*$ being kept from flip-back, followed by passenger mutations in $r - 1$ genes (leading to the total of r observed mutations) and no false positives in the remaining $|S| - r$ genes. Similarly, the second summand in (3) corresponds to the probability of the 1 in the latent $Y_{m,S}^*$ being among our $|S| - r$ observed 0's in $Y_{m,S}$ (due to a flip-back). This is the case with probability of $(|S|-r)/|S|$, and if it is, then $Y_{m,S}$ is obtained by a flip-back, followed by passenger mutations in r genes and no false positives in the remaining $|S| - r - 1$ genes.

If $S \in \{D_{\sigma_m+1}, \ldots, D_L\}, P, Y^*_{m,S}$ has to be a vector of $|S|$ zeros. Hence, observing r ones in $Y_{m,S}$, we have exactly r false positives, leading to:

$$
p(Y_{m,S}|\mathcal{P}, \sigma_m, \epsilon, \delta) = \epsilon^r (1 - \epsilon)^{|S| - r}.
$$
\n⁽⁴⁾

Algorithm S1. Fast calculation of the likelihood $p(Y | \mathcal{P}, \alpha, \epsilon, \delta)$

1: Initialize A and B to be zero matrices of shape (z, z) , where $z = \max_{l \in [L]} |D_l|$ 2: for all $m \in \{1, ..., M\}$ do \triangleright Calculate $p(Y_m | \mathcal{P}, \alpha, \epsilon, \delta)$ 3: for $\sigma_m \in \{1, ..., L\}$ do \triangleright Calculate $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$ 4: $R \leftarrow 1$ 5: for $S \in \{D_1, ..., D_L, P\}$ do 6: $r = \|Y_{m,S}\|_1$ 7: **if** $S \in \{D_1, ..., D_{\sigma_m}\}\)$ then 8: if $\mathcal{A}[|S|,r] = 0$ then 9: $A = \frac{r}{|S|}$ $\frac{r}{|S|}(1-\delta)\epsilon^{r-1}(1-\epsilon)^{|S|-r}+\frac{|S|-r}{|S|}$ $\frac{|S|-r}{|S|}\delta\epsilon^{r}(1-\epsilon)^{|S|-r-1}$ 10: $\mathcal{A}[|S|, r] \leftarrow A$ 11: else 12: $A = \mathcal{A} \left[|S|, r \right]$ 13: else 14: **if** $\mathcal{B}[|S|, r] = 0$ then 15: $A = \epsilon^r (1 - \epsilon)^{|S| - r}$ 16: β $[|S|, r] \leftarrow A$ 17: else 18: $A = \mathcal{B}[|S|, r]$ 19: $R \leftarrow R * A$ 20: $p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta) = R$ 21: $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta) = p(\sigma_m | \alpha) p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta)$ 22: $p(Y_m | \mathcal{P}, \alpha, \epsilon, \delta) = \sum_{\sigma_m=1}^{L} p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$ 23: $p(Y|P, \alpha, \epsilon, \delta) = \prod_{m=1}^{M} p(Y_m|P, \alpha, \epsilon, \delta)$

Unknown progression stages

In practice, we do not have the progression stages of individual tumors. Fortunately, we can marginalize out the progression stages vector $\sigma_{1:M}$ using the independence assumption over the samples given the pathways:

$$
p(Y|\mathcal{P}, \alpha, \epsilon, \delta) = \sum_{\sigma_{1:M}} p(Y, \sigma_{1:M}|\alpha, \mathcal{P}, \epsilon, \delta) = \prod_{m=1}^{M} \left(\sum_{\sigma_m=1}^{L} p(Y_m, \sigma_m|\mathcal{P}, \alpha, \epsilon, \delta) \right)
$$
(5)

In order to calculate $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$, we can write it as

$$
p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta) = p(\sigma_m | \alpha) p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta),
$$
\n(6)

where the first term is the prior belief on the stages being σ_m and the second term is given by (1). We consider a uniform prior on the progression stages $\sigma_{1:M}$, i.e., $\alpha = (1/L, \ldots, 1/L)$. However, an alternative prior can be chosen.

In the following subsection, we describe a systematic likelihood calculation scheme, which can prevent us from repetitive calculations while going over our M tumors in the data.

Fast Likelihood Calculation

Given a progression model $\mathcal{P} = (D_1, \ldots, D_L)$, and the data matrix Y, we form a matrix C of shape (M, L) , where $C_{i,j}$ is the number of mutations of tumor i in driver pathway j. Denoting the size of our largest pathway by $z = \max_{l \in [L]} |D_l|$, we form two look-up tables in form of zero matrices \mathcal{A} and β of shape (z, z) . We modify our likelihood calculation algorithm to check the lookup tables before any repetitive calculations. The modified procedure is provided in Algorithm S1.