Inferring Tumor Progression in Large Datasets: Supporting Information 1 Mohammadreza Mohaghegh Neyshabouri, Seong-Hwan Jun, Jens Lagergren

Likelihood calculation details

We want to calculate $p(Y|\mathcal{P}, \sigma_{1:M}, \epsilon, \delta)$, where $Y = \{Y_m : m \in \{1, \ldots, M\}\}$ is our observation matrix, $\sigma_{1:M} = (\sigma_1, \ldots, \sigma_M)$ is the given vector of progression stages of the tumors, and $\mathcal{P} = (D_1, D_2, \ldots, D_L, P)$ is our pathway progression model. Since the tumors are independent given \mathcal{P} and $\sigma_{1:M}$,

$$p(Y|\mathcal{P}, \sigma_{1:M}, \epsilon, \delta) = \prod_{m=1}^{M} p(Y_m|\mathcal{P}, \sigma_m, \epsilon, \delta).$$

We separate the bits corresponding to different pathways as:

$$p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta) = p(Y_{m, P} | \mathcal{P}, \sigma_m, \epsilon, \delta) \prod_{l=1}^{L} p(Y_{m, D_l} | \mathcal{P}, \sigma_m, \epsilon, \delta)$$
(1)

In order to calculate each term of form $p(Y_{m,S}|\mathcal{P}, \sigma_m, \epsilon, \delta)$ in (1), we marginalize over all possible noise-free vectors $Y_{m,S}^*$:

$$p(Y_{m,S}|\mathcal{P},\sigma_m,\epsilon,\delta) = \sum_{Y_{m,S}^*} p(Y_{m,S}^*|\mathcal{P},\sigma_m) p(Y_{m,S}|Y_{m,S}^*,\epsilon,\delta)$$
(2)

If $S \in \{D_1, \ldots, D_{\sigma_m}\}$, $Y_{m,S}^*$ has to be a one-hot binary vector of length |S|. Denoting the number of ones in the observed $Y_{m,S}$ by r, we have:

$$p(Y_{m,S}|\mathcal{P},\sigma_m,\epsilon,\delta) = \frac{r}{|S|}(1-\delta)\epsilon^{r-1}(1-\epsilon)^{|S|-r} + \frac{|S|-r}{|S|}\delta\epsilon^r(1-\epsilon)^{|S|-r-1}.$$
(3)

The first summand in this expression corresponds to the probability of the 1 in the latent $Y_{m,S}^*$ being among our r observed 1's in $Y_{m,S}$ (which is the case with probability of r/|S|), times the probability of getting to $Y_{m,S}$ from such a $Y_{m,S}^*$. In this case, $Y_{m,S}$ is obtained by the 1 in $Y_{m,S}^*$ being kept from flip-back, followed by passenger mutations in r-1 genes (leading to the total of r observed mutations) and no false positives in the remaining |S| - r genes. Similarly, the second summand in (3) corresponds to the probability of the 1 in the latent $Y_{m,S}^*$ being among our |S| - r observed 0's in $Y_{m,S}$ (due to a flip-back). This is the case with probability of (|S| - r)/|S|, and if it is, then $Y_{m,S}$ is obtained by a flip-back, followed by passenger mutations in r genes and no false positives in the remaining |S| - r = 1 genes.

If $S \in \{D_{\sigma_m+1}, \ldots, D_L\}, P, Y_{m,S}^*$ has to be a vector of |S| zeros. Hence, observing r ones in $Y_{m,S}$, we have exactly r false positives, leading to:

$$p(Y_{m,S}|\mathcal{P},\sigma_m,\epsilon,\delta) = \epsilon^r (1-\epsilon)^{|S|-r}.$$
(4)

Algorithm S1. Fast calculation of the likelihood $p(Y|\mathcal{P}, \alpha, \epsilon, \delta)$

1: Initialize \mathcal{A} and \mathcal{B} to be zero matrices of shape (z, z), where $z = \max_{l \in [L]} |D_l|$ 2: for all $m \in \{1, ..., M\}$ do \triangleright Calculate $p(Y_m | \mathcal{P}, \alpha, \epsilon, \delta)$ 3: for $\sigma_m \in \{1, \ldots, L\}$ do \triangleright Calculate $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$ $R \leftarrow 1$ 4: for $S \in \{D_1, ..., D_L, P\}$ do 5: $r = ||Y_{m.S}||_1$ 6: if $S \in \{D_1, ..., D_{\sigma_m}\}$ then 7: if $\mathcal{A}[|S|, r] == 0$ then 8: $A = \frac{r}{|S|} (1-\delta)\epsilon^{r-1} (1-\epsilon)^{|S|-r} + \frac{|S|-r}{|S|} \delta\epsilon^r (1-\epsilon)^{|S|-r-1}$ 9: $\mathcal{A}[|S|, r] \leftarrow A$ 10: else 11: $A = \mathcal{A}[|S|, r]$ 12:else 13:if $\mathcal{B}[|S|, r] == 0$ then 14: $\bar{A} = \epsilon^r (1 - \epsilon)^{|S| - r}$ 15: $\mathcal{B}[|S|, r] \leftarrow A$ 16:else 17: $A = \mathcal{B}[|S|, r]$ 18: $R \leftarrow R * A$ 19: $p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta) = R$ 20: $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta) = p(\sigma_m | \alpha) p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta)$ 21: $p(Y_m | \mathcal{P}, \alpha, \epsilon, \delta) = \sum_{\sigma_m=1}^{L} p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$ 22: 23: $p(Y|\mathcal{P}, \alpha, \epsilon, \delta) = \prod_{m=1}^{M} p(Y_m|\mathcal{P}, \alpha, \epsilon, \delta)$

Unknown progression stages

In practice, we do not have the progression stages of individual tumors. Fortunately, we can marginalize out the progression stages vector $\sigma_{1:M}$ using the independence assumption over the samples given the pathways:

$$p(Y|\mathcal{P}, \alpha, \epsilon, \delta) = \sum_{\sigma_{1:M}} p(Y, \sigma_{1:M}|\alpha, \mathcal{P}, \epsilon, \delta) = \prod_{m=1}^{M} \left(\sum_{\sigma_m=1}^{L} p(Y_m, \sigma_m|\mathcal{P}, \alpha, \epsilon, \delta) \right)$$
(5)

In order to calculate $p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta)$, we can write it as

$$p(Y_m, \sigma_m | \mathcal{P}, \alpha, \epsilon, \delta) = p(\sigma_m | \alpha) p(Y_m | \mathcal{P}, \sigma_m, \epsilon, \delta),$$
(6)

where the first term is the prior belief on the stages being σ_m and the second term is given by (1). We consider a uniform prior on the progression stages $\sigma_{1:M}$, i.e., $\alpha = (1/L, \ldots, 1/L)$. However, an alternative prior can be chosen.

In the following subsection, we describe a systematic likelihood calculation scheme, which can prevent us from repetitive calculations while going over our M tumors in the data.

Fast Likelihood Calculation

Given a progression model $\mathcal{P} = (D_1, \ldots, D_L)$, and the data matrix Y, we form a matrix C of shape (M, L), where $C_{i,j}$ is the number of mutations of tumor i in driver pathway j. Denoting the size of our largest pathway by $z = \max_{l \in [L]} |D_l|$, we form two look-up tables in form of zero matrices \mathcal{A} and \mathcal{B} of shape (z, z). We modify our likelihood calculation algorithm to check the lookup tables before any repetitive calculations. The modified procedure is provided in Algorithm S1.