
S2 Parallelization schemes

S2.1 Parallelization in [3, 6, 5]

We briefly discuss parallelization schemes for NS as they have been discussed in several other placeses like
[3, 6, 5] to better illustrate the difference between our suggested scheme.

In [5] and [3] the parallel algorithm is in principle run like the sequential version, only that at each
iteration i not one particle is sampled from π(θ|l(θ) > εi) but r. The key observation is that any particle
θ? sampled from π(θ|l(θ) > εi) can also be accepted at iteration j > i if l(θ?) > εj . Thus at each iteration i
any particle for which a likelihood gets computed, beyond the first accepted particle, is used in a subsequent
iteration if its likelihood is high enough.

While this provides an intuitive parallelization of the process, the r particles at each iteration i are
sampled from π(θ|l(θ) > εi) but are accepted only if their respective likelihoods are higher than a sequence
of increasing thresholds εi < εi+1 < . . . < εi+r−1, which may result in discarding already sampled particles.
Even despite this theoretical drawback, this method works in practice very well as demonstrated in [5].
However it seems to us wasteful to potetially discard already sample particles.

In [6] the authors suggest to parallelize NS by removing r particles with the lowest r likelihoods from
the live set at each iteration i rather than just one particle. The new threshold εi is taken to be the largest
likelihood of these removed r samples and since r new particles are sampled independently from the same
distribution π(θ|l(θ) > εi), this is done in parallel. This results in a faster compression of the prior mass,
the new particle θ? is sampled from the right distribution π(θ|l(θ) > εi) and the process is run in parallel.
However, the authors in [6] argue that to achieve a similarly low variance of tr as for t1 one needs to use a
higher number of NS samples Nr for the parallel NS algorithm with r parallel processes, which compares to
the number of NS samples N1 used for sequential NS through Nr ≈

√
rN1 particles.

S2.2 Numerical parallelization example

In section 2.2 we described our parallelization scheme. The difference to the parallelization schemes in [6]
is how we weight the particles for the evidence approximation.

We denote with tj the random number that is distributed as the jth highest number among N uniform
numbers on the interval [0, 1]

Assume at the beginning of iteration i the prior mass corresponding to the live particles is xi−1,r. The
prior volume shrinkage after removing θi,1 is just the same as for regular nested sampling xi,1 = t1xi−1,r, since
θi,1 is the particle with the lowest likelihood among N uniformly distributed particles over π(θ|l(θ) > εi−1,r).
After removing the next particle θi,2 the remaining prior volume is xi,2 = t2xi−1,r. Thus, each prior volume
can be written as xi,j = tjxi−1,r (with the obvious boundary condition x0,r = 1). The variance of tr is
monotonically increasing until r = N+1

2 and decreases then again, thus the variance of each tj can be upper
bound by the variance of tr as long as r ≤ N+1

2 (otherwise it can be upper bounded by the variance of tr′
with r′ = N+1

2 ).
We denote the Bayesian evidence approximation, using all samples εi,j up to εm,k with

Z̃m,k
D =

m−1∑
i=1

r∑
j=1

εi,j(xi,j−1 − xi,j) +
k∑

j=1

εm,j(xm,j−1 − xm,j)

We illustrate the variance of the Bayesian evidence estimation on a small example. We assumed a likelihood
function l(θ) = 100 exp(−100θ) with Ω = [0, 1], and ran the LF-NS algorithm for this example. In this
example, the prior volume xi,j corresponding to the parameter θi,j is equal to this parameter xi,j = θi,j . In

Figure S1 A we plotted the resulting values for Z̃i,j
D for each value 1 ≤ i ≤ m and 1 ≤ j ≤ r. We ran 2000/r
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iterations for different values of N and r. The resulting estimations of Z̃i,j
D and the corresponding standard

deviations are shown in Figure S1 A and B. As can be seen when taking the same value for N , the parallel
version with r = 20 has a slighter higher variance. However, when increasing the number of NS particles to
Nr = N + r = 120 the variance decreases compared to the sequential case (r = 1). Note that the speed up
of the paralle version compared to the sequential version is a factor of r.
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