
S8 Comparison with other methods for likelihood-free Bayesian inference

In order to put our LF-NS method into perspective of other approaches that tackle similar kind of problems,
we follow the recent review papers on topics around likelihood-free inference ([8, 7, 3]), and compare the
LF-NS method to the two most widely used likelihood-free inference methods: Approximate Bayesian
Computation (ABC) and particle MCMC (pMCMC). We will briefly outline each of these methods and
apply them to the previously discussed Lac-Gfp model. We also applied our LF-NS method to the Lotka-
Voltera model that has also been used in [3] and compare the results with the ones obtained for pMCMC
and ABC-SMC.

S8.1 pMCMC

We follow [8] and [7] and use the particle MCMC method (pMCMC) as described in [1] and [9] as our first
benchmark method. The pMCMC algorithm runs the standard Metropoliton-Hastings MCMC method, but
replaces the likelihood in the acceptance ratio with a particle filter approximation. Starting from an initial
parameter vector (particle) θ0, in each iteration i = 1, . . . , N a new particle θ∗ is proposed by sampling from
a perturbation kernel q centered around the previous particle

θ? ∼ q(·|θi−1).

Then the likelihood l(y|θ?) is approximated (usually using a particle filter) with l̂(y|θ?) and the acceptance
ratio

A =
π(θ?)l̂(y|θ?)q(θi−1|θ?)

π(θi−1)l̂(y|θi−1)q(θ?|θi−1)

is computed, where π(θ) denotes the prior distribution. With probability min(1, A) the next particle θi is
set to θ? and otherwise to θi−1. The resulting pseudocode is shown in Algorithm 1

INPUT: Observations y, prior π(θ), proposal kernel q(·|·), initial particle θ0, number of required
samples N
OUTPUT: samples {θi}i=1,...,N from the posterior P(θ)

1: for i = 1, . . . , N do
2: Sample θ? ∼ q(·|θi−1)
3: Compute l̂(y|θ?)
4: Compute A = π(θ?)l̂(y|θ?)q(θi−1|θ?)

π(θi−1)l̂(y|θi−1)q(θ?|θi−1)

5: Draw uniform number u ∼ U(·|0, 1)
6: if u ≤ min(1, A) then
7: set θi = θ?

8: else
9: set θi = θi−1

10: end if
11: end for

Algorithm 1: pMCMC algorithm for parameter inference

In the above algorithm we denote with U(·|0, 1) the uniform distribution on the interval [0, 1]. As has
been shown in [1] and [9], under the condition that the estimator l̂(y|θ) is unbiased (E(l̂(y|θ)) = l(y|θ)), the
pMCMC method targets the true posterior.
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S8.1.1 Comparison with LF-NS

Both the pMCMC and LF-NS algorithms rely on the same basic idea of replacing the likelihood computation
in the respective underlying inference method (MH-MCMC and nested sampling) with a particle filter
approximation of the likelihood and thus making the resulting method likelihood free. Both methods target
the true posterior distribution under the condition that the likelihood approximation is unbiased (which is
given when a particle filter is used). The comparison of the remaining features of the pMCMC and LF-NS
algorithm then boil down to the comparison between standard MCMC methods and the nested sampling
method. This comparison can be found in detail in other places such as [4, 2] and we will only briefly
mention the main distinguishing features of the two algorithms. MCMC methods have the advantage that
they are easy to implement and are guaranteed to converge to the true posterior. Further there is a wide
variety of different MCMC methods available and the research on these methods is rather extensive. The
commonly mentioned downsides of MCMC methods are that, as they produce a chain of dependent samples,
they can get stuck in local regions of high likelihood and can usually not be parallelized in a straight forward
manner. This makes it often difficult to apply MCMC methods to high-dimensional, and computationally
intensive problems. Further, MCMC methods usually require the setting of various parameters, such as the
perturbation kernel q, number of burn-in iterations and choice of the initial sample θ0.

Nested sampling overcomes several of these issues, as the samples drawn are independent of each other
and therefore, nested sampling methods can easily be parallelized (see section S1.4). Nested sampling
algorithms also don’t get stuck in local regions of high likelihood and are therefore particularly suited for
multimodal target distributions. They also have the advantage that they provide a variance estimate for
the estimator of the Bayesian evidence and have very few parameters that need to be set by the modeller.
The main disadvantage is that they rely on being able to sample from the constrained prior

π(θ|l(θ) > ε)

which indeed provides the main difficulty for nested sampling approaches and is the topic of most of the
publications about nested sampling.

S8.1.2 LF-NS and pMCMC for the Lac-Gfp model

We ran a simple pMCMC algorithm on the same Lac-Gfp example that we used in the main paper (see S7.2).
We used the same data and the same number of particle filter particles H = 500. As the perturbation kernel
q, we picked the covariance matrix of the posterior obtained with the LF-NS algorithm. We found that the
performance of the pMCMC method highly depends on the choice of the initial sample. We performed two
runs of the pMCMC method, one where the initial sample θ0 was randomly picked from the prior and one
where we it was picked from the posterior distribution obtained with LF-NS. We ran the pMCMC algorithm
for 48 hours on the same cluster that we ran the LF-NS algorithm. The sampled points for each parameter
and each of the three runs are plotted in Figure S9 and the resulting posteriors in S8.

As we see in Figure S8, only the pMCMC runs with θ0 sampled from the LF-NS posterior seems to
result in a stationary distribution that resembles the one we obtained from LF-NS. When sampling θ0 from
the prior (yellow), pMCMC does not seem to be able to reach the stationary distribution and spends its
entire runtime in parameter regions with very low likelihood.

This can be better seem in Figure S9, where we can also observe that the log-likelihoods from the
pMCMC run with θ0 picked from the prior get stuck at the around -2000. This is very consistend with other
discussions of the pMCMC method, where it has been pointed out that some effort needs to be provided
into picking the initial sample (see for instance [3]). We point out that while our LF-NS run took only 13
hours, compared to the 48 hours of pMCMC runs, this is mainly due to the easy parallelization of the LF-NS
method, and the runtime of the pMCMC methods could be improved by trying to parallelize the particle
filter or optimizing our simple pMCMC implementation even further. To run the pMCMC algorithm we
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used already the available posterior obtained from the LF-NS runs, by picking the perturbation kernel to be
the posterior covariance matrix and the θ0 to be sampled from the posterior. In realistic scenarios, where
one does not have the posterior already available, this needs to be accounted for. In [8] the authors pick the
initial sample by running 4 additional MCMC chains with random initial samples before running the actual
MCMC algorithm and in [3] the authors suggest to run a ABC-SMC algorithm before the actual pMCMC
run. For a thorough discussion of these challenges see [3].

S8.2 Approximate Bayesian Computation

The second popular likelihood-free algorithm is the Approximate Baysian Computation (ABC), which ap-
proximate the posterior p(θ|y) with the approximate posterior p(θ|d(yθ, y) < ε) for some ε > 0, where yθ
denotes a dataset obtained through simulation of the system using the parameter θ and d(·, ·) defines a
distance metric between the simulated dataset and the experimental data y. For our comparison we follow
again [3] and [8] and use the ABC-SMC algorithm [5]. The ABC-SMC algorithm constructs a sequence of
distributions p(θ|d(yθ, y) < εk) for a decreasing sequence of εk.

In the first iteration the ABC-SMC algorithm picks samples from the prior θ∗ ∼ π(·), simulates the
system to obtain a realization yθ∗ and computes the distance d(yθ∗ , y). If this distance is lower than the
initial threshold ε0 the particle θ∗ is accepted. This sampling process is repeated until N samples {θ0i }i=1,...,N

are accepted. In each successive iteration i this procedure is repeated, only that the new particles θ∗ is not
samples from the prior, but is obtained by picking a random particle from the previous population and
perturbing it through a perturbation kernel q. In each iteration i a new threshold εi < εi−1 is used. The
algorithm is often terminated after reaching a final threshold εF . The particular form of the perturbation
kernel q, the metric d as well as the construction of the threshold sequence εk are left to the modeler and
several different choices have been discussed in the literature (see for instance [6, 5, 8]). We illustrated the
pseudocode of a ABC-SMC scheme in Algorithm 2

The weights wik in Algorithm 2 are used to avoid to propagate the sampling bias introduced by the use
of the kernel q(·|·). We point out the samples θ∗ in iteration i are effectively sampled from a kernel-density
estimation (KDE) of the previous particles set {θi−1k }k=1,...,N as described in S3.

S8.2.1 Comparison with LF-NS

The ABC-SMC algorithm is in many aspects very similar to our proposed LF-NS algorithm. Both algorithms
propagate particles through a sequence of decreasing subspaces of the parameter space, by using each
previous subspace to sample proposal particles for the next. As ABC-SMC also produces independent
samples it is also straight forward to parallelize. Indeed, we can recover the LF-NS algorithm by making
small changes in the Algorithm 2, by replacing the computation of the distance metric d(yθ∗ , y) with the
particle filter approximation of l̂(θ∗) and replacing the acceptance criteria d(yθ∗ , y) < εi with l̂(θ∗) > εi,
where for the LF-NS case the sequence ε1, . . . , εF is just the sequence of increasing likelihood thresholds.
This similarity between the ABC-SMC and LF-NS algorithm results in very similar computational demands,
and in general we assume the runtime of LF-NS and ABC-SMC to be very similar on similar problems. In
many cases the ABC-SMC method will be computationally even cheaper, as the computation of the distance
d(yθ, y) is often cheaper than computing the likelihood approximation l̂(θ).

However, we would like to point out several downsides of the ABC-SMC algorithm that we believe our
proposed LF-NS algorithm can improve on. The targeted distribution for ABC-SMC methods is not the
posterior distribution p(θ|y), but rather an approximation p(θ|d(yθ, y) < εF ). There is in general no way
of telling how close this approximation is to the true posterior. Further, the choices of distance d as well
as the perturbation kernel q need to be done by the modeler and it is not always straight forward how
to make these choices, especially when dealing with stochastic systems. It is also difficult to decide when
to terminate ABC-SMC as the final threshold εF needs to be chosen depending on each problem and the
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INPUT: Observations y, prior π(θ), proposal kernel q(·|·), sequence of decreasing thresholds
ε0 > . . . > εF
OUTPUT: samples {θFi }i=1,...,N from the approximate posterior p(θ|d(yθ), y) < εF )

1: for i = 1, . . . , F do
2: set j = 1
3: while j ≤ N do
4: if i = 0 then
5: Sample θ∗ ∼ π(·)
6: else
7: Sample c according to weights {wi−1n }n=1,...,N

8: Sample θ∗ ∼ q(·|θi−1c )
9: end if

10: Simulate yθ∗
11: if d(yθ∗ , y) < εi then
12: set θij = θ∗

13: set j = j + 1
14: end if
15: end while
16: for n = 1, . . . , N compute the weights win = π(θin)

N∑
l=1

q(θin|θ
i−1
l )

17: for n = 1, . . . , N set win = wi
n

N∑
l=1

wi
l

18: end for
Algorithm 2: ABC-SMC algorithm for parameter inference
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chosen distance d. In practice this often means that the ABC-SMC algorithm is run for a fixed time after
which the last value for εi is chosen to be the final one.

The LF-NS approach overcomes these issues by using an unbiased likelihood approximation l̂ instead
of the distance d. While the computation of l̂ might often be computationally more demanding than the
simulation of yθ and computation of d(yθ, d), it allows the LF-NS algorithm to target the true posterior
p(θ|y). Further, while in the ABC-SMC algorithm the intermediate particle sets are only used to sample
the next particle set more efficiently, the LF-NS algorithm uses the information about the intermediate sets
and the decrease in their volume to approximate the posterior. We note that the sampling procedure for
ABC-SMC resembles a KDE approximation of each particle set and is comparable with the challenge of
nested sampling methods to sample from the intermediate super level sets.

S8.2.2 LF-NS and ABC-SMC for the Lac-Gfp model

We ran our own implementation of a ABC-SMC method on the Lac-Gfp model used in the main paper. To
compute the distance measure d(yθ|y), we simulate the system once to obtain the simulated trajectory yθ
and computed d to be the mean square distance between the simulation and the data

d(yθ, y) =
T∑
i=1

(yiθ − yi)2,

where yi denotes the ith measurement in the time-series y. As the perturbation kernel q we picked a
Gaussian kernel, with covariance matrix being the sample covariance matrix of the previous particle set.
The thresholds εi were chosen to be the the 30%-quantile of the computed distances in each iteration. We
ran the ABC-SMC method on the same cluster as the LF-NS method in parallel with 48 cores. We plotted
the obtained marginal approximate distributions p(θ|d(yθ|y) < εF ) for different iterations F in Figure S10.

As we see, several parameters like θ15, θ16, θ17 and θ18 have been identified correctly. Also the obtained
marginal distributions for parameters θ1 to θ7 seem to be identified correctly. However, the obtained
approximative marginal distributions for several parameters do not seem to have been identified correctly.
This can be due to several reasons. It could simply be that we did not let the algorithm run long enough
and that the true posterior is approximated better at even smaller levels of εF . The other reason might be
that our distance measure d(yθ|y) is not informative enough to target the true posterior. We note that this
issue of not targeting the true posterior is a well-known and expected feature of ABC-SMC methods and
are discussed in many other places as well (see for instance the above mentioned review papers [3]).

S8.3 Compiaring LF-NS with pMCMC and ABC-SMC on the Lotka-Voltera model

It is generally difficult to provide an adequate comparison of computational effort for different methods,
as the runtime of any algorithm will always depend on the particular algorithm settings, the considered
problem, the particular implementational details (and optimization) of the algorithms and also on the used
hardware used to run the examples. To give an idea of the relative performance of the LF-NS algorithm
compared to ABC-SMC and pMCMC methods, we therefore ran it on the same Lotka-Voltera model that
was used in [3] to compare pMCMC and ABC-SMC methods. We used the model definition as in [3] and
created simulated data using the same parameters and simulation protocol that was used in that paper.
The detail of the model can be found in ??. To stay as true as possible to the conditions used in [3], we
ran the LF-NS algorithm sequentially (rather than in parallel). For the particle filter we used H = 100. In
Figure S11 we show the obtained posterior for different number of live points N , where we picked r = 0.1N .

We plotted the posterior distribution that we obtained by running the pMCMC algorithm for the same
problem, picking θ0 randomly from the posterior obtained with LF-NS and using the sample covariance
matrix of the posterior as the perturbation kernel q. We see that the LF-NS algorithm targets the same
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posterior distribution as the pMCMC method. The true value is indicated in blue, while the thick black
line indicates the shape of the true posterior as obtained from a single long (∼12 hours) pMCMC run. As
expected, the true value θ∗ lies in the support of the posterior. To illustrate the development of runtime
for the LF-NS algorithm, we performed 7 different runs of LF-NS, picking N = 10, 20, 40, 60, 80, 100, 200,.
In Figure S12 we plotted the developments of the Bayesian evidence estimation and its variance for each of
the inference runs, as well as the computational time needed and the acceptance rates for each run.

We see that the LF-NS algorithm estimates the same Bayesian evidence for each run and the variance
is clearly decreasing for increasing N .
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