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fig. S1 Characterization of HERV expression in 12 types of solid cancers.
(A) Histogram showing the numbers of cancer types in which respective
expressed HERV loci were detected.

(B) Commonality of the sets of expressed HERVs among cancer types. In the
heatmap, the color indicates the degree of overlap [log10 (odds ratio)], and the



numerical characters indicate the number of expressed HERV loci that were
commonly detected in a pair of cancer types.

(C) Hierarchical clustering analysis of TCGA tumors based on the expression
profile of HERV subfamilies. The 50 most variably expressed HERV subfamilies
were included in the analysis. Information on 161 sequencing batches is indicated.
(D) Boxplot showing the distribution of the expression levels of the respective
HERV loci in each tumor. The Y-axis indicates the expression levels of the
respective HERV loci [log2 (transcripts per million (TPM) + 1)]. A colored line and
a white dot indicate the interquartile range and the median value, respectively.
Tumors were ordered according to the cancer type and the median expression
value.

(E) Coexpression of distinct HERV subfamilies in BLCA tumors. The results for
all expressed HERV subfamilies are shown.

(F) Distribution of the pairwise expressional correlations among HERV loci.

(G) Association between the mean HERV expression level and the mean DNA
methylation level (beta value) of the CpG sites that are on or proximal [<1 kilo
base pairs (kb)] to the expressed HERVs. The result for BLCA is shown, and data
for tumors and tumor-adjacent normal tissues are included. The dots are colored
according to the sample type (i.e., normal tissue or respective tumor subtypes).
(H) Associations of HERV expression levels and DNA methylation levels in
respective types of cancers. The results for the HERV-proximal (<1 kb) CpG sites
and all CpG sites are shown.

(I) Similarities of the gene expression changes upon HERYV activation among 12
cancer types.

(J) Coexpression of KZFP genes in BLCA tumors. The results for all expressed
KZFPs are shown.

(K) Coexpression of HERVs and KZFP genes in BLCA tumors. The results for all
expressed HERVs and KZFPs are shown.
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fig. S2 Gene expression signatures associated with increased expression
of HERVs and KZFPs

(A) Results of GSEA summarizing genes whose expression levels were
correlated with the overall expression levels of KZFP genes in the TCGA dataset.
The GSVA score (49) of the KZFP genes was used to denote their overall
expression level. The 100 highest-scored gene sets with negative correlations
are shown. Of these, the top 10 gene sets and the gene sets indicated in Fig. 1F
are annotated.

(B) Results of GSEA summarizing genes whose expression levels were
correlated with the global expression levels of HERVs in the CCLE dataset. The



100 highest-scored gene sets with positive or negative correlations are shown.
Of these, the top 10 gene sets and the gene sets indicated in Fig. 1F are
annotated.
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fig. S3 Transcriptional modulation of KZFP genes by adjacent HERVs in
tumors.

(A) Gene Ontology (GO) enrichment analyses to identify sets of genes that are
preferentially present in the vicinity (<10 kb) of the expressed HERVs. The gene
sets are ranked according to the fold enrichment scores, and the gene set “KZFP
family” is highlighted. Only gene sets with 25 hits of HERVs are shown.

(B) Association between the mean methylation level of CpG sites that are on or
proximal (<1 kb) to the expressed HERVs in the vicinity (<50 kb) of KZFP genes
and the mean expression levels of those genes.

(C) GO enrichment analyses to identify sets of genes that are preferentially
related to the expressed HERVs in the predicted gene regulatory network. Only
gene sets with 21 hit of HERVs are shown.
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fig. S4 Establishment of HERV-excised A549 cell clones using the CRISPR-
Cas9 system.

(A) Design of PCR primers to check HERV excision. Two types of PCRs were
designed: L-R PCR and L-M PCR. In L-R PCR, shorter and longer bands are
amplified from HERV-excised and -unexcised alleles, respectively. In L-M PCR,



a single band is amplified from the HERV-unexcised allele (but not from the
HERV-excised allele).

(B) Scheme for screening HERV-excised cell clones using L-R and L-M PCRs.
(C) UCSC genome browser views of the target HERVs used in the excision
experiments. The views for HERV-enhancer1 (top), HERV-enhancer2 (middle),
and HERVs located upstream of a ZNF75D TSS (bottom) are shown.

(D) PCR results of HERV-excised clones or nontarget control clones. The results
for HERV-enhancer1 (top), HERV-enhancer2 (middle), and HERVs located
upstream of a ZNF75D TSS (bottom) are shown.
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fig. S5 Association of HERV/KZFP expression status in tumors and cancer
disease conditions



(A) Accumulation of somatic missense mutations in the DNA-binding amino acid
residues of KZFP genes. The mutation density (counts per Mb per patient) of
KZFP genes was compared between the DNA-binding amino acid residues (red)
and the whole coding regions (black). The results for KZFP genes with =1
mutations are shown. P values were calculated by the two-sided Wilcoxon rank
sum test.

(B) Kaplan—Meier survival plots of cancer patients with high or low expression
levels of HERVs and KZFPs. Cancer patients were stratified according to the
mean value of the gene set-wise expression scores [GSVA scores (49)] between
KZFPs and HERVSs. Statistical significance was evaluated by the two-sided log-
rank test. The results for BRCA, COAD, KICH, KIRC, LIHC, LUSC, PRAD, and
THCA tumors are shown (results for the others are shown in Fig. 3A).

(C) Associations of the expression of respective KZFP genes with cancer
prognosis. The Z score in the Cox proportional hazards model is shown. The top
20 KZFP genes with respect to the association with better or worse prognoses
are annotated. In addition, the KZFP genes used in the overexpression
experiments (Fig. 4) are annotated and highlighted.

(D) The high-scored gene sets from GSEA based on the Z scores in the Cox
proportional hazards model. Redundant gene sets were removed from the results.
(E) Associations of the expression of respective KZFP genes with cancer
progression. The associations of the expression levels of respective genes with
cancer progression were evaluated using single linear regression analysis.
Positive and negative t-scores indicate the tendencies of increased and
decreased expression, respectively, of the genes along with cancer progression.
The top 20 KZFP genes with respect to the positive and negative associations
are annotated. In addition, the KZFP genes used in the overexpression
experiments (Fig. 4) are annotated and highlighted.

(F) The high-scored gene sets in the linear regression analysis (shown in Fig.
3E). The top 10 gene sets and the gene sets indicated in Fig. 1F are annotated.
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fig. S6 GO enrichment analysis to identify sets of genes that are
preferentially bound by respective KZFPs.

This analysis was based on a publicly available ChlP-Seq dataset of KZFPs
[Imbeault et al. (33)]. In the heatmap, the color indicates the log2-transformed
fold enrichment. An asterisk denotes a significant enrichment (fold enrichment >
1.5; FDR < 0.05 in binomial test). The heatmap includes 1) gene sets that were
significant in >12 KZFPs; and 2) KZFPs in which 21 gene set above was
significant.
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fig. S7 Phenotypic and gene expression changes caused by the
overexpression of KZFPs in lung adenocarcinoma cells.
(A) Expression levels of HERVs and KZFPs in lung cancer cells in the CCLE

dataset. The X-axis indicates the total expression levels of HERVs (log2-




transformed CPM), and the Y-axis indicates the overall expression levels of KZFP
genes (GSVA score). A dot corresponding to A549 cells is highlighted.

(B) Western blotting to confirm the exogenous expression of KZFP proteins in
AS49/KZFP cells using an anti-HA antibody. Since the target bands in several
AS549/KZFP cells were relatively faint (indicated as red in the left panel), the
results with long exposure are also shown for these cells (in the right panel).

(C) Expression level of overexpressed KZFPs in A549/KZFP cells (red),
A549/empty vector cells (gray), lung adenocarcinoma (LUAD) tumors (blue), and
lung cancer cell lines (pink). The median value is indicated. In the right of the
panel, the fold change value (A549/KZFP cells vs. the median) is indicated.

(D) Expression level of all protein-coding genes expressed in A549/KZFP cells.
The value for the overexpressed KZFP is indicated as a red dot. Quantiles are
shown.

(E) Examinations of the phenotypic changes in a panel of A549/KZFP cells. The
results of the apoptosis assay, growth assay, migration assay, and invasion
assay are shown. The black bar indicates the result of the empty vector-
transduced cells. Red or blue bars indicate the result of the cells in which the
value significantly increased or decreased, respectively, compared to that in the
empty vector-transduced cells (P value < 0.05). The error bar indicates the
standard error of the mean (SEM).

(F) Similarity of the gene expression alterations induced by KZFPs among the
AS49/KZFP cells. Spearman’s correlations of the fold changes of gene
expression were calculated among the A549/KZFP cells. The clusters indicated
on the upper side of the heatmap are the same as those in Fig. 4A.

(G) Phenotypic differences of the cells among the gene expression-based
clusters. Statistical significance was evaluated by one-way ANOVA.

(H) Genes whose expression levels were associated with the measured
phenotypes in A549/KZFP cells. For each phenotype, Spearman’s correlations
of the expression levels of respective genes and the phenotype score were
calculated, and GSEA was subsequently performed according to those
correlation scores. Regarding the positive and negative correlations, the results
for the top 10 gene sets are shown.
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fig. S8 Identification
critical for cancer progression.
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Odds ratio (log2)

of genes that are likely to be targeted by KZFPs and

(A) Scheme for extracting the target genes of KZFPs critical for tumor progression.

For each gene, the 1) TCGA (i.e., pri

mary tumors) correlation score, 2) CCLE

(i.e., cancer cell lines) correlation score, 3) prognosis score, 4) progression score,
and 5) suppression score were calculated. Genes with a median score >1 and a

minimum score >0.5 were extracted

. Subsequently, genes targeted by =10

KZFPs were extracted. Finally, 63 genes were extracted. Details are described

in the “Scoring system of genes for
for cancer progression” subsection i

predicting the targets of KZFPs critical
n the Materials and Methods section.

(B) Distribution of the median score (left) and number of binding KZFPs (right) of

the respective genes.



(C) The number of binding KZFPs (upper), the median score (middle) and
respective scores (lower) of the 63 genes.

(D) GO enrichment analysis summarizing the target genes of KZFPs critical for
cancer progression. Of the significant gene sets (i.e., FDR < 0.1 in Fisher's exact
test; number of hits = 5), the top 30 gene sets according to the odds ratios are
shown. Log2-transformed odds ratios (left) and gene memberships (right) are
indicated. Cytoskeleton regulator genes (*), ubiquitin-proteasome pathway genes
(1), and serine-threonine kinase genes (1) are annotated under the heatmap.
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fig. S9 Analysis of the CRISPR knockout screening dataset provided by
Cancer Dependency Map (DepMap) Achilles project.

(A) Gene ranking according to the estimated knockout effect score [CERES score
(39)] in A549 cells. The negative and positive values respectively represent the
increase and decrease of cancer cell viability upon the CRISPR gRNA library
transduction. This score is adjusted so that the median knockout effects of
predefined essential and nonessential genes are represented as minus one and
zero values, respectively. The top 10 genes in both sides and the KZFP genes in
the top 100 on the positive side (indicated in red) are indicated. The numbers in
parentheses on the positive side denote the rank of the gene indicated. Statistical
enrichment of KZFP genes in the top 100 genes in the positive score was
evaluated by the two-sided Fisher’'s exact test (inset).

(B) Enrichment of KZFP genes in the top 100 genes in the positive score in
respective cancer cell lines.

(C) Comparison of the distributions of the gene effect scores between the
predicted KZFP target genes (shown in Fig. 4D) and the other expressed genes.
The mean value of the scores in respective cancer types is shown. Statistical
significance was evaluated by the two-sided Wilcoxon rank sum test.



A

ZNF75D  se 2n hose ZNF169  scue 110 e ZNF248
o ) B 1 oo i sz szl szmont
primer [ ' ' Primer ' ' primer
Gene Annotation Gene Annotation e Anmotation
SRV wero—m s oo Gene Arnotaion
e - — — —
RepeatMasker — &1 )
Sk A RepeatMasker
o 24
A549 H3K27AC AS49 H3K27AC e ST D ) A549 H3K27AC
DHS Clusters wm s DHS Clusters 2 ustor
Qussies - s o— oS cuss
Layered HaKz7AC Layered HaKz7AC
e - R e el e
—_— —_—
ZNF30 ., - ZNF320 .. e ZNF337
5 susmon Pr oo c2soomet 2005000
Primer [ ' Primer [ primer
Gene Annotation Gene Annotation Gene Annotation
GENCODEVZD) | P (GENCODE VEE) D - , (GENCODE Vzp) 2
RepeatMasker - — - R Repeatasker  Fhem " -
) . i .
AS49 HaK27AC A Asi9 HIK27AC AS49 HIK27AC
= .
DHS Clusters * " oHsClustors | 9B DHS Clustars
(85 cell types) " (85 el types) o= . (95 celltypes)
Layered HaKz7Ac A Layered Hakerac Layered HaKz7Ac
7 cell ypes) — s AR I 7 celltypes)
< «—
INFa4 . . ZNFs82 . ZNFé11
e 12.298 01 T2z 5001 T e & 563940001 Sa395 0001 Bseco0t
Gene Amnbtanon A Primer \ , , primer
e ATNGIZNON 24ttt i
Gono AnnGtation 2Vse: e Gene Annotation
(GENCODEV2Z) (GENCODE V22)  tat . (GENCODE v2z)
- - — CENONGD W —
Repeatitasker it — ] RepeatMasker 1
o .
rsrze L TR PR
==
— . -
DHS Clusters a Frdreed " — DHS Clusters
(5 cell types) (5 celltypes)
Layered HaKz7AC
Layered HakerAc Layered Hakz7Ac
e — 7 celltypes) A s SN S 7 celltypes)
— ———
ZNF669 ZNF8
= st 2050001 T 1l 3 saammonnt T Sezmo0 L0
primer ' ' ' Primer '
Gene Annaiaion
Gene Annotation .. (GENCODE V22) A
(GENCODE v2z) *7** - .
Repoantaskor 31 e — Repeatasker
o2 f
As49 HaKz7AC - AS4s Haka7AG
R — DS Glusers
usters — Cell ypes
(85 el types) - (95 celltypes)
T ——) Layered Hakz7Ac
7 coll ypes) e — @ celltypes)
ZNF141 ZNF846
scan P . ——
W e sl e apeod o) o 331 orsasmal ascoon Y5Ssammr aramsoor omisll amromt eseol
Primer prmer i i -
Gene Annotation
(GENCODE v22) o - Gens Amotation
e
repeatiasier o — A
- Repoutissior [ e— c
R

AS49 HaK27AC

o B
—

DHS Clusters
(95 cell types)

Layered H3K27Ac
(7 cell types)

E ZNF*75D F

* * * *
~ P i) P
20 2.0
z z
2 2z
815 815
o] I}
3 3
510 510
s s
° A
= =
F05 F05
] o]
o o
0.0 0.0
+ T
2
£
HERV

AS49 HaK27AC

DHS Clusters
(95 cell types)

Layered H3K27Ac
(7 cell types)

ZNF169 ZNF248 ZNF30 ZNF320 ZNF337 ZNF44 ZNF582 ZNF611 ZNF669

*
*

ZNF8
* * *
™ — M — ™

HERV

et
| areseccol  ssas0l  waseoul  weSHI  3e600001
' ' 1

.
1

——

—

S asessson " Zmeeroeor Tl "952eas 001
.
—
2 —
0 —
-—
e P
&% smsom FEr seraaco0t
.
3 —
£
—
[1i1iia1: RSN
S e—
T —

With the upstream HERV

Without the downstream HERV

5

0

05

Relative promoter activity

With the downstream HERV

ZNF141 ZNF846

*
x

HERV

fig. S10 Luciferase reporter assay to assess the effects of the surrounding
HERVs on the promoter activities of KZFP genes.
(A) and (B) UCSC genome browser views of the target HERVs and KZFP
promoters used in the luciferase reporter assay. The panel for a HERV in the
upstream region of the KZFP promoter is shown in (A), while that for a HERV in
the downstream region is shown in (B). The genomic region inserted into the
reporter plasmid is indicated by the arrow. In (A), the orange or blue arrows
indicate genomic fragments with or without a HERV sequence, respectively. In
(A), the orange or blue arrows indicate the HERV or KZFP promoter, respectively.



(C) and (D) Schematics of the reporter plasmids. A schematic for a HERV in the
upstream region of the KZFP promoter is shown in (C), while that for a HERV in
the downstream region is shown in (D).

(E) Assessment of the directional effect of the HERVs on the promoter activity of
ZNF75D.

(F) Assessment of the effect of the upstream HERVs on the promoter activity of
the KZFP gene.

(G) Assessment of the effect of the downstream HERVs on the promoter activity
of the KZFP gene.
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