

advances.sciencemag.org/cgi/content/full/6/43/eaaz4452/DC1

Supplementary Materials for

HSB-1/HSF-1 pathway modulates histone H4 in mitochondria to control mtDNA transcription and longevity

Surojit Sural, Chung-Yi Liang, Feng-Yung Wang, Tsui-Ting Ching*, Ao-Lin Hsu*

*Corresponding author. Email: aolinhsu@umich.edu (A.-L.H); ttching@ym.edu.tw (T.-T.C.)

Published 21 October 2020, *Sci. Adv.* **6**, eaaz4452 (2020) DOI: 10.1126/sciadv.aaz4452

The PDF file includes:

Figs. S1 to S7 Tables S1 to S3 Legends for data files S1 and S2

Other Supplementary Material for this manuscript includes the following:

(available at advances.sciencemag.org/cgi/content/full/6/43/eaaz4452/DC1)

Data files S1 and S2

Supplementary Materials

Fig. S1

Fig. S1. H4 knockdown suppresses life span extension associated with mitochondrial

inhibition. (A) Similarity between coding sequences of all 16 H4-coding genes in the *C. elegans* genome. Colored bases indicate sequence identity among genes (dark blue: purines, light blue: pyrimidines). Multiple sequence alignment was performed on Clustal Omega (<u>https://www.ebi.ac.uk/Tools/msa/clustalo</u>). (B) Life span analysis of wild-type (N2) and *hsb-1(-)* worms subjected to control or *his-67* RNAi at 20°C. (C to E) Life span analysis of N2, *daf-2(e1370)*, *glp-1(e2144)* and *isp-1(qm150)* worms subjected to control or *his-38* RNAi at 25°C. (B to E) Statistical data and additional life span replicates are included in table S1.

Fig. S2. HSB-1 inhibition partially attenuates genomic instability in somatic tissues. (A)

Representative immunoblots for core histones in wild-type (N2) and H4 overexpression strain (*left*). Densitometric quantification of histone: β -actin ratio relative to N2 worms (*right*). Mean \pm SEM for four biological replicates. ** p < 0.01, *** p < 0.001 compared to corresponding wildtype transcript levels in two-tailed *t*-test. (**B**) Life span analysis of glp-4(-) and glp-4(-); hsb-1(-)worms subjected to control or his-38 RNAi. (C) Representative immunoblots for core histones in day 1 adult glp-1(-) and glp-1(-); hsb-1(-) worms (*left*). Densitometric quantification of histone: β -actin ratio relative to glp-1(-) worms (right). Mean \pm SEM for ≥ 6 biological replicates. (D) UV-induced DNA lesions in day 1 and day 8 old glp-1(-) worms. Mean \pm SEM for \geq 9 biological replicates, each of n = 6 worms. UV: p < 0.0001, age: p < 0.01 in two-way ANOVA. (E) Representative agarose gel electrophoresis for 9.3 kb fragment of the unc-2 gene amplified from genomic DNA of *glp-1(-)* worms that were exposed to 0 or 100 J/m² UV irradiation on day 1 of adulthood. 'Half 0 J/m² template': PCR with half the amount of template DNA as for the 0 J/m² reaction to confirm the quantitative nature of PCR amplification. 'Blank': PCR with no template DNA. (F) UV-induced DNA lesions in day 1 old glp-1(-) and glp-1(-); hsb-1(-) worms. Mean \pm SEM for ≥ 6 biological replicates, each of n = 6 worms. UV: p < 0.02, genotype: p < 0.05 in twoway ANOVA for intermediate doses. (G) Relative C09B7.2 transcript levels in day 1 and day 8 old glp-1(-) and glp-1(-); hsb-1(-) worms. Central line, box limits, '+' and whiskers indicate median, interquartile range, mean and data range, respectively, for four biological replicates. Age: p < 0.0001, genotype: p < 0.001, interaction: p = 0.05 in two-way ANOVA. ** p < 0.01 in Sidak's multiple comparisons test. (H) Life span analysis of N2 and hsb-1(-) worms subjected to control or his-38 RNAi only during adulthood. (B and H) Statistical data and additional life span replicates are included in table S1.

Fig. S3. MNase-accessibility of most genomic regions is unaltered in *hsb-1(-)* **worms.** (A to F) Frequency distribution of nucleosome peak width, peak fuzziness and peak height in genomewide sequencing data of MNase-digested chromatin from wild-type (N2) and *hsb-1(-)* worms subjected to control or *his-38* RNAi. Statistical data are included in table S2. (G) MNase-Seq data for a representative genomic region in N2 and *hsb-1(-)* worms subjected to control or *his-38* RNAi. Difference between groups, such as (A – B), indicates occupancy difference at each base pair between the two conditions. The region shown corresponds to genomic location X: 2,703,479 – 2,766,712 that spans *unc-2, igcm-3* and several ncRNA genes, a typical example of a genomic region at which MNase-accessibility is not significantly affected by either *hsb-1(-)* mutation or *his-38* RNAi. (H and I) Relative transcript levels of selected mitochondrial genes in N2 and *hsb-1(-)* worms subjected to control or *his-38* RNAi. Mean ± SEM for three biological replicates. * *p* < 0.05, ** *p* < 0.01 in two-tailed *t*-test. (J) Relative transcript levels of mitochondrial proteincoding genes in N2 and H4 overexpression strain. Mean ± SEM for ≥ 3 biological replicates. * *p* < 0.05, ** *p* < 0.01 in two-tailed *t*-test.

Fig. S4

Fig. S4. Reduced maximal respiratory capacity in *hsb-1(-)* worms is H4-dependent. (A and **B**) Basal mitochondrial OCR and maximal respiratory capacity per worm in wild-type (N2), *hsb*-1(-) and cyc-1(RNAi) worms; corrected for non-mitochondrial oxygen consumption. Central line, box limits and whiskers indicate median, interquartile range and data range, respectively, for ≥ 14 biological replicates, each of n = 10-20 worms. * p < 0.05, *** p < 0.001, **** p < 0.0001 in Tukey's multiple comparisons test performed after one-way ANOVA. (C) Raw values for OCR per worm in N2, hsb-1(-), H4 overexpression strain and cvc-1(RNAi) worms. Mean \pm SEM for > 14 biological replicates, each of n = 10-20 worms. (D to F) Basal mitochondrial OCR, maximal respiratory capacity and spare respiratory capacity per worm in N2; his-38(RNAi), hsb-1(-); his-38(RNAi) and N2; cyc-1(RNAi) worms; corrected for non-mitochondrial oxygen consumption. Central line, box limits and whiskers indicate median, interquartile range and data range, respectively, for ≥ 14 biological replicates, each of n = 10-20 worms. **** p < 0.0001 in Tukey's multiple comparisons test performed after one-way ANOVA. (G) Raw values for OCR per worm in N2; *his-38(RNAi)*, *hsb-1(-)*; *his-38(RNAi)* and N2; *cyc-1(RNAi)* worms. Mean \pm SEM for \geq 14 biological replicates, each of n = 10-20 worms. (C and G) Measurement points (loops) 2–5 represent basal OCR. FCCP is a mitochondrial electron transport chain (ETC) accelerator that induces maximal uncontrolled OCR, while OCR measurements post-sodium azide injection correspond to non-mitochondrial respiration.

Fig. S5

Fig. S5. H4 overexpressing worms have reduced mitochondrial respiratory capacity and elevated level of histone H4 in their mitochondria. (A and B) Basal mitochondrial OCR and maximal respiratory capacity in wild-type (N2), H4 overexpression strain and cyc-1(RNAi) worms; corrected for non-mitochondrial oxygen consumption. Central line, box limits and whiskers indicate median, interquartile range and data range, respectively, for ≥ 14 biological replicates, each of n = 10-20 worms. * p < 0.05, **** p < 0.0001 in Tukey's multiple comparisons test performed after one-way ANOVA. (C) Mitochondrial DNA copy number relative to nuclear DNA in N2 and H4 overexpression strain. Central line, box limits and whiskers indicate median, interquartile range and data range, respectively, for eight biological replicates, each of n = 8 worms. p = 0.54 for comparison between the two genotypes in two-tailed *t*-test. (**D**) Schematic representation for differential centrifugation steps used to obtain cellular fractions enriched with nuclei or intact mitochondria. The supernatant obtained after pelleting nuclei was passed through a filter of pore size 1.2 µm to remove any nuclei contamination prior to pelleting down mitochondria (see Materials and Methods for details). (E) Representative immunoblots for histones H2A, H2B and H3 and nuclear protein FIB-1 (fibrillarin homolog) in mitochondrial fraction (Mito) obtained from wild-type worms. (F) Representative immunoblots for histone H4 and mitochondrial protein NUO-2 (NDUFS3 homolog) in mitochondria isolated from N2 and H4 overexpressing worms.

Fig. S6

Fig. S6. Extranuclear histone H4 foci co-localize with mitochondria in intestinal tissue, but not in muscle tissue. (A to C) H4 immunofluorescence and labeling of mitochondria in different tissues of *hsb-1(-)* worms. White arrowheads: Co-localization of extranuclear histone foci with MitoTracker staining in intestine of worms. No obviously detectable co-localization of histone foci with MitoTracker staining was observed in other tissues. Scale bars: $20 \ \mu$ M. (D) H4 immunofluorescence in worms expressing mitochondrially-localized GFP in muscle tissue [*myo-3p::gfp*(mitochondrial)]. Histone H4 immunostaining does not overlap with muscle mitochondria. Scale bar: $20 \ \mu$ M. Region outlined in white box is magnified (3X) and shown on the right.

Fig. S7

Fig S7. *hsb-1(-)* worms do not show increased transcription of H4-coding genes. (A) Relative transcript levels of different core histone genes in *glp-1(-)* and *glp-1(-); hsb-1(-)* L1 larval worms. Mean \pm SEM for four biological replicates. No statistically significant difference was detected between the two genotypes in two-tailed *t*-tests. (B) Relative transcript levels of different core histone genes in day 1 adult wild-type (N2) and *hsb-1(-)* worms. Mean \pm SEM for \geq 5 biological replicates. * *p* < 0.05 compared to corresponding wild-type transcript levels in two-tailed *t*-test. (C) Relative transcript levels of histone chaperone genes in day 1 adult N2 and *hsb-1(-)* worms. Mean \pm SEM for six biological replicates. No statistically significant difference was detected between the two genotypes in two-tailed *t*-tests. (D to F) Life span analysis of N2 and *hsb-1(-)* worms subjected to control, *his-2* (H3), *his-6* (H3) or *his-43* (H2A) RNAi. Statistical data are included in table S1.

Strain	Mean life span ± SEM (days)	75% dead (days)	n	<i>p</i> value	
Life span experiments at 25°C					
N2; control (i)	11.83 ± 0.41	14	55/72		a
N2; <i>his-67(RNAi)</i> (i)	11.05 ± 0.34	13	65/72	0.0956 ^a	b
hsb-1(cg116); control (i)	14.26 ± 0.60	18	50/72	0.0001 ^a	c
<i>hsb-1(cg116); his-67(RNAi)</i> (i)	11.64 ± 0.50	16	51/72	0.8419 ^a , 0.0964 ^b , 0.0005 ^c	d
N2; control (xv)	11.57 ± 0.41	14	70/90	—	a
N2; <i>his-67(RNAi)</i> (ii)	10.87 ± 0.35	13	79/90	0.1443 ^a	b
hsb-1(cg116); control (xi)	14.58 ± 0.46	18	71/100	< 0.0001 ^a	c
<i>hsb-1(cg116); his-67(RNAi)</i> (ii)	11.54 ± 0.46	15	78/90	0.7566 ^a , 0.0857 ^b , 0.0001 ^c	d
N2; control (ii)	12.59 ± 0.50	15	51/72	—	a
N2; <i>his-5(RNAi)</i> (i)	10.72 ± 0.36	12	68/72	0.0008^{a}	b
hsb-1(cg116); control (ii)	15.88 ± 0.59	20	50/72	0.0001 ^a	c
<i>hsb-1(cg116); his-5(RNAi)</i> (i)	11.07 ± 0.36	12	69/72	0.0101 ^a , 0.4150 ^b , < 0.0001 ^c	d
N2; control (iii)	12.52 ± 0.42	15	61/72	—	a
N2; <i>his-38(RNAi)</i> (i)	11.13 ± 0.39	13	64/72	0.0146 ^a	b
hsb-1(cg116); control (iii)	16.38 ± 0.54	20	55/72	< 0.0001 ^a	c
<i>hsb-1(cg116); his-38(RNAi)</i> (i)	11.72 ± 0.35	13	64/72	0.0774 ^a , 0.4358 ^b , < 0.0001 ^c	d
N2; control (iv)	11.78 ± 0.30	14	69/84	—	a
N2; <i>his-38(RNAi)</i> (ii)	11.87 ± 0.32	14	68/84	0.8386 ^a	b
<i>hsb-1(cg116);</i> control (iv)	13.47 ± 0.42	16	69/84	0.0004^{a}	c
<i>hsb-1(cg116); his-38(RNAi)</i> (ii)	10.20 ± 0.30	12	75/84	0.0004 ^a , 0.0005 ^b , < 0.0001 ^c	d
N2; control (v)	13.44 ± 0.49	17	68/90	_	a
N2; <i>his-38(RNAi)</i> (iii)	13.05 ± 0.48	17	59/90	0.4376 ^a	b
<i>hsb-1(cg116);</i> control (v)	17.56 ± 0.74	22	57/90	< 0.0001 ^a	c
<i>hsb-1(cg116); his-38(RNAi)</i> (iii)	12.15 ± 0.44	14	66/90	0.0809 ^a , 0.2303 ^b , < 0.0001 ^c	d
N2; control (vi)	13.22 ± 0.48	17	72/90	_	a
N2; <i>his-38(RNAi)</i> (iv)	12.95 ± 0.48	17	67/90	0.6626 ^a	b
<i>sur-5p::hsf-1(OE)</i> ; control (i)	17.26 ± 0.65	21	85/90	< 0.0001 ^a	c
<i>sur-5p::hsf-1(OE); his-38(RNAi)</i> (i)	12.99 ± 0.37	15	83/90	0.3456 ^a , 0.6651 ^b , < 0.0001 ^c	d

Table S1. Statistical data for life span experiments.

N2; control (vii)	13.51 ± 0.49	16	65/90	—	а
N2; <i>his-38(RNAi)</i> (v)	11.14 ± 0.32	13	74/90	< 0.0001 ^a	b
<i>sur-5p::hsf-1(OE)</i> ; control (ii)	19.99 ± 0.64	25	82/90	< 0.0001 ^a	c
<i>sur-5p::hsf-1(OE); his-38(RNAi)</i> (ii)	14.85 ± 0.54	17	85/90	0.0542 ^a , < 0.0001 ^b , < 0.0001 ^c	d
N2; control (vi)	13.22 ± 0.48	17	72/90	_	а
N2; <i>his-38(RNAi)</i> (iv)	12.95 ± 0.48	17	67/90	0.6626ª	b
<i>daf-2(e1370);</i> control (i)*	31.51 ± 1.87	39	37/90	< 0.0001 ^a	c
<i>daf-2(e1370); his-38(RNAi)</i> (i)*	30.04 ± 0.91	35	89/90	< 0.0001 ^a , < 0.0001 ^b , 0.2169 ^c	d
N2; control (viii)	15.84 ± 0.45	19	67/90	_	a
N2; <i>his-38(RNAi)</i> (vi)	14.61 ± 0.34	16	71/90	0.0077ª	b
<i>daf-2(e1370);</i> control (ii)*	28.64 ± 1.14	35	51/150	< 0.0001 ^a	c
daf-2(e1370); his-38(RNAi) (ii)*	27.04 ± 1.00	33	86/90	< 0.0001 ^a , < 0.0001 ^b , 0.2205 ^c	d
N2; control (ix)	12.36 ± 0.39	15	68/84	—	a
N2; <i>his-38(RNAi)</i> (vii)	11.88 ± 0.31	14	74/84	0.1942 ^a	b
<i>glp-1(e2144);</i> control (i)	14.68 ± 0.42	17	71/72	< 0.0001 ^a	c
<i>glp-1(e2144); his-38(RNAi)</i> (i)	13.88 ± 0.48	17	72/72	0.002 ^a , 0.0001 ^b , 0.5421 ^c	d
N2; control (x)	12.75 ± 0.55	17	83/91	—	a
N2; his-38(RNAi) (viii)	12.95 ± 0.42	15	91/91	0.8499ª	b
<i>glp-1(e2144);</i> control (ii)	15.76 ± 0.39	18	88/91	0.0025 ^a	c
<i>glp-1(e2144); his-38(RNAi)</i> (ii)	15.24 ± 0.38	18	91/91	0.0202 ^a , 0.0015 ^b , 0.2934 ^c	d
N2; control (vi)	13.22 ± 0.48	17	72/90	—	а
N2; <i>his-38(RNAi)</i> (iv)	12.95 ± 0.48	17	67/90	0.6626 ^a	b
<i>isp-1(qm150);</i> control (i)	22.46 ± 0.77	27	56/90	< 0.0001 ^a	c
<i>isp-1(qm150); his-38(RNAi)</i> (i)	14.35 ± 0.36	16	85/90	0.2856 ^a , 0.1004 ^b , < 0.0001 ^c	d
N2; control (vii)	13.51 ± 0.49	16	65/90	—	a
N2; <i>his-38(RNAi)</i> (v)	11.14 ± 0.32	13	74/90	< 0.0001 ^a	b
<i>isp-1(qm150);</i> control (ii)	23.15 ± 0.59	26	62/108	< 0.0001 ^a	c
<i>isp-1(qm150); his-38(RNAi)</i> (ii)	14.54 ± 0.48	16	86/90	0.1713 ^a , < 0.0001 ^b , < 0.0001 ^c	d
N2 (xi)	13.06 ± 0.39	15	70/84	_	a
<i>hsb-1(cg116)</i> (vii)	14.46 ± 0.49	18	66/84	0.0093 ^a	b
<i>sur-5p::his-67(OE);</i> <i>sur-5p::his-50(OE);</i> <i>sur-5p::his-37(OE)</i> (i)	14.98 ± 0.53	19	69/84	0.0001ª, 0.4037 ^b	c

11.57 ± 0.41	14	70/90	_	а
10.87 ± 0.35	13	79/90	0.1443 ^a	b
16.16 ± 0.34	18	87/90	< 0.0001 ^a	с
14.09 ± 0.40	17	90/90	0.0001 ^a , < 0.0001 ^b , 0.0046 ^c	d
12.36 ± 0.39	15	68/84	—	a
11.88 ± 0.31	14	74/84	0.1942 ^a	b
15.52 ± 0.34	17	75/84	< 0.0001ª	с
13.10 ± 0.34	15	79/84	0.2235 ^a , 0.011 ^b , < 0.0001 ^c	d
14.68 ± 0.42	17	71/72	_	a
13.88 ± 0.48	17	72/72	0.5421 ^a	b
17.49 ± 0.65	22	58/72	< 0.0001 ^a	с
14.35 ± 0.42	17	71/72	0.55 ^a , 0.6578 ^b , < 0.0001 ^c	d
15.77 ± 0.43	18	84/90	—	a
14.62 ± 0.34	17	85/90	0.0032 ^a	b
20.83 ± 0.43	24	89/90	< 0.0001 ^a	с
16.10 ± 0.42	20	90/90	0.7401 ^a , 0.0013 ^b , < 0.0001 ^c	d
12.23 ± 0.56	17	66/90	_	a
11.55 ± 0.48	14	63/90	0.22 ^a	b
17.25 ± 0.76	22	58/90	< 0.0001 ^a	с
12.72 ± 0.62	17	69/90	0.6043 ^a , 0.0898 ^b , < 0.0001 ^c	d
11.62 ± 0.42	14	66/90	_	a
12.35 ± 0.51	17	65/90	0.20ª	b
14.68 ± 0.42	17	71/72		a
15.60 ± 0.48	19	72/72	0.0581ª	b
	11.57 ± 0.41 10.87 ± 0.35 16.16 ± 0.34 14.09 ± 0.40 12.36 ± 0.39 11.88 ± 0.31 15.52 ± 0.34 13.10 ± 0.34 14.68 ± 0.42 13.88 ± 0.48 17.49 ± 0.65 14.35 ± 0.42 15.77 ± 0.43 14.62 ± 0.34 20.83 ± 0.43 14.62 ± 0.34 20.83 ± 0.43 16.10 ± 0.42 12.23 ± 0.56 11.55 ± 0.48 17.25 ± 0.76 12.72 ± 0.62 11.62 ± 0.42 12.35 ± 0.51 14.68 ± 0.42 15.60 ± 0.48	11.57 ± 0.41 14 10.87 ± 0.35 13 16.16 ± 0.34 18 14.09 ± 0.40 17 12.36 ± 0.39 15 11.88 ± 0.31 14 15.52 ± 0.34 17 13.10 ± 0.34 15 14.68 ± 0.42 17 13.88 ± 0.48 17 17.49 ± 0.65 22 14.35 ± 0.42 17 15.77 ± 0.43 18 14.62 ± 0.34 17 20.83 ± 0.43 24 16.10 ± 0.42 20 12.23 ± 0.56 17 11.55 ± 0.48 14 17.25 ± 0.76 22 12.72 ± 0.62 17 11.62 ± 0.42 17 14.68 ± 0.42 17 12.35 ± 0.51 17 14.68 ± 0.42 17 15.60 ± 0.48 19	11.57 ± 0.41 14 $70/90$ 10.87 ± 0.35 13 $79/90$ 16.16 ± 0.34 18 $87/90$ 14.09 ± 0.40 17 $90/90$ 12.36 ± 0.39 15 $68/84$ 11.88 ± 0.31 14 $74/84$ 15.52 ± 0.34 17 $75/84$ 13.10 ± 0.34 15 $79/84$ 14.68 ± 0.42 17 $71/72$ 13.88 ± 0.48 17 $72/72$ 17.49 ± 0.65 22 $58/72$ 14.35 ± 0.42 17 $71/72$ 15.77 ± 0.43 18 $84/90$ 14.62 ± 0.34 17 $85/90$ 20.83 ± 0.43 24 $89/90$ 16.10 ± 0.42 20 $90/90$ 12.23 ± 0.56 17 $66/90$ 11.55 ± 0.48 14 $63/90$ 17.25 ± 0.76 22 $58/90$ 12.72 ± 0.62 17 $69/90$ 11.62 ± 0.42 17 $71/72$ 14.68 ± 0.42 17 $71/72$ 15.60 ± 0.48 19 $72/72$	11.57 \pm 0.41 14 70/90 10.87 \pm 0.35 13 79/90 0.1443 ^a 16.16 \pm 0.34 18 87/90 < 0.0001 ^a 14.09 \pm 0.40 17 90/90 0.0001^{a} , < 0.0001 ^b , 12.36 \pm 0.39 15 68/84 11.88 \pm 0.31 14 74/84 0.1942 ^a 15.52 \pm 0.34 17 75/84 < 0.0001 ^a 13.10 \pm 0.34 15 79/84 0.2235 ^a , 13.10 \pm 0.34 15 79/84 0.2235 ^a , 14.68 \pm 0.42 17 71/72 13.88 \pm 0.48 17 72/72 0.5421 ^a 17.49 \pm 0.65 22 58/72 < 0.0001 ^a 14.52 \pm 0.42 17 71/72 $-$ 15.77 \pm 0.43 18 84/90 14.62 \pm 0.34 17 85/90 0.0001 ^a 16.10 \pm 0.42 20 90/90 0.7401^a , 0.0013 ^b , 20.83 \pm 0.43 24 89/90 < 0.0001 ^a 15.55 \pm 0.76 22 58/90 < 0.0001 ^a

<i>glp-1(e2144); hsb-1(cg116);</i> control (i)	17.49 ± 0.65	22	58/72	< 0.0001ª	c
glp-1(e2144); hsb-1(cg116); his-38(adulthood RNAi) (i)	17.14 ± 0.65	21	72/72	< 0.0001 ^a , 0.0018 ^b , 0.8655 ^c	d
<i>glp-1(e2144);</i> control (iii)	15.77 ± 0.43	18	84/90	_	a
<i>glp-1(e2144)</i> ; <i>his-38</i> (adulthood <i>RNAi)</i> (ii)	15.17 ± 0.43	18	90/90	0.5274ª	b
<i>glp-1(e2144); hsb-1(cg116);</i> control (ii)	20.83 ± 0.43	24	89/90	< 0.0001ª	c
glp-1(e2144); hsb-1(cg116); his-38(adulthood RNAi) (ii)	20.80 ± 0.40	23	89/90	< 0.0001 ^a , < 0.0001 ^b , 0.6236 ^c	d
N2; control (viii)	15.84 ± 0.45	19	67/90	—	a
N2; his-38(adulthood RNAi) (i)	14.47 ± 0.40	16	64/90	0.0126 ^a	b
hsb-1(cg116); control (vi)	20.33 ± 0.60	26	71/90	< 0.0001ª	c
<i>hsb-1(cg116); his-38</i> (adulthood <i>RNAi)</i> (i)	18.03 ± 0.65	22	73/90	0.0008 ^a , < 0.0001 ^b , 0.0594 ^c	d
N2; control (ii)	12.59 ± 0.50	15	51/72	—	a
N2; his-67(adulthood RNAi) (i)	13.04 ± 0.39	15	54/72	0.7155 ^a	b
<i>hsb-1(cg116);</i> control (ii)	15.88 ± 0.59	20	50/72	0.0001 ^a	c
<i>hsb-1(cg116); his-67</i> (adulthood <i>RNAi)</i> (i)	14.58 ± 0.41	17	60/72	0.0165 ^a , 0.001 ^b , 0.0197 ^c	d
N2; control (xii)	13.08 ± 0.39	15	65/90	—	a
N2; <i>ubl-5(RNAi)</i> (i)	12.61 ± 0.38	15	56/90	0.2935 ^a	b
hsb-1(cg116); control (viii)	17.13 ± 0.78	22	58/100	< 0.0001ª	c
<i>hsb-1(cg116); ubl-5(RNAi)</i> (i)	14.59 ± 0.57	18	56/90	0.012 ^a , 0.0012 ^b , 0.0009 ^c	d
N2; control (xiii)	12.65 ± 0.39	15	77/100	—	a
N2; <i>ubl-5(RNAi)</i> (ii)	13.05 ± 0.40	15	76/100	0.5189 ^a	b
<i>hsb-1(cg116);</i> control (ix)	16.04 ± 0.53	20	73/100	< 0.0001 ^a	с
<i>hsb-1(cg116); ubl-5(RNAi)</i> (ii)	14.39 ± 0.39	18	70/90	0.0058 ^a , 0.0289 ^b , 0.0012 ^c	d
N2; control (xiii)	12.65 ± 0.39	15	77/100	_	а
N2; <i>ubl-5(RNAi)</i> (ii)	13.05 ± 0.40	15	76/100	0.5189 ^a	b
<i>sur-5p::his-67(OE);</i> <i>sur-5p::his-50(OE);</i> <i>sur-5p::his-37(OE);</i> control (iii)	16.07 ± 0.38	18	90/100	< 0.0001ª	c
sur-5p::his-67(OE); sur-5p::his-50(OE); sur-5p::his-37(OE); ubl-5(RNAi) (i)	14.55 ± 0.28	16	88/100	0.0065 ^a , 0.0378 ^b , < 0.0001 ^c	d
N2; control (xv)	11.57 ± 0.41	14	70/90	_	а
N2; <i>ubl-5(RNAi)</i> (iii)	11.87 ± 0.37	14	76/90	0.7908 ^a	b

<i>sur-5p::his-67(OE);</i> <i>sur-5p::his-50(OE);</i> <i>sur-5p::his-37(OE);</i> control (iv)	16.16 ± 0.34	18	87/90	< 0.0001 ^a	c
sur-5p::his-67(OE); sur-5p::his-50(OE); sur-5p::his-37(OE); ubl-5(RNAi) (ii)	13.88 ± 0.29	15	76/90	0.0025 ^a , 0.0029 ^b , < 0.0001 ^c	d
<i>rde-1(ne219); ges-1p::rde-1;</i> control (i)	13.83 ± 0.40	16	82/96	_	a
rde-1(ne219); ges-1p::rde-1; his-38(RNAi) (i)	13.28 ± 0.35	16	82/97	0.1716 ^a	b
<i>hsb-1(cg116); rde-1(ne219);</i> <i>ges-1p::rde-1;</i> control (i)	16.62 ± 0.53	20	112/119	< 0.0001ª	c
hsb-1(cg116);	12.36 ± 0.39	14	106/120	0.0496 ^a , 0.3281 ^b , < 0.0001 ^c	d
<i>rde-1(ne219); ges-1p::rde-1;</i> control (ii)	15.32 ± 0.42	18	59/72	_	а
rde-1(ne219); ges-1p::rde-1; his-38(RNAi) (ii)	14.43 ± 0.35	16	55/68	0.0458ª	b
<i>hsb-1(cg116); rde-1(ne219);</i> <i>ges-1p::rde-1;</i> control (ii)	17.42 ± 0.83	21	42/72	0.0003ª	c
hsb-1(cg116);	14.46 ± 0.80	18	33/70	0.9176 ^a , 0.2844 ^b , 0.0033 ^c	d
N2; control (xiv)	12.68 ± 0.42	16	77/90	—	a
N2; <i>his-2(RNAi)</i> (i)	11.00 ± 0.30	12	63/90	0.0002 ^a	b
<i>hsb-1(cg116);</i> control (x)	15.63 ± 0.53	19	60/90	< 0.0001 ^a	c
<i>hsb-1(cg116); his-2(RNAi)</i> (i)	14.37 ± 0.51	17	71/90	0.0137 ^a , < 0.0001 ^b , 0.2527 ^c	d
N2; control (xiv)	12.68 ± 0.42	16	77/90	—	а
N2; <i>his-6(RNAi)</i> (i)	11.21 ± 0.31	14	71/90	0.0004 ^a	b
<i>hsb-1(cg116);</i> control (x)	15.63 ± 0.53	19	60/90	< 0.0001 ^a	c
<i>hsb-1(cg116); his-6(RNAi)</i> (i)	12.37 ± 0.45	14	75/90	0.8743 ^a , 0.0163 ^b , 0.0001 ^c	d
N2; control (xiv)	12.68 ± 0.42	16	77/90	—	а
N2; <i>his-43(RNAi)</i> (i)	11.89 ± 0.40	15	79/90	0.2187 ^a	b
<i>hsb-1(cg116);</i> control (x)	15.63 ± 0.53	19	60/90	< 0.0001 ^a	c
<i>hsb-1(cg116); his-43(RNAi)</i> (i)	14.15 ± 0.62	17	70/90	0.0121 ^a , 0.0006 ^b , 0.4155 ^c	d
Life span experiments at 20°C					
N2; control (i)	15.36 ± 0.47	17	56/72	_	а
N2; <i>his-67(RNAi)</i> (i)	14.62 ± 0.35	17	65/84	0.0576 ^a	b
<i>hsb-1(cg116);</i> control (i)	19.48 ± 0.69	24	72/84	< 0.0001ª	c

<i>hsb-1(cg116); his-67(RNAi)</i> (i)	18.50 ± 0.42	22	78/84	< 0.0001 ^a , < 0.0001 ^b , 0.0035 ^c	d
N2; control (ii)	20.26 ± 0.49	22	78/91	—	a
N2; his-67(RNAi) (ii)	18.44 ± 0.59	22	62/91	0.0443 ^a	b
<i>hsb-1(cg116);</i> control (ii)	24.39 ± 0.72	29	79/91	< 0.0001 ^a	c
<i>hsb-1(cg116); his-67(RNAi)</i> (ii)	22.72 ± 0.73	29	87/91	0.0001 ^a , < 0.0001 ^b , 0.2298 ^c	d
N2; control (ii)	20.26 ± 0.49	22	78/91		a
N2; <i>his-38(RNAi)</i> (i)	16.48 ± 0.50	20	81/91	< 0.0001 ^a	b
<i>hsb-1(cg116);</i> control (ii)	24.39 ± 0.72	29	79/91	< 0.0001 ^a	c
<i>hsb-1(cg116); his-38(RNAi)</i> (i)	21.13 ± 0.70	27	79/91	0.0351 ^a , < 0.0001 ^b , 0.0002 ^c	d

Adult 'mean life span \pm SEM' in days. '75% dead' refers to 75th percentile, age at which surviving proportion of the population reaches 0.25. 'n' indicates number of observed deaths relative to total number of animals on day 1 of the experiment. The difference refers to animals that were censored at different time points due to bagging, exploding, crawling off plates or being accidentally killed. Statistical analysis was performed using Mantel-Cox log-rank test to obtain *p* values. Conditions for which life span analysis was performed more than once, their descriptions are followed by a Roman numeral in parentheses to identify independent biological replicates. * *daf-2(e1370)* animals, being dauer-constitutive at 25°C, were transferred from 20°C to 25°C on day 1 of adulthood.

Sample 1	Sample 2	Mean (sample 1)	Mean (sample 2)	SD (sample 1)	SD (sample 2)	D value	Bonferroni <i>p</i> value
Nucleoson	ie peak widtl	h					
N2; control	N2; his-38(i)	136.30	142.22	303.56	304.11	0.0267	$< 1.4 \text{ X} 10^{-15}$
N2; control	<i>hsb-1(-);</i> control	136.30	128.54	303.56	299.39	0.0427	$< 1.4 \text{ X} 10^{-15}$
N2; control	hsb-1(-); his-38(i)	136.30	144.88	303.56	286.61	0.0528	< 1.4 X 10 ⁻¹⁵
N2; his-38(i)	<i>hsb-1(-);</i> control	142.22	128.54	304.11	299.39	0.0689	< 1.4 X 10 ⁻¹⁵
N2; his-38(i)	hsb-1(-); his-38(i)	142.22	144.88	304.11	286.61	0.0269	< 1.4 X 10 ⁻¹⁵
<i>hsb-1(-);</i> control	hsb-1(-); his-38(i)	128.54	144.88	299.39	286.61	0.0954	< 1.4 X 10 ⁻¹⁵
Nucleoson	ie peak fuzzi	ness					
N2; control	N2; his-38(i)	56.28	56.26	2.08	2.06	0.0069	0.27414
N2; control	<i>hsb-1(-);</i> control	56.28	56.01	2.08	2.11	0.0498	< 1.4 X 10 ⁻¹⁵
N2; control	hsb-1(-); his-38(i)	56.28	56.38	2.08	2.09	0.0215	< 1.4 X 10 ⁻¹⁵
N2; his-38(i)	<i>hsb-1(-);</i> control	56.26	56.01	2.06	2.11	0.0471	< 1.4 X 10 ⁻¹⁵
N2; his-38(i)	hsb-1(-); his-38(i)	56.26	56.38	2.06	2.09	0.0259	< 1.4 X 10 ⁻¹⁵
<i>hsb-1(-);</i> control	hsb-1(-); his-38(i)	56.01	56.38	2.11	2.09	0.0708	< 1.4 X 10 ⁻¹⁵
Nucleoson	ne peak heigi	ht				-	
N2; control	N2; his-38(i)	541.91	508.42	442.76	389.89	0.0294	0.27996
N2; control	<i>hsb-1(-);</i> control	541.91	587.17	442.76	487.94	0.0579	0.00013
N2; control	hsb-1(-); his-38(i)	541.91	503.10	442.76	387.76	0.0388	0.01165
N2; his-38(i)	<i>hsb-1(-);</i> control	508.42	587.17	389.89	487.94	0.0734	3.89 X 10 ⁻⁸
N2; his-38(i)	hsb-1(-); his-38(i)	508.42	503.10	389.89	387.76	0.0156	1

Table S2. Statistical data for frequency distributions of genome-wide nucleosomalparameters determined from MNase-Seq analysis.

hsb-1(-);	hsb-1(-);	587 17	503 10	187 91	387 76	0.0845	1 63 X 10-11
control	his-38(i)	567.17	505.10	+07.74	307.70	0.00+3	1.05 A 10

Statistical analysis was performed for comparison between genome-wide frequency distributions of nucleosome peak width, peak fuzziness and peak height across conditions. '*D* value' refers to *D* statistic determined from Kolmogorov-Smirnov test. *p* values are reported after Bonferroni's correction for multiple comparisons. '*his-38(i)*' indicates *his-38(RNAi)*.

Genomic location	Brief description of peak location	Occupancy difference				
Gain of peak intensity in hsb-1(-) worms compared to N2 in control RNAi						
mtDNA: 40 – 13,790	Entire stretch of mitochondrial DNA	2,529.87				
IV: 11,068,570 – 11,086,730	Contains pseudogene Y5F2A.3	1,972.07				
I: 15,032,020 – 15,072,410	rRNA gene repeats and ncRNA genes near right arm telomere of chromosome I	1,280.87				
V: 8,713,960 - 8,727,030	Region between genes ZC178.2 and glr-5	617.03				
Loss of peak intensity in hsb-1(-) we	orms compared to N2 in control RNAi					
I: 13,947,370 – 14,015,560	Includes genes <i>Y71A12B.18</i> , <i>Y71A12B.12</i> and four ncRNA genes	896.39				
IV: 14,919,710 – 14,940,680	Possible background deletion close to <i>hsb</i> - $1(cg116)$ deletion	689.88				
IV: 12,557,590 - 12,594,200	hsb-1(cg116) deletion	607.49				
IV: 3,567,570 – 3,629,160	Region between genes unc-17 and ZC416.2	514.43				
Gain of peak intensity in hsb-1(-) we	orms compared to N2 in his-38 RNAi					
mtDNA: 40 – 13,780	Entire stretch of mitochondrial DNA	2,126.29				
IV: 11,068,560 - 11,086,710	Contains pseudogene Y5F2A.3	1,918.40				
I: 15,031,930 – 15,072,410	rRNA gene repeats and ncRNA genes near right arm telomere of chromosome I	1,587.67				
V: 8,713,970 - 8,720,440	Region between genes ZC178.2 and glr-5	554.26				
V: 18,695,560 - 18,792,030	Pseudogene-rich region on chromosome V	502.44				
Loss of peak intensity in hsb-1(-) we	orms compared to N2 in his-38 RNAi					
IV: 14,919,770 – 14,939,020	Possible background deletion close to <i>hsb</i> - $1(cg116)$ deletion	722.74				
IV: 12,556,970 – 12,584,290	hsb-1(cg116) deletion	689.88				
I: 13,946,630 – 14,015,560	Includes genes <i>Y71A12B.18</i> , <i>Y71A12B.12</i> and four ncRNA genes	566.36				
IV: 3,626,530 - 3,629,160	Region between genes unc-17 and ZC416.2	556.38				
Loss of peak intensity in hsb-1(-) we	orms subjected to his-38 RNAi compared to control RNA	Ai				
X: 15,788,520 - 15,838,140	Region between gene <i>Y7A5A.7</i> and pseudogene <i>Y7A5A.11</i>	725.67				
mtDNA: 40 – 13,790	Entire stretch of mitochondrial DNA	609.78				

Table S3. Genomic regions with large-scale changes in MNase-Seq signal intensity associated with HSB-1 inhibition or H4 RNAi.

Occupancy difference was determined using Dregion function of DANPOS2 (see Materials and Methods). Genomic regions with occupancy difference values \geq 500 are reported. No region

passed the threshold value of \geq 500 for reduction in peak intensity after *his-38(RNAi)* in wild-type N2 strain. Also, no region showed an increase in peak intensity above the threshold value of \geq 500 after *his-38(RNAi)* in either N2 or *hsb-1(-)* strain. Data for all identified genomic regions are included in Data file S1.

Data file S1. Genomic regions with altered MNase-Seq signal intensity due to HSB-1 inhibition or H4 RNAi (available as separate file).

Data file S2. List of primer sequences used for PCR experiments.