Supplementary Information

Metampicillin is a Cyclic Aminal Produced by Reaction of Ampicillin With Formaldehyde

Raphael Reinbold,^{†a} Tobias John,^{†a} Paolo Spingardi,^a Akane Kawamura,^{a,b} Christopher J. Schofield,^{*a} and Richard J. Hopkinson^{*a,c}

^aChemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom. ^bSchool of Natural and Environmental Sciences, Chemistry Bedson Building, Kings Road, Newcastle Upon Tyne, NE1 7RU. ^cLeicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 7RH, United Kingdom.

† These authors contributed equally.

Reagents

Sodium ampicillin was from Apollo Scientific; paraformaldehyde, NaOD, DCI and 1,3cyclohexanedione were from Sigma-Aldrich.

Characterisation Methods

NMR spectra (HSQC, HMBC, COSY, ¹H, ¹³C) were obtained using either Bruker Avance AV700, AV600, AV500, or AV400 spectrometers. The Bruker internal referencing procedure (edlock) was used to reference spectra to the solvent peak (δ_{H} = D₂O 4.79 ppm; δ_{H} = D₆-DMSO 2.5 ppm, δ_{C} = D₆-DMSO 39.52 ppm).¹ For reporting multiplicities, the following abbreviations are used: m (multiplet), q (quartet), d (doublet), s (singlet). For ¹H-¹³C-HSQC and ¹H-¹³C-HMBC spectra, the color codes are as follows: red HSQC signals denote CH or CH₃, blue HSQC signals denote CH₂ coupling, and green signals denote HMBC coupling. High-resolution mass spectra measurements (HRMS) were obtained using a Waters LCT Premier ESI mass spectrometer. Mass spectra were measured using an Agilent single quadrupole machine. Melting point measurements were conducted on a Stuart automatic melting point SMP40 with a heating rate of 20 °C per minute. Infrared (IR) spectra were measured using a Bruker Tensor 27 FT-IR spectrometer using attenuated total reflection (ATR) at room temperature.

Characterisation of HPLC purified metampicillin (2)

Using the purification procedure described in the Materials and Methods section, metampicillin (2) was obtained as a colorless solid (12 mg, 33 µmol, 33%).

 H_{26}^{O} 27 ¹H NMR (700 MHz, D₆-DMSO) δ 7.44 – 7.39 (m, 2H, 4, 6), 7.38 – 7.33 (m, 2H, 1, 3), 7.31 – 7.26 (m, 1H, 2), 5.62 – 5.53 (m, 2H, 23, 24), 4.82, 4.52 (ABq, J = 6.7 Hz, 2H, 10', 10''), 4.54 (s, 1H, 7), 4.36 (s, 1H, 18), 1.65 (s, 3H, 21 or 22), 1.49 (s, 3H, 21 or 22); ¹³C NMR (101 MHz, D₆-DMSO) δ = 173.7 (C8), 171.2 (C14), 168.8 (C25), 138.4 (C5), 128.2 (C1, C3), 127.4 (C2), 127.2 (C4, C6), 70.2 (C18), 66.3 (C16), 64.7 (C19), 63.0 (C10), 60.9 (C7), 60.2 (C13), 30.5 (C21 or C22), 26.7 (C21 or C22); ESI-MS, [M+H]⁺: 362.12 (calculated), 362.100 (observed); HRMS (ESI+) [M+H]⁺: 362.1169 (calculated for C₁₇H₂₀N₃O₄S), 362.1169 (observed); IR $\tilde{\nu}$ 1768.84 cm⁻¹, 1737.55 cm cm⁻¹ (CON) (see Figure S13); melting point: 195 °C (degradation).

Characterisation of *in situ* reaction product (3)

Compound **3** was prepared by reaction of **1** (ampicillin) with 10-fold excess HCHO in D₂O. It was characterised *in situ* using ¹H NMR and ¹H-¹³C-HMBC/¹H-¹³C-HSQC NMR.

¹H NMR (700 MHz, D₂O) δ 7.51 – 7.43 (m, 5H, 1, 2, 3, 4, 6), 5.66 (d, J = 3.9 Hz, 1H, 24), 5.62 (d, J = 3.9 Hz, 1H, 23), 4.90, 4.72 (ABq, J = 5.3, 2H, 10', 10"), 4.76 (s, 1H, 7), 4.40, 4.27 (ABq, J = 11.4, 2H, 28', 28"), 4.35 (s, 1H, 18), 1.72 (s, 3H, 21 or 22), 1.57 (s, 3H, 21 or 22); ¹³C NMR (101 MHz, D₂O) δ = 174.0 (C8), 171.9 (C14), 171.9 (C25), 135.5 (C5), 129.0 (C1-4, C6), 71.4 (C28), 73.2 (C18), 65.6 (C16), 65.4 (C19), 64.3 (C10), 63.7 (C7), 60.0 (C13), 30.1 (C21 or C22), 26.7 (C21 or C22).

Figure S1 | HPLC analysis of the mixture obtained by reaction of ampicillin (1) and formaldehyde (HCHO). Fractions containing metampicillin (2) (as determined by LCMS) were combined and freeze-dried. See the Materials and Methods section for details.

Figure S2 | ¹H NMR (700 MHz, D₆-DMSO) spectrum of HPLC purified metampicillin (2) prepared from 1. ¹H-¹³C HMBC correlations (indicated by arrows) of HPLC-purified metampicillin reveal a methylene bridge between the α -amino group and the amide nitrogen (see Figure S3).

Figure S3 | 1 H- 13 C-HMBC and 1 H- 13 C-HSQC overlay of HPLC-purified metampicillin (**2**) in D₆-DMSO. Interactions important in the assignment are in boxes. The x-axis shows the 1 H (700 MHz) spectrum and the y-axis shows the 13 C spectrum.

Figure S4 | Reaction of **1** with HCHO with monitoring by ¹H NMR (700 MHz, D₂O). Timecourse analysis of reaction of **1** with a 5-fold HCHO excess shows the formation of a cyclic aminal (**2**, blue) and a product with an additional hemiaminal group (**3**, green). Note the shoulder (δ_H 4.89, purple) downfield to the cyclic aminal signal of **2** at δ_H 4.88 (blue) and the low-level signal at δ_H 4.73 (purple) correspond to the cyclic aminal methylene in **3**. Note the broad nature of the signals at δ_H 4.2 ppm, which implies a dynamic equilibrium on the NMR timescale under these conditions.

Figure S5 | NMR analysis of the *in situ* reaction product (**3**) resulting from mixing ampicillin with a 10-fold excess of HCHO in D_2O . ¹H-¹H-COSY analysis reveals a product with two additional methylene groups relative to the ampicillin (**1**) starting material. The hemiaminal signals are highlighted in green boxes and the cyclic aminal methylene signals are highlighted in purple boxes.

Figure S6 | 1 H- 13 C-HMBC and 1 H- 13 C-HSQC (methylene region) NMR analysis of the *in situ* reaction product (**3**) resulting from mixing ampicillin (**1**) with a 10-fold excess of HCHO in D₂O. Interactions important in the assignment are in boxes. The x-axis shows the 1 H (700 MHz) spectrum. Note that hydrogen 23 shows an HMBC correlation with C-10 (cyclic aminal methylene), but not with C-28 (hemiaminal methylene).

Figure S7 | ¹H NMR (700 MHz, D₂O) spectra of the cyclic aminal and hemiaminal regions after mixing of **1** with different amounts of HCHO (4 h). The two doublets in blue correspond to the cyclic aminal of **2**. The low-level signal shaded in purple at low concentrations of HCHO corresponds to the cyclic aminal of **3**. With increasing concentrations of HCHO, this signal increases in intensity while the cyclic aminal signal of **2** (blue) decreases in intensity. The hemiaminal signal of **3** is shaded in green. Close analysis of the spectra indicates the potential for further complexity. Not all the low intensity resonances were assigned, e.g. the 'β-lactam' proton region (Figure S6, δ_{H} 5.63 ppm). Further, 'doubling' of some resonances was observed. This notably occurs at the C-10 resonance of **3** (purple), but neither at methylenes of C-28 (green) nor at C-10 of **2** (blue). We speculate that these resonances may result from addition of a further HCHO to **3**, or, e.g., are possibly due to a HCHO-derived imine.

Figure S8 | Reaction of **1** with HCHO with monitoring by ¹H NMR (700 MHz, D₂O). Timecourse of reaction of ampicillin with equimolar HCHO manifests formation of **2** as the major product (blue). Only trace amounts of **3** are observed (green). Note the cyclic aminal methylene protons of **3** were not observed, likely due to their low intensities.

Figure S9 | ¹H NMR (700 MHz, D₂O) spectra of the methyl group region after mixing of **1** with different amounts of HCHO (4 h). The two singlet resonances at $\delta_{H} \sim 1.45$ and ~ 1.51 correspond to ampicillin (1). The two overlapping singlets at $\delta_{H} \sim 1.708$ and 1.713 ppm are assigned to the cyclic aminal adduct **2** (higher field singlet) and product **3** (lower field singlet), respectively. An increased amount of HCHO results in the equilibrium favouring **3**. The singlet at $\delta_{H} 1.56$ ppm corresponds to coincident resonances, corresponding to one methyl group from **2** and one methyl group from **3**.

Figure S10 | The reaction of **1** with HCHO to give **2** and **3** as monitored by ¹H NMR (700 MHz, D_2O). Note that the reaction is more efficient in basic conditions. The spectra correspond to reactions with a 10-fold excess of HCHO over 15 h at room temperature at pD 7.4 (A) and pD 9 (B).

Figure S11 | ¹H NMR (700 MHz, D₂O) time-courses showing the degradation of **2** and **3** after addition of 1,3-cyclohexanedione (CHD). **2** and **3** were produced *in situ* by treatment of **1** with a 2-fold excess of HCHO overnight. **A.** 1,3-cyclohexanedione (2:1 relative to HCHO) was added and reaction monitored over 14 h. The signals corresponding to **3** (green, purple) were rapidly lost, whereas those corresponding to the **2** (blue) were more stable. **B.** Increasing the amount of 1,3-cyclohexanedione to 4-fold with respect to HCHO results in slow degradation of the cyclic aminal of **2**. After 14h, ~40% of **2** is still present. **C.** Overlay of ¹H spectra (400 MHz, D₂O) before and after 20-fold 1,3-cyclohexanedione treatment shows rapid loss of **2** and **3** and reformation of **1** (Figure S12).

Figure S12 | Stability of the cyclic aminal (2) after reaction with a 20-fold excess of 1,3-cyclohexanedione was monitored by ¹H-¹³C-HSQC (400 MHz, D₂O) . **A. 1** was reacted with a 2-fold excess HCHO overnight at room temperature. The presence of a methylene bridge (highlighted in a rectangle) in **2** was confirmed by ¹H-¹³C-HSQC. **B.** The methylene bridge in **2** is removed upon addition of 20-fold excess of 1,3-cyclohexanedione as observed by ¹H-¹³C-HSQC.

Figure S13 | Infrared analysis of HPLC purified metampicillin (\tilde{v} 1769 cm⁻¹, C=O lactam; 1738 cm⁻¹, C=O amide).

References

 https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/MagneticResonance/Service_NMR/Acquisition-Processing/acquisitionreference.pdf