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assembly of multi-protein complexes and
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with major cellular events, such as DNA
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SUMMARY
Although the major events in prokaryotic cell cycle progression are likely to be coordinated with transcrip-
tional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly growing
bacteria, DNA replication and cell division are temporally resolved in mycobacteria, making these slow-
growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determinewhether
cell-cycle-dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the
transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching
for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period
consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict
the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins
were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could
be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine
synthetic genes peaked during DNA replication, and their depletion caused a filamentation phenotype that
phenocopied defects in this process. In contrast, the inosine monophasphate dehydrogenase dedicated
to guanosine synthesis, GuaB2, displayed the opposite expression pattern and its depletion perturbed sep-
tation. Together, these data imply obligate coordination between primary metabolism and cell division and
identify periodically regulated genes that can be related to specific cell biological functions.
INTRODUCTION

Much of prokaryotic cell biology has been elucidated under rapid

growth conditions in which chromosomal replication takes

longer than the doubling time of the cell [1, 2]. Under these con-

ditions, the production of complete chromosomes for daughter

cells is ensured via the simultaneous initiation of multiple rounds

of DNA replication, and it is not possible for cells to segregate

DNA replication from cytokinesis. However, this paradigm might

not apply to many bacteria in the environment. For example,

Caulobacter crescentus exploits a developmental program that

produces distinct sessile and motile cells, which is associated

with a strict cell cycle that segregates DNA replication from cyto-

kinesis. More generally, most bacteria in their natural, nutrient-

poor environments persist in slow-growing states [3]. When

these conditions are modeled in nutrient-restricted Escherichia

coli, major cellular events become restricted into distinct cell cy-

cle periods B, C, and D, which are analogous to G1, S, and G2 in

eukaryotic organisms [4, 5].

The prokaryotic cell cycle has beenmost thoroughly studied in

C. crescentus, largely because it is possible to produce cultures

in which cells are replicating synchronously with respect to the

cell cycle. In this organism, cell cycle progression is controlled

by a regulatory cascade [6, 7] that is conserved across the
Curre
alphaproteobacteria [8] and is associated with the periodic

expression of almost 20% of the genome. In addition to genes

that directly control this process, a variety of metabolic pathways

are also regulated in a cell-cycle-dependent manner. This

apparent link between metabolism and cell cycle is supported

by the oscillation of metabolites, such as nicotinamide adenine

dinucleotide phosphate [NAD(P)H] [9] and adenosine triphos-

phate (ATP), [10] during the cell cycle in E. coli and the ability

of uridine diphosphate glucose (UDP-glucose) levels to influence

cell division timing in B. subtilis [11] and E. coli [12]. Although

these data suggest that cell cycle progression is likely coupled

to metabolism, it remains unclear how these processes interact

and whether insights from transcriptional profiling in

C. crescentus are generalizable to more diverse bacteria.

We sought to extend these paradigms to mycobacteria, a

diverse genus that contains both saprophytic species and

important human pathogens, such as Mycobacterium tubercu-

losis (Mtb). Time-lapse microscopy studies show that these or-

ganisms constitutively employ a segregated cell cycle where

DNA replication occurs only once per cycle in themajority of cells

[13–17]. The average duration of the G1, S, and G2 periods in

Mtb range from 6 to 8 h, 9 to 12 h, and 6 to 9 h, respectively

[18]. These observations are supported by metabolic labeling

studies in synchronously replicating cultures of Mtb, which
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Figure 1. DNA Replication and Cytokinesis

Are Segregated in Synchronously Growing

Populations of Mycobacterium tuberculosis

(A) Growth ofMtbcos (top) andMtbRv (bottom) after

release into permissive temperature, 37�C. x axis,

hours at 37�C. y axis, Absorbance600. Data are rep-

resented as mean ± SD of two biological replicates.

(B) FhaA septation index assay to determine

cytokinesis phase. Percentage ofMtbcos (top) and

MtbRv (bottom) populations containing an FhaA-

venus focus at midcell after release into permissive

temperature is shown. Data points indicate two

biological replicates (average number of cells

analyzed at each time point = 82). Blue line is ob-

tained via Gaussian process smoothing. The blue

band indicates 95% confidence interval. Signifi-

cant difference between Mtbcos and MtbRv

curves was determined by using a likelihood ratio

test, which determines whether the data are fit

best by a combined model (null hypothesis) or

separate strain-specific models (alternate hy-

pothesis). DLog_likelihood (combined-separate) =

�38.489; p (c2 distribution; df = 3) = 1.1e�16.

(C) Origin/terminus assay to determine the DNA

replication phase. Relative ori/ter ratio of Mtbcos

(top) andMtbRv (bottom) populations after release

in permissive temperature is shown. Data points

indicate two biological replicates and are repre-

sentative of three independent studies. DLog_

likelihood (combined-separate) = �12.412; p (c2

distribution; df = 3) = 1.679e�05.

(D) Discrete time simulation of the cell cycle in

Mtbcos. The curves were generated frommean cell

attributes created by sampling cell cycle parame-

ters for each cell from Gaussian distributions, using

parameters that maximized correlation with empir-

ical data. Correlation coefficients were as follows:

OD = 0.9189; ori/ter = 0.9561; fhaA = 0.9614. The

lighter portion of the S2 bracket indicates assumed

completion of the second S phase.
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can be generated by using a mutant strain that harbors a

cold-sensitive (cos) allele of the DNA replication initiator DnaA

[19]. This Mtbcos strain is unable to initiate DNA replication at

30�C. Upon release into the permissive temperature (37�C), cul-
tures synchronously incorporate radiolabeled nucleotides into

DNA for 11 h, consistent with the S period observed in single

cells. The ability to produce synchronously replicating cultures

that recapitulate the behavior of single cellsmakesmycobacteria

an attractive system to investigate the cell cycle.

Using the Mtbcos strain, we determined the transcriptional

profile of synchronously replicating Mtb across the cell

cycle and report that 485 genes are periodically expressed.

Only a small fraction of the cell-cycle-regulated gene sets

of Mtb and C. crescentus overlap, suggesting species-spe-

cific transcriptional programs. We demonstrate that mRNA

expression patterns in Mtb reflect the time at which the en-

coded proteins are incorporated into the developing septum,

suggesting that functional information can be inferred from

the kinetics of gene expression. Using this framework, we

discover that disruption of different nucleotide anabolic path-

ways primarily affects distinct cellular processes. These

observations show that DNA replication and cytokinesis are

coordinated with different primary metabolic pathways,
2 Current Biology 30, 1–11, October 19, 2020
expanding the processes that are required for these essential

cellular events.

RESULTS

DNA Replication and Cytokinesis Are Segregated in
Synchronously Growing Mtb

Wegenerated synchronously replicating cultures ofMtb by using

the temperature-sensitive Mtbcos strain [19]. Chromosomal

replication was inhibited by incubating this strain at 30�C for 36

h. Upon shift to the permissive temperature (37�C), the optical

density (Absorbance600) of a parallel unsynchronized culture of

strain H37Rv (MtbRv) increased at a constant rate over a 54-h

time course, demonstrating that nutrients did not become

limiting. Mtbcos showed a reproducible multiphasic growth

pattern, an initial indication that cellular metabolism might be

linked to cell cycle events (Figure 1A).

In order to estimate the efficiency of the synchronization and to

delineate cell cycle periods, wemonitored chromosomal replica-

tion and cytokinesis over time. The phosphothreonine-binding

protein, FhaA, marks sites of division [20], andwe used a fluores-

cent allele of this protein to calculate a ‘‘septation index’’ that

corresponded to the fraction of cells with FhaA at midcell.
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Although the septation index of an asynchronous MtbRv culture

was constant throughout the time course, this metric varied in a

periodic manner in Mtbcos. The majority of cells arrested at the

non-permissive temperature had an FhaA focus at midcell,

which is likely an artifact of the DnaA inactivation. The septation

index of Mtbcos quickly decreased upon shift to the permissive

temperature, falling below that of unsynchronized cultures by

12 h. Septation reached a peak in Mtbcos between 27 and

33 h post-release (HPR), marking cytokinesis (Figure 1B).

Tomonitor chromosomal replication, we quantified the relative

abundance of DNA at the origin (ori) and terminus (ter) of replica-

tion. Upon initiation of replication, the ori:ter ratio is 2:1, and this

ratio is maintained until the terminus is duplicated (ori:ter = 1:1).

As we observed for septation index, ori:ter ratio remained con-

stant in unsynchronized cultures. In contrast, the ori:ter ratio

peaked twice in synchronized cultures (Figure 1C). The first

peak lasted for approximately 12 h (between 15 and 27 HPR)

and second one lasted between 48 HPR and the end of the

study. On the basis of these data, we estimate that our time

course captured �1.5 cell cycles. Both the septation index and

ori:ter varied by approximately 50% of the range expected of

fully synchronized cells, indicating that the synchrony of our cul-

tures was incomplete.

In order to characterize cell cycle dynamics in the synchro-

nized cultures, we created a computational model that incorpo-

rated cell growth, division, and each of the measured values

(optical density [OD], septation index, and ori:ter). Using a sys-

tematic search over parameter combinations, we identified an

optimal set of values for a model that correlated with the exper-

imental data (Figure 1D). Incomplete synchronization resulted

from deriving parameters via random sampling of Gaussian dis-

tributions. This produced variation in cell cycle initiation, S phase

duration, and cell cycle length. Our model produced dispersion

in the predicted ori:ter (�8–20 HPR) and septation index (�25–

35 HPR) peaks, which resembled experimental observations.

This modeling confirmed that DNA replication is temporally

separated from cytokinesis, and the cultures were sufficiently

synchronized to perform transcriptional profiling.

Periodic Gene Expression Correlates with Cell Cycle
Progression
To investigate whether gene expression changes are associated

with major cellular events like DNA replication and cytokinesis,

we profiled mRNA abundance in synchronized cultures every

3 h across a 54-h time course. Cells were collected and pro-

cessed for RNA extraction within 5-7 min, which is less than

the 9.5-min averagemRNA half-life inMtb [21]. We first assessed

correlation patterns in the dataset. The initial time point after

temperature shift to 37�C (0 h) was uncorrelated with the rest

of the dataset, presumably due to the temperature shift, and

was omitted. To minimize the effects of minor changes in culture

conditions over time, we first removed 50 genes that had highly

correlated (>0.9) expression patterns in synchronized Mtbcos

and a parallel unsynchronized culture of MtbRv. Additionally,

we removed 182 genes whose expression changed substantially

in MtbRv over the time course (Data S2). These transcriptional

trends included an increase in expression of the redox-sensitive

dosR regulon [22] and nitrate reductase (narG and narX) and a

decrease in several functions associated with growth (e.g.,
ATP synthase, cytochrome components qcrB and cydA, and

mycolate synthesis). For the remaining data, we found the high-

est degree of correlation between adjacent time points, as ex-

pected for a time-resolved dataset (Figure 2A). Although the

transcriptional profiles of the unsynchronized cultures remained

relatively consistent over time, the correlation matrix from the

Mtbcos cultures suggested the presence of transcriptionally

distinct phases that could not be explained by changes in culture

conditions. This structure is even more apparent upon hierarchi-

cal clustering, which revealed an ordered progression of gene

expression throughout the time course (Figure S1A).

To take advantage of both replicate measurements and the

relatedness of adjacent time points, we used Gaussian process

(GP) smoothing to estimate the relative expression level of each

gene across the time course (Figure S1B). The expression of

genes with cell-cycle-related functions was found to peak during

the appropriate period. For example, genes important for cell di-

vision, such as the regulator, mtrA [23], or the septal compo-

nents, sepF [24] and sepIVA [25], peaked during cytokinesis.

Similarly, genes important for DNA replication, such as those en-

coding DNA primase (dnaG) and the replicative polymerase

(polA) displayed peaks corresponding to DNA replication (Fig-

ure 2B). In addition, we found that the expression pattern of

several primary metabolic pathways mirrored these cell-cycle-

related genes. For example, genes necessary for arginine

biosynthesis were co-regulated and had opposing expression

patterns to genes involved in arginine catabolism (Figure 2B).

In order to formally define genes with expression patterns

consistent with cell cycle progression, we fit the expression pro-

file of each gene to a sinusoidal function with the expected

period of theMtb cell cycle, optimizing the parameters for trend,

amplitude, period, and phase. Genes with a period outside the

range of reasonable expectations based on the Mtb cell cycle

were omitted (27.5 h < period < 55 h), along with poorly

expressed genes (mean expression < 0.25). A goodness-of-fit

criterion based on curve-fitting residuals was applied, which

maximized the difference in genes discovered in synchronized

versus unsynchronized cultures. These criteria produced a false

discovery rate of 0.35% by using a permuted dataset and 2.6-

fold enrichment for genes in the synchronized cultures. 485

genes were categorized as periodically expressed (Figure 2C;

Data S3), which represented all major functional categories

(Figure 2D).

Hierarchical clustering this set of periodically regulated genes

further highlighted the association between gene function and

cell cycle. Genes were distributed into 8 clusters on the basis

of Mtbcos expression profiles (Figure S2), producing groups of

coordinately regulated genes with peak expression values

ranging across the time course. Three clusters (Figure 2E) con-

taining 158 genes peaked in expression during DNA replication.

Of the 20 periodically expressed genes annotated to be involved

in DNA or nucleotide metabolism, 13 were found in these three

clusters. The enrichment of DNA- and nucleotide-associated

genes in these clusters (p = 0.002) served as an initial indication

that mRNA abundance could be associated with gene function.

The periodically regulated gene set of Mtb represents 12% of

the genome, whereas between 9.5% and 19% of the chromo-

somal genes of the a-proteobacteria Sinorhizobium meliloti

[26] and C. crescentus [6, 27] were found to be cell cycle
Current Biology 30, 1–11, October 19, 2020 3



Figure 2. Periodic Gene Expression Correlates

with Cell Cycle Progression

(A) Correlation matrix of DESeq2 normalized counts for

single replicates ofMtbcos (top) andMtbRv (bottom) for

all 16 time points (blue, Pearson’s correlation coeffi-

cient = 1; white, Pearson’s correlation coefficient = 0).

(B) Relative expression (GP smoothed, DESeq2

normalized read count for each time point divided by

the mean value for that gene across time) of genes

involved in DNA replication and cell division (top panel);

arginine catabolism and anabolism (bottom panel).

(C) Relative expression (standard normalized DESeq2

counts—each value is subtracted by the mean for that

gene across time and then divided by the standard

deviation) of 485 periodically expressed genes in

Mtbcos (rows) sorted by peak expression time (col-

umns).

(D) Fraction of periodically expressed genes present in

different Gene Ontology categories.

(E) Clusters containing periodic genes with expression

patterns consistent with a role in DNA replication.

Known DNA replication and/or nucleotide biogenesis

genes found in these clusters are listed.

(F) Overlap between periodically expressedMtbcos and

C. crescentus mutual orthologs. p value indicates sig-

nificant overlap between the two gene sets determined

by using a hypergeometric test.

See also Figures S1 and S2, Tables S1 and S2, and Data

S1, S2, and S3.
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Figure 3. mRNA Abundance Predicts the Order of Assembly of Mycobacterial Divisome Components and Regulators

(A) (Left) Clusters ofMtbcos geneswith expression patterns that peak during the cytokinesis period. (Right) Scaled relative expression of known cytokinesis genes

from these clusters is shown.

(B) (Left) Scaled relative expression of PknD and DivIVA. (Right) Time-lapse imaging of M. smegmatis expressing PknD-Venus (green) and DivIVA-RFP (red) is

shown. Time (minutes) before the arrival of DivIVA at midcell is indicated.

(C) (Left) Scaled relative expression of FtsW and DivIVA. (Right) Time-lapse imaging of M. smegmatis expressing FtsW-Venus (green) and DivIVA-RFP (red) is

shown.

(D) Time (minutes) between initial arrival of PknD (n = 10), FtsW (n = 7), and DivIVA at midcell. Error bars indicate mean ± SD. Statistically significant difference

between pknD and ftsW determined by using an unpaired t test is shown (a = 0.05; p = 0.0023). Statistically significant difference between ftsW and divIVA

determined by using a chi-square test is shown (a = 0.05; c2 = 7; df = 1; p < 0.01).

See also Figure S3 and Data S3.
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regulated. We compared our set of Mtb periodic genes with or-

thologs from the most analogous previous analysis. Out of the

880 mutual orthologs identified as reciprocal best BLAST

matches, 182 genes were defined as cell cycle regulated in

C. crescentus [27] and 142 were periodically expressed in Mtb,

and there was an overlap of 15 genes (Figure 2F; Table S1).

This overlap contains genes with possible cell-cycle-associated

functions, such as the DNA replication initiator, dnaA; the

nucleoid-associated protein, hupB/ihfA; the regulator of ribonu-

cleotide reductase, nrdR; and a regulator of cell wall homeosta-

sis, htrA [28]. Although this similarity was statistically significant

(p < 4.56e�04), the modest degree of overlap suggests that

these two phylogenetically distinct organisms possess different

transcriptional networks. This observation is consistent with the

modest overlap of only 28% between cell-cycle-regulated gene

sets defined even in themuchmore phylogenetically similar spe-

cies, C. crescentus and S. meliloti [26].

Periodic gene expression studies in C. crescentus led to the

elucidation of a conserved cascade of transcription factors

(TFs) that control cell cycle progression [7, 29]. Similarly, we

found that 39 of the 206 TFs of Mtb [30] were periodically ex-

pressed (Table S2). These included mtrA, a component of the

septally localizedMtrAB regulator that contributes to cell division

[23]; parD1, a homolog of parD that is necessary for chromo-

some partitioning in E. coli [31]; and argR, the repressor of the
arginine synthetic operon that is cell cycle regulated (Figure 2B).

In addition, transcripts encoding the nucleoid-associated

proteins, Hns and HupB, were found, suggesting cell-cycle-

associated changes in chromosomal structure. Although these

observations implicate several DNA-binding proteins in cell cy-

cle control, the high degree of correlation in our time series

data precluded the association of specific TFs with downstream

regulons.

mRNA Abundance Predicts the Order of Divisome
Assembly
The order in which large multicomponent structures, such as the

flagellum, are assembled in bacteria can be predicted based on

the expression of the corresponding transcripts [32]. Consistent

with this ‘‘just in time’’ transcription model [33], the large com-

plex of proteins necessary for cell division, the ‘‘divisome,’’ as-

sembles in an ordered fashion in C. crescentus [34]. We hypoth-

esized that divisome assembly in mycobacteria might follow the

same principles and provide a system to determine whether

mRNA abundance could be used to predict the timing of gene

function. To test this model, we assessed the temporal coinci-

dence between mRNA abundance and protein localization at

the developing septum.

We identified genes that peak in expression only once be-

tween 22 and 38 HPR, consistent with a role in cytokinesis
Current Biology 30, 1–11, October 19, 2020 5
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(Data S3). We then clustered these genes on the basis of similar

expression patterns (Figure 3A). Within these clusters, we found

a number of genes known to be involved in cytokinesis (Fig-

ure 3A). To avoid selection biases, we compiled a list of 22

known septation-associated genes [24, 25, 35–37] and found

that 13 of these passed our filters for expression level and

were found in one of these clusters (Figures 3A and S3). The

expression patterns of characteristic genes are shown in Fig-

ure 3A. The first to be induced was ftsZ, the tubulin-like nucleator

of the septum. This peak was followed sequentially by mRNAs

encoding the septally localized Ser/Thr kinase, PknD; the divi-

some-associated FtsW, SepIVA, and LamA proteins; and the

new pole landmark protein, DivIVA. To determine whether the

timing of expression predicts the order of assembly, we chose

three genes with different expression peaks within the cytoki-

nesis window—pknD (early), ftsW (middle), and divIVA (late).

Pairs of these proteins were fused with fluorescent tags and

expressed from constitutive promoters so that the order of

assembly at the septum could be observed independently of

transcriptional regulation. The cellular location of these protein

fusions was then determined in M. smegmatis, a related myco-

bacterial species that expresses orthologs of these proteins

and is an experimentally tractable model of mycobacterial divi-

sion [13, 16, 38]. Time-lapse imaging revealed that PknD,

FtsW, and DivIVA appear at the developing septum in the order

predicted by mRNA abundance (Figures 3B–3D), indicating that

transcript level could be used to predict the timing of gene func-

tion at the developing septum.

Guanosine Synthesis Influences Cytokinesis
Having demonstrated that gene expression can predict the

timing of gene function, we investigated whether coordination

exists between cellular events, such as DNA replication and

cytokinesis, and upstream pathways that produce the precur-

sors for these processes. In particular, we focused on nucleotide

metabolism by analyzing the expression patterns of enzymes

that produce the nucleobase rings. In order to focus specifically

on nucleotide anabolism, we did not consider reactions that

require amino acid donors, because we could not rule out roles

for those enzymes in amino acid metabolism. Pyrimidine biogen-

esis, from the early stages of the carAB-encoded reactions to the
Figure 4. Guanosine Synthesis Influences Cytokinesis in Mycobacteria

(A) Relative expression of IMP dehydrogenase guaB2 compared with that of pyr

(B) Cumulative growth (Absorbance600) of M. tuberculosis guaB2-DAS (top), gyr

depletion (dotted line). Arrows indicate the time during the pre-depletion period w

mean ± SD of two biological replicates.

(C) Growth (Absorbance600) and morphology ofM. tuberculosis guaB2-DAS ± dep

are represented as mean ± SD of two biological replicates.

(D)M. tuberculosis cellular phenotypes upon genetic depletion of GuaB2, PyrE, an

the case of GuaB2, septal bulges (arrowheads) and polar bulges (arrows) are indic

was either not depleted (gray) or depleted (black).Mtbwas treated with 0.2 mMm

of cells in untreated (gray) or treated cells (black). MFD, Maximum Feret Diameter

the cell length distributions was determined by using the Mann-Whitney test (pgu
(E) Time-lapse imaging at 20-min intervals of GFP-expressing M. smegmatis trea

(F) Susceptibility of M. smegmatis to VCC234718. Data are represented as me

the indicated concentrations of VCC234718 alone (left), with C109 (center), or w

the curves was determined by using an extra-sum-of-squares F-test (a = 0.05). V

p(VCC 0.5 mm) = 0.0215; p(VCC 1 mM) = 0.0284; p(VCC2 mM) = 0.0001; p(VCC4 mM) = 0.00

VCC alone and VCC+spectinomycin curves were not significantly different, p(VCC0
See also Data S3.
later pyrBCDEF-encoded reactions, was most highly expressed

during S phase (Figure 4A), consistent with previous reports of

increased de novo synthesis during DNA replication in E. coli

[39, 40]. Unexpectedly, expression of guaB2, encoding the IMP

dehydrogenase that catalyzes the first reaction dedicated to

guanosine synthesis, peaked during cytokinesis (Figure 4A).

Genes dedicated to synthesizing adenosine from IMP, purB

and amk, did not appear to be cell cycle regulated.

The reciprocal expression patterns of pyrimidine and guano-

sine synthetic genes suggested that the requirement for these

metabolites was associated with distinct cellular events.

To investigate this hypothesis, we generated mutant Mtb

strains in which synthesis of pyrimidines or guanosine was

inhibited via the inducible depletion of PyrE or GuaB2. Each

gene was fused to a C-terminal DAS+4 tag (DAS) that facilitated

Clp protease-mediated degradation upon removal of anhydrote-

tracycline (aTc) [41]. In both cases, protein depletion inhibited

bacterial growth (Figure 4B), consistent with the essentiality of

these pathways [42]. As Mtb expresses three GuaB paralogs,

we verified that GuaB2 is essential for guanosine synthesis by

metabolite supplementation. Consistent with previous studies

[43], guanine partially rescued the growth defect of the guaB2-

DAS strain, whereas guanosine led to complete rescue

(Figure 4C).

The inverse expression patterns of pyr genes and guaB2

implied that increased de novo synthesis of pyrimidine nucleo-

tides and guanosine was preferentially required for DNA synthe-

sis or cytokinesis, respectively. We used morphological criteria

to infer which cellular process was primarily impacted by the

inhibition of these pathways. PyrE depletion resulted in cell elon-

gation prior to growth arrest (Figure 4D). A similar phenotypewas

observed upon DNA gyrase GyrB depletion and in cells treated

with the gyrase-inhibiting fluoroquinolone, moxifloxacin (Fig-

ure 4D), which disrupts DNA replication and causes cell filamen-

tation in E. coli [44]. Thus, pyrimidine depletion causes cell

elongation upon inhibition of DNA replication, a phenotype

consistent with previous observations in B. subtilis [45] and my-

cobacteria [46, 47].

In contrast, GuaB2-depleted cells were the same length as

wild type, but many of these growth-arrested cells had bulges

at midcell or one pole, suggesting that GuaB2 depletion might
imidine biosynthesis genes carA, carB, pyrB, pyrC, pyrD, and pyrF.

B-DAS (center), and pyrE-DAS (bottom) without depletion (solid line) and with

hen cultures were diluted into fresh growth medium. Data are represented as

letion in the presence of either 200 mMguanine or guanosine. Absorbance data

dGyrB. Imageswere obtained after the cessation of growth in depleted cells. In

ated. Histograms indicate the cell length distribution of cells in which the target

oxifloxacin for 24 h and imaged. Histograms indicate the cell length distribution

(1 mm;�0.11 MFD). Statistically significant/non-significant difference between

aB2 = 0.214; ppyrE < 0.001; pgyrB < 0.001; pmoxifloxacin < 0.001).

ted with 2 mM VCC234718.

an ± SD (left). Cross titration assay on GFP-expressing M. smegmatis with

ith spectinomycin (right) is shown. Statistically significant difference between

CC alone curve was significantly different from each of the VCC+C109 curves,

19.

.5 mM) = 0.9989; p(VCC1 mM) = 0.9999; p(VCC2 mM) = ambiguous; p(VCC4 mM) = 0.9978.
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influence cell division (Figure 4D). This morphological phenotype

did not occur in guanine- or guanosine-supplemented growth

conditions, verifying that it was due to metabolite depletion (Fig-

ure 4C). To determine whether the polar bulges were derived

from misshapen septa, we performed time-lapse microscopy

in M. smegmatis cells treated with a chemical inhibitor of

GuaB2 (VCC234718). Chemical inhibition of GuaB2 also in-

hibited growth and produced bulges at midcell or one pole (Fig-

ure 4E). Time-lapse microscopy revealed that VCC234718-

treated cells began to bulge at midcell by the completion of 1

to 2 cell cycles, and misshapen poles were derived from these

bulges. These observations imply that the cellular requirement

for guanosine increases during cytokinesis and that this require-

ment is reflected in the aberrant septation of guanosine-depleted

cells.

FtsZ is an abundant protein that binds and hydrolyzes guano-

sine triphosphate (GTP) [48] as it undergoes the cycles of poly-

merization and depolymerization necessary for septation [49].

This GTP requirement suggested a mechanism connecting gua-

nosine nucleotide levels and septation. To investigate whether

the effect of guanosine depletion on septation could be attrib-

uted to altered FtsZ dynamics, we inhibited both processes

simultaneously using the GuaB2 inhibitor (VCC234718) and

C109, an inhibitor of FtsZ GTPase activity and polymerization

[50]. Consistent with the hypothesized mechanistic link, we

observed significant interaction between these compounds

(Fractional Inhibitory Concentration Index [FICI] = 3.16). Even

at concentrations of VCC234718 that alone had no effect on

growth (0.5–4 mM), this compound consistently increased the

half maximal inhibitory concentration (IC50) of C109 (Figure 4F).

In contrast, we found no interaction between VCC234718 and

spectinomycin, an inhibitor of another major GTP-consuming

pathway, translation (FICI = 1.55).

The specific effect of GTP depletion on FtsZ dynamics can be

inferred from the observed antagonistic interaction between

C109 and VCC234718. C109 acts additively with PCI90723

[51], a compound that stabilizes the FtsZ filament. The converse

antagonistic interaction we observed between C109 and

VCC234718 implies that guanosine depletion inhibits polymeri-

zation, consistent with the knownGTP requirement for FtsZ poly-

merization [48, 52]. Together, these data are consistent with a

model in which transcriptional induction of guaB2 during cytoki-

nesis coincides with the increased consumption of GTP by FtsZ,

and the septal defects observed on guanosine depletion are

related to defects in FtsZ dynamics.

DISCUSSION

This study represents the first global analysis of cell-cycle-asso-

ciated gene expression in mycobacteria. Comparisons between

our Mtb studies and C. crescentus are limited by a number of

technical differences, including the method and degree of syn-

chronization and the timing of cell collection and processing.

Biological differences, like the possible unequal effects of

mRNA degradation rates on transcript abundance due to vast

differences in interdivision time, further limit comparisons.

Regardless, we found that a similar fraction of the genome is

differentially expressed across the cell cycle in both systems,

and a small fraction of orthologous genes are regulated
8 Current Biology 30, 1–11, October 19, 2020
periodically in both. Despite these similarities, the majority of

cell-cycle-associated transcriptional changes were unique to

each organism, indicating that cell cycle progression is associ-

ated with distinct transcriptional networks in phylogenetically

divergent organisms.

In a number of cases, we found that increases in mRNA abun-

dance could be used to associate genes with temporally

resolved cell cycle events, such as septation. The sequential

expression [6] and an ordered assembly [34] of divisome compo-

nents have independently been observed inC. crescentus. Here,

we provide a link between gene expression and function by

demonstrating that the timing of gene induction correlates with

the recruitment of the encoded proteins. Based on transcrip-

tional data, we inferred the following order of assembly: FtsZ >

PknD > FtsW > LamA > SepIVA > DivIVA. The recruitment of

these proteins spans sequential processes of divisome assem-

bly, septation, and new pole biogenesis. FtsZ initially marks

the division site [53], facilitating the recruitment of divisome com-

ponents FtsW [54] and SepIVA [25]. The arrival of LamA at the

later stages of assembly is consistent with its role in delaying

septation to promote asymmetric cell division [35]. DivIVA is re-

cruited to the negative curvature of the new pole after septation

[55–57] and the segregation of daughter cell cytoplasm [13].

Additional cell wall synthetic genes (e.g., glfT2 and pks13) were

found to peak after DivIVA, which could reflect the delayed elon-

gation of the new pole [58]. These observations indicate that

gene expression can be used to predict the order of complex as-

sembly. However, transcriptional regulation is unlikely to be the

primary determinant of assembly order, as only a subset of

currently known septal components were found to be periodi-

cally expressed. Instead, this type of hierarchical gene expres-

sion has been proposed as a mechanism to maximize efficiency

by restricting protein expression to the period when it is needed

[32, 33]. Regulation of divisome assembly and function likely in-

volves additional posttranslational mechanisms, as the Ser/Thr

phosphatase, PstP, contributes to cell division [59, 60], and we

found that the Ser/Thr kinase, PknD, is recruited relatively early

in septal development. Although it remains possible that tran-

scriptional regulation controls some aspects of septation, our

data primarily demonstrate that expression pattern can predict

the timing of gene function.

The importance of coordinating cell cycle events with the

upstream metabolic pathways that provide precursors is sup-

ported by our finding that pyrimidine and guanosine synthetic

genes are distinct in their expression patterns and in the func-

tional consequences of their depletion. The association we infer

between pyrimidine depletion, DNA synthesis inhibition, and

cell elongation is supported by a recent study [47] describing

similar morphological alterations in M. smegmatis mutants

lacking a variety of DNA replication and pyrimidine nucleotide

biosynthetic functions. However, the distinct cytokinesis defect

observed upon GuaB2 depletion was unanticipated. We spec-

ulate that the septation defect we observe upon GuaB2 deple-

tion is related to the relatively low affinity of FtsZ for GTP. FtsZ

has �500-fold lower affinity for GTP than the DnaE1 replicative

DNA polymerase (Km FtsZGTP = 1 mM [61]; KmDnaE1GTP = 2 mM

[62]). As the reported intracellular concentration of GTP [63]

would support only one-half of the Vmax of FtsZ [61], GTP levels

could control FtsZ dynamics. We speculate that the septal
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bulging observed uponGuaB2 depletion is due to aberrant FtsZ

activity and not a complete loss of function, because genetic

depletion of FtsZ causes filamentation [41]. Indeed, altered

FtsZ dynamics influences peptidoglycan structure [49], and

the aberrant activity of divisome components, including FtsZ,

alters septal morphology in other bacterial systems [64–67].

In addition to transcriptional regulation, guaB2 might also be

regulated by its substrate, IMP, which increases in abundance

during C. crescentus cell cycle progression [68]. Although it is

impossible to rule out an indirect effect of guanosine levels on

the expression or regulation of additional cell-division-associ-

ated proteins, our observations suggest that the septal defects

we observe upon guanosine depletion reflect alterations in FtsZ

filament length or dynamics.

Both DNA replication and cell division are essential processes

that have been targeted for antimicrobial discovery [69, 70]. In

most cases, these efforts focus on inhibiting a limited number

of physical components of the bacterial replisome or divisome.

Our transcriptional data identified a variety of genes that are

coordinately expressed with these complexes and therefore

might be required for their activity. Although we have only inves-

tigated these functional dependencies in the context of nucleo-

tide synthesis, our data suggest that similar dependencies exist

and can be predicted from transcriptional profiles. If so, these

data could be used to identify new strategies for inhibiting these

essential cellular processes.
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Bacterial and Virus Strains

Mycobacterium tuberculosis containing cos allele of dnaA (Mtbcos) [19] N/A

Mycobacterium tuberculosis H37Rv (MtbRv) C. Sassetti N/A

Mtbcos containing fhaA-mVenus This paper N/A

MtbRv containing fhaA-mVenus This paper N/A

Mycobacterium smegmatis MC2155 (Msm) C. Sassetti N/A

Msm containing ftsW mVenus and divIVA-RFP This paper N/A

Msm smegmatis containing pknD-mVenus and divIVA-RFP This paper N/A

Mtb guaB2-DAS-HygR+Giles-TetON1-sspB-strR [71] N/A

Mtb gyrB-DAS-HygR+Giles-TetON6-sspB-strR [71] N/A

Mtb pyrE-DAS-HygR+Giles-TetON1-sspB-strR [71] N/A

Msm containing m-Venus pMV261-HygR Eric Rubin Lab N/A

Chemicals, Peptides, and Recombinant Proteins

VCC234718 [43] N/A

C109 [50] N/A

Guanine-98% Millipore-Sigma G11950

Guanosine > = 98% Millipore-Sigma G6264

Spectinomycin dihydrochloride pentahydrate Millipore-Sigma S4014

Critical Commercial Assays

KAPA Stranded RNA-Seq Kit Roche KK8401

Ribo-Zero Bacteria Kit (discontinued) Illumina MRZB12424

iQ SYBR Green Supermix Bio-Rad 1708880

Deposited Data

RNASeq count data This paper GEO: GSE147345

Oligonucleotides

Forward Primer for amplifying ori- 50-GGTTCAGGCTTCACCACAGT-30 This paper N/A

Reverse Primer for amplifying ori- 50-GGAGCGCTGAGATTAGCATC-30 This paper N/A

Forward Primer for amplifying ter- 50-ACAACGAGAAACCGCAAATC-30 This paper N/A

Reverse primer for amplifying ter- 50-TACGGCTGTCATGTCTTTCG-30 This paper N/A

Recombinant DNA

fhaA-mVenus in plasmid MEH [20] N/A

divIVA-RFP in plasmid MCtH [57] N/A

pknD-mVenus in plasmid MEK [72] N/A

Software and Algorithms

CellProfilerTM [73] N/A

DESeq2 [74] R package

Source code for GP smoothing, curve fitting and cell cycle modeling https://github.com/ioerger/synchronized_cells Python and R scripts
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(christopher.sassetti@umassmed.edu).
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Data and Code availability
The RNASeq data generated in this study has been deposited in GEO (Accession Number GSE147345). The code generated during

this study is available at https://github.com/ioerger/synchronized_cells. The data that support the findings of this study are available

from the Lead Contact upon request. The authors declare that all data reported in this study are available within the paper, its sup-

plementary information files and in the datasets uploaded to GEO.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All mycobacterial strains were grown at 37�C usingMiddlebrook 7H9media supplemented with 0.05%Tween-80 andOADC (Becton

Dickinson) enrichment and 0.2% glycerol for the bulk culture experiments. For live cell microscopy,M. smegmatis cells were grown

on Luria Bertani agar pads. Strains expressing fluorescent markers were grown in growth media supplemented with either 50 mg/ml

hygromycin (for strains containing MEH or MCtH plasmids) or 25 mg/ml kanamycin (for strains containing MEK plasmid).

METHOD DETAILS

Strains
The Mtbcos strain was obtained from [19]. MtbRv is the H37Rv strain used as an unsynchronized control. Mtbcos and MtbRv ex-

pressing FhaA m-venus were transformed with pKP887 (mycobacterial replicating plasmid MEH expressing MSMEG FhaA-Venus

expressed from the MSMEG fhaA native promoter (from K.P. Sundaram). M smegmatis expressing FtsW-mVenus and DivIVA-

RFP was transformed with ptb21-ftsW-mVenus-MEK and tb21-divIVA-RFP-MCtH [57]. M smegmatis expressing PknD-mVenus

and DivIVA-RFP was transformed with p16-pknD-mVenus-MEK [72] and tb21-DivIVA-RFP-MCtH. Mtb hypomorphs used in this

study were generated as part of an earlier study [71] using a controlled protein degradation system described previously [75]. Three

strains were used in this study: Mtb guaB2-DAS-HygR+Giles-TetON1-sspB-strR; Mtb gyrB-DAS-HygR+Giles-TetON6-sspB-strR;

Mtb pyrE-DAS-HygR+Giles-TetON1-sspB-strR.M smegmatis expressing green fluorescence contains the plasmid CT161 (m-Venus

pMV261 HygR) obtained from the Eric Rubin Lab.

Mtbcos synchronization
Biological duplicate cultures of MtbdnaAcos115 generated in a previous study [19], MtbH37Rv, MtbdnaAcos115-FhaA-Venus and

MtbH37Rv-fhaA-Venus were grown in standard culture media at 37�C under shaking conditions till OD600 0.4. The cells were shifted

to 30�C for 36 hours. The cultures were then shifted to 37�Cand the cultures were processed for either DNA isolation, RNA isolation or

fluorescent microscopy at the following times: 0h, 3h, 6.5h, 9h, 12h, 18.5h, 21h, 27h, 31h, 33h, 36h, 39.5h, 42h, 45.5h, 52h and 55h.

Chromosomal DNA isolation
Chromosomal DNA was isolated from the cell pellet of 5ml culture from each time point. Briefly, 0.5 mL of chloroform:methanol (2:1)

was added and the mixture was vortexed 5X 1min. 0.5ml of phenol:chloroform was added and the mixture was vortexed for 30 s.

Finally, 0.5ml of TE buffer was added. This was centrifuged at 12,000 g at 4�C for 5 minutes. The upper phase was mixed with

1 volume of chloroform and vortexed. After centrifugation, the upper phase was added to a new tube and 1/10 volume of 3M sodium

acetate and 1 volume of isopropanol was added. Precipitated DNA was spun out of solution and resuspended in 20 mL of TE buffer.

Origin:terminus assay
Multiple primer sets (designed using the Primer3 design tool) amplifying 150bp at each location (Origin-0MB region surrounding

Rv0001; Terminus –2.2MB region surrounding Rv1949c) of theMtbH37Rv genomewere tested for amplification efficiency. Efficiency

was calculated from the negative slope of the standard curve of CT v/s template concentration. The primer sets with the highest and

most similar efficiencies for both loci were selected (95% for the origin and 93% for the terminus). Quantitative PCR was done using

SYBR green (Biorad iQ SYBR Green Supermix) with 2ng of gDNA template per reaction. Delta Ct values were calculated as dCt =

Ctori-Ctter. 2^-dCt values were then calculated for each time point. These values were then divided by the mean 2^-dCt across all

time points to generate a relative ori:ter ratio for each time point.

Static microscopy
At each time point post release into 37�C (Figure 1B) or time point post genetic depletion of GyrB, GuaB2 and PyrE (Figure 4D), 1ml of

Mtb culture was briefly centrifuged and cells were resuspended in a phosphate buffered saline solution containing 0.05% Tween80

and 4% paraformaldehyde. These fixed cells were then placed onto an agarose pad and DIC (Figure 4D) or wide field fluorescence

imaging (Figure 1B) was performed with a DeltaVision Personal DV microscope (GE Healthcare) using a 60X oil immersion objective

(AP). For each datapoint, an average of 82 cells were scored. Cell lengths in Figure 4D were determined using CellProfilerTM [73]

which calculates a MFD (Maximum Feret Diameter) which is a measurement of the largest number of pixels between the two

ends of the cell obtained while rotating a caliper along all possible angles. The approximate conversion factor of MFD to microns

is 0.11. Calculating an MFD is especially useful for measuring mycobacteria since all cells are not strict rods (cells undergo V-snap-

ping prior to resolution of cytokinesis and daughter cell separation). The cell debris observed during GyrB depletion in Figure 4D was

excluded from cell length quantification by training CellProfiler using CP AnalystTM.
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Live cell microscopy
10 mL of cells in logarithmic phase (OD600 0.2-0.5) were spotted on a glass bottom 24-well plate (MatTek Corporation). 500 mL of

molten Luria Bertani medium (40-50�C) was spread over the cells and allowed to solidify. For experiments with VCC234718, molten

LB containing 2 mM final concentration of VCC234718 was prepared before layering over the cells. Time-resolved imaging was

performed with a DeltaVision Personal DV wide field fluorescence microscope equipped with Ultimate FocusTM capabilities and

an environmental chamber warmed to 37�C (Applied Precision). Images were taken at 5 or 10 minute intervals.

Simulation of cell cycle progression
Cells were simulated as a discrete population, starting with N = 10,000 cells. The population was evolved in discrete time steps over

55 hours, with each step representing 1 hour. Each cell had its own variables such as cell size (ranging between 1.0 and 2.0), chro-

mosome copy number representing ori/ter ratio for each cell (either 2 or 1), the FhaA level for each cell (0%–100%) and a count (an

integer, initially 1 for each cell). The cycle-time and growth rate for each cell was chosen from a normal distribution where the mean

and standard deviation were parameters to be optimized. During the simulation, if size is < 2.0 for a cell, it increases by a constant rate

after a delay after division (as a fraction of the cell cycle). Once each cell reaches a maximum size of 2.0, it stops growing. FhaA

appears at the septum (increasing from 0 to 1 discretely for each cell) toward the end of the cell cycle (as a fraction of the cell cycle)

and then decreases by a constant rate after the cells divide. The gradual increase in the curve for the FhaA levels comes from the

dispersion of states for individual cells relative to their cycle times. Chromosome duplication window is chosen randomly from a

normal distribution. This random duration for replication, creates additional dispersion in the ori/ter curve. At initiation, the value is

switched to 2 (i.e., 2 copies of Ori but 1 Ter), and at termination it switches back to 1 (2 copies of each, ori/ter = 1). When each

cell reaches 100% of its cell cycle time, the cell divides, doubling the count and resetting size to 1.0. Hence the population size in-

creases, but there is no net change in biomass. Initially, the cells are assumed to be check-pointed at some point in the cell cycle due

to the non-permissive temperature. (T0 in the experiment does not necessarily correspond to the beginning of the cell cycle (i.e., 0%),

but rather, some point in the middle, shortly before initiation of chromosome replication.) This is represented by a ‘‘shift’’ parameter,

to be optimized. After shifting to the permissive temperature, cells begin growing, and FhaA levels autonomously begin to decay (from

initially high levels, indicated by empirical data).

In the first cell cycle, chromosome replication is delayed by an additional ‘‘recovery time’’ parameter which is unique for each cell

and drawn randomly from a Normal distribution.

To optimize the parameters in themodel, the simulation was runwith different combinations of parameters, and the correlation with

the empirical data (Figures 1A–1C) was evaluated. In the end, the final parameter values that maximized correlations with the empir-

ical data were:

Cell Cycle time: mean = 35hr, sd = 1hr; Shift = 10hr (cells assumed to start 10hr into cell cycle after shift to permissive temperature);

Recovery time = 6hr (after shift to permissive temperature); FhaA_start = 80% (fraction of cell cycle); S phase initiation = 20hr (into the

cell cycle, i.e., after division); S phase window: mean = 12hr, SD = 7hr (duration of chromosome replication); Growth rate = 0.07;

Growth_delay = 30% (fraction of cell cycle).

The predicted curves from the simulation using these optimized parameter values are shown in Figure 1D. The correlations with the

empirical data are: cc(OD) = 0.9189, cc(ori/ter) = 0.9561, cc(fhaA) = 0.9614.

RNA isolation and sequencing
To minimize transcriptional changes during RNA isolation, samples were processed as rapidly as possible. At each time point, the

45ml culture was pelleted for 3 minutes at 4000 g at 37�C. The pellet was immediately resuspended in 1ml of TRIzol (Invitrogen) and

snap-frozen in liquid nitrogen. The average processing time of each sample was�5-7 minutes. Samples from time point for the syn-

chronized and unsynchronized cultures were handled in parallel to minimize any batch effects. The RNA isolation strategy was also

designed tominimize batch effects. One entire biological replicate each from the synchronized and unsynchronized cultures (16 time

points X 2 replicates = 32 samples) were processed for RNA isolation in parallel, as follows. Cells in TRIzol were first transferred to

lysing matrix tubes (MP Biomedicals: Lysing Matrix B). Cells were lysed in a MP Biomedicals Fast Prep-24 homogenizer (maximum

power-6.5, 4 X 30 s cycles, rest on ice for 5 minutes in between cycles to minimize RNA degradation). RNA was purified according to

the manufacturer’s directions. RNA cleanup was performed with QIAGEN RNeasy Mini kit (74104) omitting the DNase step. Instead,

after elution, in-tube DNase treatment was performed using Ambion DNase Turbo. RNeasy cleanup was repeated again with double

volumes of RLT and ethanol. RNA was subjected to rRNA removal with Ribozero Bacteria kit (Illumina-MRZB12424). Deep

sequencing library was prepared using KAPA Stranded RNASeq kit (KK8401). The RNaseq libraries were sequenced on an Illumina

HiSeq 4000 instrument in paired-end mode, using a read-length of 150+150bp. The mean number of reads per sample was 8.9M

(range 4.2-16.5M). The reads were mapped to the H37Rv genome using Burroughs Wheeler Alignment [76] with default parameter

settings. Reads mapping to each ORF were totaled (sense strand only). Because certain loci were over-represented (e.g., rrs, rnpB,

ssr, Rv3661, which had counts �0.5-1M), counts were truncated to a maximum coverage of 10,000 (reads/nt).

Data Filtering and Normalization
The global expression profiles ofMtbcos samples showed a gradual increase in expression of a few genes that dominate expression

at latter time-points. Consequently, a compensatory decrease was observed in expression of other genes, making normalization by

traditional reads per kilobase per million (RPKM) mis-representative. To correct for the bias induced by these outliers, the
e3 Current Biology 30, 1–11.e1–e6, October 19, 2020
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normalization method implemented in DESeq2 [74] was used, which first normalizes counts by the geometric mean for each

gene across samples, and then scales each dataset to have a common median (which is less sensitive to outliers). This was applied

to all 64 datasets (2 strains X 2 replicates X 16 time-points) in parallel. As a result, the expression patterns were well-calibrated be-

tween time-points, with themediansmatched. To identify a subset of genes withmeaningful expression, the average expression over

all time-points was calculated for each gene and divided by gene length (in nucleotides). 1070 genes out of 4018with coverage < 0.25

were dropped because expression patterns for genes with low expression are inherently noisy, leaving 2948 genes with

coverage > 0.25. (Data S3). Additionally, we removed 50 genes out of 2948 genes whose expression was > 90% correlated between

Mtbcos and MtbRv from subsequent analysis, as their expression patterns were assumed to be determined more by time than by

difference in the strains. To center the expression values, the counts were divided by themean for that gene across all the time points.

This was done independently forMtbcos andMtbRv. Initial analysis of correlations among time points based on patterns of expres-

sion showed a biphasic behavior for the unsynchronized cells, where time points in the first and second half of the experiment were

strongly correlated within each half but poorly correlated between halves, giving rise to a ‘‘two-block structure.’’ We hypothesized

that a small set of genes could be responsible for driving this correlation pattern in MtbRv likely due to subtle changes in media con-

ditions and/or aeration over the long time course. In order to identify such genes, we computed a matrix of differences between

selected pairs of time points for each gene, and clustered this difference matrix, which yielded a cluster of genes that have low

differences within each block but high differences between blocks. The logs of the values were taken, and then the genes were

clustered using hclust() in R (with the ‘‘ward.D2’’ distance metric). The resulting dendrogram exhibited a deep branch, which,

when displayed as a heatmap, consisted of a distinct cluster of genes exhibiting low differences between pairs of time points in either

block, but high differences between blocks. Using cutree(k = 4), 182 genes were identified as belonging to this cluster. Upon

excluding these genes and re-calculating the correlation matrix of expression in MtbRv for all time points, the two-block structure

was largely eliminated, and the resulting correlations decreased smoothly as a function of distance between time points (with highest

correlation between adjacent time points), as expected.

Gaussian Process Smoothing
In order to meaningfully integrate the data from the two replicates and to smooth out profiles over time, we used a Gaussian Process

(GP) to fit the raw data (septation index and ori:ter – Figure 1, gene expression- Figures 2, 3, and 4).

AGPmodel is a Bayesianmodel that estimates the probability distribution over functions usingGaussian distributions for likelihood

functions. The advantage of a GP is that it is unbiased and therefore does not require assumptions of form of function. Instead, it only

assumes that adjacent time points are better coupled than distant time points and that this correlation is based on Gaussian

distributions.

A Gaussian Process is specified by a mean function and a covariance function

fðxÞ � GP
�
mðxÞ; k�x; x0��

A prior mean m(x) = 0 and a covariance function, squared exponential is given as:

k
�
x; x

0�
= s2exp

 
� 1

2

Xd
i = 1

�
xi � x

0
i

�
l2i

!

where l2 = lengthscale, s2 = variance, d = input dimension

We normalized the expression value e(g,t) (with addition of pseudocounts of 10) of each gene g at each time point t by dividing the

mean across all time points, and then taking log base e transformation so that the normalized value e’(g,t) fluctuates with amean of 0.

The formula is given as:

e
0 ðg; tÞ = loge

eðg; tÞPT
t eðg; tÞ

Gaussian estimation of the expression levels for a gene at different time points, subject to noise is given as:

y = fðxÞ+ ε where : ε � N
�
m; s2

n

�
The predictive distribution for 15 test time points (�3 hour intervals, 3-55 hours), fx1;x2;.:;x�gis specified as:

pðf�jx�; x; yÞ = Nðmðx�Þ; kðx�ÞÞ
where:

mðx�Þ = kðx�; xÞT
�
kðx; xÞ+ s2I

��1
y

kðx�Þ = kðx�; x�Þ � kðx�; xÞT
�
kðx; xÞ+ s2I

��1
kðx�; xÞ+ s2
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We utilized the GPy Python package to fit the relative expression data (value for Mtbcos replicate 1 and replicate 2 simultaneously

normalized by themean expression level across all 60 time points for each gene using the following hyperparameters: variance = 1.0,

noise variance = 0.1 and lengthscale (range 1 �50) optimized to Maximum Likelihood Estimate (MLE) using a grid search method.

After fitting the model, the predicted value (i.e., posterior mean) for each time point can be extracted. Figure S1B shows the GP

regression obtained for polA (Rv 1629: DNA polymerase). Not only do the fitted values from the GP model generally interpolate be-

tween the observed data at each time point, they also present a smoother profile by averaging between adjacent time points to

reduce noise. The error bands show the uncertainty in the model (95% confidence interval which can be denoted as ± 1.96*s, where

s is the estimated standard deviation at each X-coordinate (time point) from the Gaussian Process model based on variance of the

training data and surrounding points).

Sinusoidal Periodicity Analysis
Traditional signal analysis methods like Fourier analysis, Fisher’s g-test, etc. as suggested by Wichert et. al. [77] performed

poorly on our dataset because our experiment captured only about one-and-a-half cell-cycles. Thus, to identify periodic genes,

we took an approach of sinusoidal curve-fitting, reminiscent of the non-linear curve fitting method described by Straume et.al.

(COSIN2NL in COSOPT) [78]. We fit the expression profiles for each gene to a sin curve with free parameters (including fre-

quency, phase, and trend), and selected genes with frequencies and amplitudes in a reasonable range (Red lines in

Data S1). Goodness-of-fit was measured using residual sum-of-squares (RSS). Importantly, it is difficult to draw an absolute

cutoff for significance based on RSS, since any data can be fit to a sin in some way, and RSS incorporates intrinsic noise in

the data (E.g. between replicate observations). Hence, we took a comparative approach by also fitting the data to a quadratic

curve (Gray lines in Data S1), which captures the general trend of the expression profiles. We then compared the RSS of the sin

fit to the RSS of the quadratic fit (which must also pay a similar price for noise in the same data). Periodic genes are defined as

those that exhibit oscillatory behavior above and beyond the trend that can be represented by a quadratic. The curve fitting for

each gene was applied to the DESeq-normalized read counts (15 time-points, 2 replicates each). The sinusoidal function im-

plemented is written as:

ysinðtÞ = A sinðut + FÞ+B+Ct

where: A = Amplitude; u = Frequency; B = Mean offset; F = phase shift; Ct = a linear term to capture a net increasing or decreasing

trend in the expression. The parameters in this function were optimized using the curve_fit() function in SciPy using non-linear least-

squares. We then selected genes based on period length (27.5 hours < period < 55 hours) and amplitude (R0.7). We also removed

genes with a correlation coefficient of > 0.9 between expression profiles in Cos versus Rv. The residual sum-of-squares (goodness-

of-fit) was calculated as follows:

RSSsin =
X

t = 1::15;r = 1;2

�
yt;r � ysinðtÞ

�2
where ysin are the sin function estimates for each time point.

A similar curve-fitting approach was used to fit the data to a quadratic curve:

yquadðtÞ = D t2 +E t +F

using curve_fit() to optimize the parameters D, E, and F for each gene, and the residual was calculated as:

RSSquad =
X

t = 1::15; r = 1;2

�
yt;r � yquadðtÞ

�2
Finally, a score was calculated for each gene based on the ratio of residuals. To meaningfully enrich periodic genes inMtbcos, we

used a Receiver Operating Characteristic (ROC) curve to determine the RSSsin/RSSquad range where we optimally enrich for periodic

genes in Mtbcos. The RSSsin/RSSquad range was determined to be 0.35-0.45. A threshold of 0.45 was chosen based on examining

plots (Data S1) that visually exhibit clear oscillatory behavior (beyond the general trend). Thus, genes with a ratio of less than 0.45

were identified as periodic:

RSSsin

RSSquad

< 0:45

which means that the sinusoidal fit reduces the residual error by more than two-fold over a quadratic curve and hence fits the data

better.

Using this comparative curve-fitting approach, 485 genes were identified as periodic in Mtbcos (Data S3), and only 183 genes in

MtbRv, a �2.6 fold enrichment. To estimate the number of false positives in the set of 485 genes, we randomized the data (by shuf-

fling the genes and time points) and subjected the randomized dataset to the same analysis as described above. This permutation

analysis yielded only 14 periodic genes under the null hypothesis. Thus, we estimate the false discovery rate (FDR) at approximately

14/4019 = 0.35%.
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Clustering
Genes were clustered based on their expression profiles using hierarchical clustering (hclust() in R), using the complete linkage clus-

tering based on the Euclidean distance between the vectors of expression values averaged between replicates over the 15 time

points, which were standard-normalized for each gene (subtract mean and divide by standard deviation) to make the mean expres-

sion level equal to zero for each. The optimal number of clusters was determined based on the Bayesian Information Criterion (BIC)

using mclustBIC() in the mclust R package [79], which showed that the optimal number of clusters among the 485 Mtbcos periodic

genes was 8 (using the ‘VEE’ model). The dendogram was then divided into 8 disjoint clusters using cutree().

Peak Assignment
Using the GP fit data, we applied the following criteria to assign a peak to a gene’s expression profile. The time series T with n

observations for each gene with smoothed expression values at different time points was defined as:

First, to screen out the increasing or decreasing trend at the beginning and end of the time series, and to focus on the cytokinesis

phase in the middle of the time course, we excluded the first and last two time points from the peak assignment. Second, to identify

well-spacedmajor peaks across time points, we defined a point as a peak if it has a greater magnitude than its two nearest neighbors

on both sides. This is defined as:

Furthermore, to filter out the geneswith lower fluctuations, the difference between themagnitude of the highest peak and the global

minimum was restricted to be greater than 0.5. Additionally, in the case of more than one peak in the time series, all the peaks were

constrained to have at least a half magnitude of the highest peak in the expression profile. Finally, a set of peaks P for a time series

was identified as:

Among the significantly expressed genes (Data S3), the peak assignment identified 1620 genes with a single peak and 71 genes

with two peaks in theMtbcos strain compared to 903 genes with a single peak and 8 genes with two peaks inMtbRv. Similarly, 1222

genes in the Mtbcos strain and 2344 genes in the wild-type did not have any major peak.

FICI Score Calculation
Fractional Inhibitory Concentration Index (FICI) to determine the interaction between VCC234718 and C109 was performed as pre-

viously described [80]. The FICImax along the isoeffectiveness curve i.e., the combination of drug concentrations which causes a 50%

reduction in fluorescence, occurred at C109 6 mg/ml and VCC234718 4 mM. FICC109 = 2.274 and FICVCC234718 = 0.88. FICImax was

thus determined to be 3.16, which supports an antagonistic interaction according to previous studies [81, 82]. A similar analysis

of the interaction between VCC234718 and spectinomycin yielded a FICI score of 1.55 indicating no interaction or indifference.

QUANTIFICATION AND STATISTICAL ANALYSIS

A hypergeometric test was used to calculate significance of overlap between periodic genes in C. crescentus andM. tuberculosis in

Figure 2. An unpaired t test was used to determine significant difference in arrival times of PknD and FtsW and the Chi-square test

was used to determine significant difference in arrival times of FtsW and DivIVA in Figure 3. The Mann-Whitney test was used to

determine significant differences in cell lengths of GyrB, GuaB2 and PyrE depletion strains from wild-type in Figure 4. An extra-

sum-of-squares F-test was used to determine differences between cross titration curves of VCC234718, C109 and spectinomycin

in Figure 4. For all these tests, values of ‘‘a,’’ ‘‘c2’’ or ‘‘p’’ can be found in the figure legends. 95% confidence intervals were used in

describing profiles of ori:ter, septation index in Figure 1. The 95%confidence interval is denoted as ± 1.96*s, wheres is the estimated

standard deviation at each X-coordinate (time point) from the Gaussian Process model based on variance of the training data and

surrounding points. In all experiments, center and dispersion are defined as mean and standard deviation respectively, unless

otherwise specified. Values of n indicate number of cells measured and can be found in the figure legends.
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Figure S1. Transcriptional compartmentalization of the Mycobacterium 
tuberculosis cell cycle. Related to Figure 2. (A) Hierarchical clustering of genes in 
Mtbcos (log transformed DESeq normalized counts, centered around the mean, 
similarity metric: centered correlation, clustering method: centroid linkage). X axis: hours 
at 37ºC. (B) Performance of the GP smoothing analysis. Expression profile of the DNA 
polymerase polA is shown. Data from two replicates (yellow and blue dashed lines), GP 
smooth fit (solid blue line) and sinusoidal fit (pink dotted line) are shown.  Y axis: 
Relative expression (DESeq normalized value for each time point divided by the mean 
polA expression value across all time points). X axis: hours at 37ºC. 	



Figure S2. Periodic gene expression during Mycobacterium tuberculosis cell 
cycle progression. Related to Figure 2E. 485 periodically expressed genes in 
Mtbcos grouped into eight clusters. Y axis: Relative expression (standard normalized 
DESeq counts - each value is subtracted by the mean for that gene across time and 
then divided by the standard deviation). X axis: Hours post release into permissive 
temperature. Distance matrix: Euclidean. Clustering method: Hierarchical.  



Figure S3. Genes with known roles in cell division expressed around the 
cytokinesis window. Related to Figure 3A. Scaled relative expression (GP smoothed, 
DESeq normalized read counts for each time point divided by the mean value for that 
gene across time, then scaled) of 7/13 known cytokinesis genes. The other six genes 
are shown in Figure 3A.  
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