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A.1 Turning angle frequency

Table A.1 shows the results of fitting the distribution of the turning angle data from the

dense release by a symmetric distribution. One readily observes that the values of r2 are

considerably less than those obtained in the case of using an asymmetric distribution; see

Table 4 in the main text.

Table A.1: Examples of distributions fitted to the turning angle of all densely released

slugs, excluding no movements.

Distribution Best fit r2

Uniform 0.1 2.22×10−16

Piecewise Linear 0.193− 0.0537|θ| 0.391

Von Mises 0.670 exp(0.658 cos(θ))
2πI0(0.658)

0.351

Power Law 36.0(4.85 + |θ|)−3.20 0.370

Exponential 1.92 exp(−|θ|/0.220) 0.376

A.2 MSD and SSD

When analysing patterns of individual animal movement, a key question is how far the

animals can spread over a given duration of time. In case of a random movement (see [4]

for the discussion of the “bugbear of randomness”), the rate of spread is conventionally

quantified by the dependence of the Mean Squared Displacement (MSD) on time. A well

established theory [1, 4, 5] suggests that it should follow the power law, which we scale

by the duration of the corresponding time interval, hence to obtain the Scaled Squared

Displacement (SSD):

|∆r|2

∆t
∼ (∆t)γ−1 , (A.1)
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Table A.2: A piecewise power law function fitted to (∆x)2/∆t plotted against ∆t for

sparsely released slugs 3 and 4. The two values of r2 are for each section of the fit.

α x < α x > α r2

55 0.00633x0.566 4.32× 108x−4.41 0.012, 0.248

57 1.10× 10−14x8.40 1.67× 1010x−5.28 0.623, 0.215

60 1.01× 10−16x9.62 508x−1.18 0.754, 0.026

63 8.20× 10−5x2.68 1.43× 106x−3.01 0.263, 0.103

65 6.09× 10−5x2.76 4.51× 104x−2.22 0.303, 0.049

70 8.30× 10−4x2.08 8.43× 1012x−6.58 0.214, 0.243

where the exponent γ depends on the movement type, i.e. γ = 1 in case of the diffusive

movement [2, 4] and γ > 1 in case of a faster movement which is often referred to as

“superdiffusive” if 1 < γ < 2, ballistic if γ = 2 and “superballistic” if γ > 2. The case of

slower spread with 0 < γ < 1 is called the “subdiffusive” movement.

It is useful to comment on the geometry of the corresponding graph. It is readily seen

that the graph of relation (A.1) is given by a straight line for the ballistic case γ = 2, a

convex curve for the superdiffusive case 1 < γ < 2 and a concave curve for the superballistic

if γ > 2.

Figure A.1 shows the results of fitting the values of SSD obtained in the case of sparse

release by a piecewise power law subject to a different choice of the junction point. The

corresponding values of r2 are shown in Table A.2.

Note that strictly speaking relation (A.1) is only valid in an idealized case where the

turning angle is distributed uniformly over the circle, i.e. there is no correlation between any

two consequent movements along the path. A more realistic case is given by the Correlated

Random Walk (CRW) where the distribution of the turning angle is lumped around the

movement direction during the preceding interval [3]. In the case of equidistant observation

moments (i.e. a constant time step), the dependence of the MSD on the number of steps n

along the movement path is given by the following equation [3]:

|∆r|2(t) = 〈l2〉n+
2c〈l〉2

1− c

(
n− 1− cn

1− c

)
where n =

t

(∆t)0
. (A.2)

Here (∆t)0 is the duration of (fixed) time step and 〈l〉 and 〈l2〉 are, respectively, the mean

and the variance of the step size distribution (assuming that they exist, which implies a

thin-tailed distribution of the step size [1]) and c is the mean value of the cosine of the

turning angle. In case the turning angle is distributed uniformly over the circle, i.e. c = 0

and expression (A.2) turns into

|∆r|2(t) = 〈l2〉n ∼ t, (A.3)

which corresponds to γ = 1 in (A.1) and hence to the case of diffusive spread.

In the general case c 6= 0, expression (A.2) describes the movement that in the course

of time slows down from the almost ballistic movement |∆r|2 ∼ t2 to the diffusion motion
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Figure A.1: (∆x)2/∆t plotted against ∆t for sparsely released slugs 3 and 4, fitted with a

piecewise power law function which is split at α.

|∆r|2 ∼ t; see Ref. [1]. Indeed, it is readily seen that

|∆r|2 = 〈l2〉n+
2c〈l〉2

1− c
∼ n ∼ t, (A.4)

for a large number of steps n, and therefore the walk becomes diffusive in the long term.

In order to obtain the expression for small number of steps, for the sake of simplicity let us

consider the case with a high directional persistence, so that c = 1− δ where δ � 1. Then

1− cn = 1− (1− δ)n ≈ nδ − 1

2
n(n− 1)δ2 (A.5)

(omitting terms containing higher orders of δ) so that Eq. (A.2) becomes

|∆r|2 = n〈l2〉+ 〈l〉2(1− δ)n(n− 1) ∼ n2 ∼ t2. (A.6)

Therefore, the graph of the SSD in the case where the animal performs the CRW is also

given by a concave curve but with slopes different from the one predicted by Eq. (A.1).

Thus, should one of them provide a better description of the data than the other one, that

should allow us to identify the corresponding movement pattern, e.g. CRW vs superballistic.

However, the concavity of the graph may be difficult to observe if c is not close to one.

A.3 Movement and rest times

Figures A.2 and A.3 show, for the sparse and dense release respectively, the description of

the data on movement/rest time with several standard distributions. Interestingly, although
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the visual inspection of the quality of the data fit may favour either the logistic or the log-

Cauchy distribution, a more quantitative analysis based on r2 criterium shows that the

normal distribution performs better than others; see details in Tables 5 and 6 in the main

text.
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Figure A.2: Distribution of the proportion of the total time spent in movement in the case

of sparse release. The red curve shows the best-fitting of the data with various standard

distributions (as in the figure legend). The corresponding values of r2 (quantifying the

quality of fit) are shown in Table 5 in the main text.
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Figure A.3: Distribution of the proportion of the total time spent in movement in the case

of dense release. The red curve shows the best-fitting of the data with various standard

distributions (as in the figure legend). The corresponding values of r2 (quantifying the

quality of fit) are shown in Table 6 in the main text.
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