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1 Transparent methods

1.1 Accuracy and method selection
We have compared forecast business as usual daily electricity consumption
with actual consumption data from March to July 2020 to estimate the effect
of the COVID­19 measures on electricity consumption. Before deciding to use
dynamic harmonic regression to estimate the baseline, we tried four different
methods:

(i) Seasonal and trend decomposition using loess forecasting (STLF) is a
univariate method that consists in decomposing the time series into three
structural components: a trend capturing the long­term evolution of the
time series, a seasonal pattern of constant frequency and a remaining
error capturing the randomness of the data. This is a relatively simple
model that works well when there is no more information available than
the time series and there are clear seasonal and trend patterns in the data,
but fails to capture complex dynamics as those present in our long­term
daily time series.

(ii) Trigonometric seasonality with Box­Cox transformation, ARMA errors,
trend and seasonal components (TBATS). This model is more complex
than the previous, as it allows for autoregressive and moving aver­
age components (ARMA) to capture short­term dynamics, Box­Cox
transformation for variance stabilisation and Fourier terms for complex
seasonality, in addition to the seasonal and trend components common
to the STLF.

(iii) Neural network autoregression 𝑁𝑁𝐴𝑅(𝑝, 𝑃 , 𝑘)𝑚 where 𝑝 is the order
of the time series lags that are included as predictors of the network and
𝑘 is the number of nodes that form the network. 𝑃 is the order of the
seasonal lags with frequency 𝑚. We run a feed­forward network with
one hidden layer where all the parameters are automatically learned from
the data. Seasonality is set to 365 (yearly) and weekly seasonality is
modelled with a weekday categorical variable. Two more predictors are
included: maximum temperature and a holiday dummy. Neural networks
are very flexible and perform well when there are many variables which
relationship with the outcome is unknown ex­ante.

(iv) 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) dynamic harmonic regression, where 𝑝 indicates the
order of the autoregressive terms, 𝑑 is the order of integration and 𝑞 de­
notes the moving average component, with Fourier terms for complex
seasonality. The dynamic regression performs well when the relation­
ship between predictors and outcomes is known. As shown in Figure S2,
we include maximum temperature in quadratic form as the main driver of
electricity demand. We also include a holiday dummy to control for mov­
ing calendar effects such as Easter. Complex seasonality (weekly and
annual) is captured by Fourier terms of order (𝑗, 𝑘) respectively. Fourier
terms capture seasonality through (𝑗, 𝑘) pairs of sines and cosines. Fi­
nally, short­term dynamics are captured by the ARMA components.



To compare the accuracy of these methods, we split the data into training set
(years 2015–2018 both included) and test set (2019) and evaluate their accu­
racy with five different metrics. TBATS perform best for Austria but shows high
accuracy differentials across countries, which makes it unsuitable for our pur­
poses. NNAR performs best in countries that have the most irregular consump­
tion patterns but is outperformed by the dynamic harmonic regression in most
countries. Finally, dynamic harmonic regression performs best in most coun­
tries and shows the lowest spread across accuracy estimates, such that the
differences with NNAR accuracy is low when the latter performs better, and the
results are comparable across countries (see Tables S1­9 for detailed accuracy
results). Finally, the selected model is trained with all the data until February
2020, and the forecast is predicted from March using actual temperature data.
We use maximum daily temperature data as it shows better prediction accuracy
than the average. Temperature data is collected from Automated Surface Ob­
serving System (ASOS) stations, which are spatially distributed throughout the
countries, and take the median of the maximum temperature across all avail­
able stations in each country/state.

1.2 ARIMA dynamic harmonic regression
Equation (1) indicates the regression specification
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where electricity consumption in day t 𝑦𝑡 is modelled as a function of a constant
𝛼, temperature in a quadratic form (𝛽1𝑇𝑡 + 𝛽2𝑇 2

𝑡 ) and a dummy variable of
state­specific holidays 𝐻𝑡. Complex seasonality is captured by Fourier terms
of the form:

𝑠𝑗(𝑡) = sin(2𝜋𝑗𝑡
7 ) ; 𝑐𝑗(𝑡) = cos(2𝜋𝑗𝑡

7 )

𝑠𝑘(𝑡) = sin( 2𝜋𝑘𝑡
365.25) ; 𝑐𝑘(𝑡) = cos( 2𝜋𝑘𝑡

365.25)

where 7 and 365.25 denote the weekly and annual seasonal levels respec­
tively, and (𝑗, 𝑘) represent the number of sine/cosine elements for each of
the seasonal levels. The last two elements of equation (1) represent the
𝐴𝑅𝑀𝐴(𝑝, 𝑞) structure that captures short­term dynamics, allowing the error



term of the model to approach as much as possible a normally distributed
white noise. Since all time series are integrated of order one, the model is
run in first differences and the constant is thus removed. We tried including
economic variables such as GDP and unemployment as predictors. However,
since they did not improve prediction accuracy (partially due to their lower
temporal resolution than our daily prediction), we exclude them from the final
specification. Although such economic variables are relevant for long­term
forecasts, they do not significantly influence short­term estimations (Jun and
Ergün 2011).

The data analysis process can be summarised in the following steps:

1. The time series are transformed following Cox­Box (Box and Cox 1964)
to stabilise the variance.

2. The time series are tested for stationarity and differenced if necessary.

3. The optimal 𝐴𝑅𝑀𝐴(𝑝, 𝑞) structure and Fourier(𝑗, 𝑘) order is automat­
ically determined by the Hyndman and Khandakar algorithm (Hyndman
and Khandakar 2008) to minimise the corrected Akaike information crite­
ria (AICc).

4. Residuals are studied for signs of remaining signals and the ARMA and
Fourier parameters are manually fine­tuned to achieve optimal results ac­
cording to the following criteria: having the simplest possible model with
the lowest possible AICc that shows the closest possible residuals to a
normally distributed white noise.

5. Forecast the baseline electricity consumption fromMarch to July 2020 and
compare it with the actual values. The point forecast is back­transformed,
such that it represents the median, rather than the mean of the forecast
distribution. All results are provided with 80% and 95% prediction inter­
vals.

Section 3 provides the results of the process described above: accuracy (3.1),
model parameters of points 1­3 (3.2), forecast compared with actual consump­
tion (3.3), regression results (3.4) and their respective residual diagnostics (3.5).

2 Data
We use three different types of data that we describe below in more
detail: (i) Electricity consumption (defined as actual load excluding self­
consumption) data acquired from the Energy Information Administration of the
USA (https://www.eia.gov/) and ENTSO­E (https://transparency.entsoe.eu/)
between January (July for the USA) 2015 and July 2020 both included;
(ii) Maximum daily temperature from ASOS provided by Iowa Environ­
mental Mesonet (IEM) (https://mesonet.agron.iastate.edu/ASOS/) and
defined as the median of the maximum temperature across all available
stations within each country/state (excluding islands); and (iii) Stringency
index provided by the Blavatnik School of Government of Oxford Uni­
versity (https://www.bsg.ox.ac.uk/research/research­projects/coronavirus­
government­response­tracker).

https://www.eia.gov/
https://transparency.entsoe.eu/
https://mesonet.agron.iastate.edu/ASOS/
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker


2.1 Electricity consumption
Electricity consumption has been obtained from the ENTSO­E transparency
platform for the European countries since January 2015 and from the USA En­
ergy Information Administration for the American states since July 2015, both
until July 2020 included. ENTSO­E data corresponds to the country’s actual
load defined as the sum of power generated by plants on both TSO/DSO net­
works minus the balance (export­import) of exchanges on interconnections and
minus the power absorbed by energy storage resources. EIA demand data
comes from the U.S. Electric System Operating Data (EIA­930). In both cases,
the data exclude self­consumed electricity. All the data have been collected
in UTC and then transformed to local times. Likewise, the original data are in
sub­daily resolution and we have aggregated to daily after transforming to their
respective local time. Figure S1 shows the daily electricity consumption data
for each country/state.

Figure S1. Daily electricity consumption data. Related to Figures 1 and 2.

https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
https://www.eia.gov/
https://www.eia.gov/


2.2 Temperature
We tested our models with both mean and maximum daily temperature. Since
maximum temperature shows a slightly better predictive performance, we use
the maximum rather than the mean. Daily maximum temperature observational
data from January 2015 to July 2020 have been obtained from the Automated
Surface Observing System provided by Iowa Environmental Mesonet (IEM).
ASOS stations are spatially distributed throughout countries and have wide cov­
erage. We first collected daily maximum temperature from all available stations
within each country/state excluding islands. We then calculated the median of
the maximum temperature across the stations for each day and country/state.
Temperature and electricity consumption have a quadratic relationship, as can
be seen in Figure S2. For this reason, we control for quadratic temperature in
the dynamic harmonic ARIMA regression.

Figure S2. Relationship between daily load and maximum temperature.
Related to Figures 1 and 2.

https://mesonet.agron.iastate.edu/ASOS/
https://mesonet.agron.iastate.edu/ASOS/


2.3 Stringency index
The stringency index, created by the Blavatnik School of Government of Ox­
ford University and publicly available on the Coronavirus government response
tracking website, is composed of nine policy response indicators:

1. School closing

2. Workplace closing

3. Cancel public events

4. Restrictions on gathering size

5. Close public transport

6. Stay at home requirements

7. Restrictions on internal movement

8. International travel controls

9. Public info campaigns

Each of these individual indicators are measured in an ordinal scale depending
on stringency (e.g. whether a measure is only a recommendation or an obliga­
tion) and scope (i.e. whether the measure is general or targeted to a specific
group or region). The stringency index aggregates each of these rescaled in­
dividual indicators to reach a score between 0 and 100. Figure S3 shows the
evolution of the stringency index for each country/state.

Figure S3. Stringency index. Related to Figure 3.

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker


3 Intermediate results

3.1 Accuracy comparison between different methods.
To test the accuracy of the different methods to forecast daily electricity demand
we split the data into training (years 2015­2018) and test (year 2019) sets and
evaluate the test set forecast with the actual load data. We present five dif­
ferent accuracy indicators to provide a comprehensive overview of the error of
each model and country. Each indicator measures bias and precision differ­
ently. The mean error shows the bias of the estimation. The mean absolute
error measures precision, but since errors are considered in absolute terms, it
does not capture bias. Similarly, the root mean squared error indicates preci­
sion penalizing large errors and ignoring its sigh by squaring them. These three
indicators are scale­dependent. Both the mean percentage error and the mean
absolute percentage error are on the contrary expressed in percent terms, so
they are more suitable for comparisons across different consumption levels.
Tables S1­9 present the accuracy results for each country and method:

• Accuracy indicators:

– ME: mean error.

– RMSE: root mean squared error.

– MAE: mean absolute error.

– MPE: mean percentage error.

– MAPE: mean absolute percentage error.

• Methods

– STLF: seasonal and trend decomposition using loess forecasting.

– TBATS: trigonometric seasonality with Box­Cox transformation,
ARMA errors, trend and seasonal components.

– NNAR: neural network autocorrelation.

– ARIMA: integrated dynamic harmonic regression with Fourier terms
for seasonality and ARMA errors.

Table S1. Accuracy indicators Austria. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.01 0.00 0.00 0.00
RMSE 0.01 0.01 0.01 0.02
MAE 0.01 0.01 0.01 0.02
MPE ­3.45 ­0.16 ­1.61 ­2.54
MAPE 4.60 2.97 3.94 11.54



Table S2. Accuracy indicators California. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME 0.02 ­0.04 ­0.03 ­0.05
RMSE 0.04 0.06 0.06 0.09
MAE 0.03 0.05 0.05 0.07
MPE 2.56 ­5.77 ­4.14 ­7.72
MAPE 4.64 6.75 6.67 9.70

Table S3. Accuracy indicators Germany. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.01 ­0.02 ­0.01 ­0.02
RMSE 0.06 0.06 0.08 0.17
MAE 0.04 0.04 0.05 0.15
MPE ­1.33 ­1.35 ­1.01 ­3.06
MAPE 2.92 3.06 4.11 11.66

Table S4. Accuracy indicators Spain. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.01 ­0.02 0.04 0.00
RMSE 0.02 0.08 0.06 0.07
MAE 0.02 0.06 0.05 0.06
MPE ­1.26 ­4.17 5.87 ­1.10
MAPE 2.65 9.37 7.25 8.39

Table S5. Accuracy indicators Florida. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.01 0.00 ­0.07 ­0.01
RMSE 0.03 0.03 0.10 0.06
MAE 0.03 0.03 0.08 0.05
MPE ­1.36 ­0.83 ­10.45 ­2.13
MAPE 4.38 3.92 11.94 7.86



Table S6. Accuracy indicators France. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.02 ­0.01 0.01 ­0.04
RMSE 0.07 0.06 0.10 0.14
MAE 0.06 0.05 0.07 0.11
MPE ­1.50 ­0.97 0.06 ­4.27
MAPE 4.42 3.79 5.37 8.81

Table S7. Accuracy indicators Great Britain. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME 0.01 ­0.01 0.02 0.00
RMSE 0.04 0.05 0.05 0.07
MAE 0.03 0.03 0.04 0.05
MPE 0.31 ­1.78 2.49 ­0.42
MAPE 3.93 4.06 4.85 6.85

Table S8. Accuracy indicators Italy. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME 0.00 0.01 0.01 0.00
RMSE 0.04 0.06 0.07 0.12
MAE 0.03 0.04 0.05 0.10
MPE 0.20 0.82 0.06 ­2.33
MAPE 3.55 4.82 6.26 13.63

Table S9. Accuracy indicators New York. Related to Figures 1 and 2.

ARIMA NNAR TBATS STLF

ME ­0.01 ­0.01 ­0.01 0.00
RMSE 0.03 0.02 0.03 0.04
MAE 0.02 0.02 0.02 0.03
MPE ­1.86 ­1.59 ­2.19 0.19
MAPE 4.31 3.91 5.62 6.87



3.2 ARIMA parametrisation
Table S10 presents the regression parameters for each country/state.

Table S10. Model parameters. Related to Figures 1 and 2.

Country Lambda Fourier.j.k. ARIMA.p.d.q.

Austria 1.95 (3,9) (0,1,4)
California 1.12 (3,3) (4,1,3)
Germany 0.81 (3,11) (4,1,1)
Spain ­0.07 (3,23) (3,1,2)
Florida 1.03 (3,3) (1,1,2)
France ­1.00 (3,19) (7,1,6)
Great Britain 1.20 (3,3) (2,1,1)
Italy 0.98 (3,20) (3,1,1)
New York ­1.00 (3,5) (3,1,1)

3.3 Actual vs. forecast (baseline) daily electricity consump­
tion

Figure S4 shows the forecast (black line) produced by each of the country­
specific dynamic harmonic ARIMA regression with 80% (dark shade) and 95%
(light) prediction intervals. The coloured lines represent the actual electricity
consumption.

Figure S4. Actual and Forecast daily electricity consumption. Related to
Figures 1 and 2.



3.4 Regression results
Tables S11­20 present the regression results for the dynamic harmonic re­
gression of each country. Only the ARMA terms and the external regressors
(quadratic temperature and holiday dummy) are included in the tables. Fourier
terms have been omitted for simplicity.

Table S11. Austria summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

MA1 ­0.510 0.279 ­1.829 0.067
MA2 ­0.213 0.051 ­4.178 0.000
MA3 ­0.162 0.089 ­1.819 0.069
MA4 ­0.040 0.160 ­0.248 0.804
Temperature 0.000 0.003 ­0.127 0.899
Temperature2 0.000 0.000 0.097 0.923
Holiday ­0.003 0.006 ­0.538 0.590

Table S12. California summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 0.120 0.087 1.378 0.168
AR2 ­0.239 0.154 ­1.555 0.120
AR3 0.701 0.126 5.581 0.000
AR4 ­0.123 0.046 ­2.689 0.007
MA1 ­0.132 0.081 ­1.622 0.105
MA2 0.031 0.152 0.205 0.837
MA3 ­0.870 0.111 ­7.867 0.000
Temperature ­0.017 0.000 ­111.322 0.000
Temperature2 0.000 0.000 41.394 0.000
Holiday ­0.021 0.002 ­13.308 0.000

Table S13. Germany summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 0.528 0.024 22.156 0.000
AR2 ­0.071 0.026 ­2.668 0.008
AR3 0.085 0.026 3.278 0.001
AR4 ­0.050 0.023 ­2.136 0.033
MA1 ­0.987 0.004 ­276.402 0.000
Temperature ­0.005 0.000 ­9.491 0.000
Temperature2 0.000 0.000 6.319 0.000
Holiday ­0.166 0.004 ­43.530 0.000



Table S14. Spain summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 1.367 0.055 24.954 0.000
AR2 ­0.512 0.047 ­10.890 0.000
AR3 0.072 0.025 2.847 0.004
MA1 ­1.751 0.049 ­35.491 0.000
MA2 0.753 0.049 15.275 0.000
Temperature ­0.015 0.000 ­45.087 0.000
Temperature2 0.000 0.000 19.427 0.000
Holiday ­0.124 0.003 ­37.383 0.000

Table S15. Florida summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 ­0.510 0.279 ­1.829 0.067
MA1 ­0.213 0.051 ­4.178 0.000
MA2 ­0.162 0.089 ­1.819 0.069
Temperature ­0.040 0.160 ­0.248 0.804
Temperature2 0.000 0.003 ­0.127 0.899
Holiday 0.000 0.000 0.097 0.923

Table S16. France summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 0.416 0.062 6.698 0.000
AR2 ­0.532 0.079 ­6.698 0.000
AR3 0.085 0.100 0.853 0.394
AR4 ­0.068 0.089 ­0.766 0.444
AR5 ­0.402 0.075 ­5.360 0.000
AR6 0.362 0.038 9.584 0.000
AR7 0.240 0.026 9.403 0.000
MA1 ­0.878 0.061 ­14.434 0.000
MA2 0.557 0.102 5.478 0.000
MA3 ­0.343 0.120 ­2.865 0.004
MA4 ­0.070 0.118 ­0.596 0.551
MA5 0.367 0.089 4.101 0.000
MA6 ­0.622 0.052 ­11.875 0.000
Temperature ­0.016 0.000 ­51.697 0.000
Temperature2 0.000 0.000 22.272 0.000
Holiday ­0.062 0.003 ­20.543 0.000



Table S17. Great Britain summary regression results. Related to Figures 1 and
2.

Variable Coefficient SE z­value p­value

AR1 0.605 0.029 20.827 0.000
AR2 0.040 0.028 1.433 0.152
MA1 ­0.967 0.017 ­55.485 0.000
Temperature ­0.012 0.000 ­32.393 0.000
Temperature2 0.000 0.000 13.408 0.000
Holiday ­0.058 0.003 ­17.751 0.000

Table S18. Italy summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 0.496 0.025 19.575 0.000
AR2 ­0.089 0.027 ­3.294 0.001
AR3 ­0.074 0.024 ­3.050 0.002
MA1 ­0.965 0.008 ­114.172 0.000
Temperature ­0.016 0.000 ­36.334 0.000
Temperature2 0.000 0.000 22.053 0.000
Holiday ­0.107 0.003 ­32.977 0.000

Table S19. New York summary regression results. Related to Figures 1 and 2.

Variable Coefficient SE z­value p­value

AR1 0.894 0.029 31.025 0
AR2 ­0.305 0.033 ­9.180 0
AR3 0.091 0.025 3.703 0
MA1 ­0.990 0.004 ­225.978 0
Temperature ­0.015 0.001 ­13.980 0
Temperature2 0.001 0.000 14.042 0
Holiday ­0.075 0.008 ­8.882 0



3.5 Residuals
Figures S5­13 present the residuals of the dynamic harmonic ARIMA regres­
sions. The consumption data (Figure S1) have some outliers that can be ob­
served in the residuals but do not significantly influence the accuracy of the
forecast. All the residuals are close to a normally distributed white noise.

Figure S5. Austria residuals. Related to Figures 1 and 2.



Figure S6. California residuals. Related to Figures 1 and 2.

Figure S7. Germany residuals. Related to Figures 1 and 2.



Figure S8. Spain residuals. Related to Figures 1 and 2.

Figure S9. Florida residuals. Related to Figures 1 and 2.



Figure S10. France residuals. Related to Figures 1 and 2.

Figure S11. Great Britain residuals. Related to Figures 1 and 2.



Figure S12. Italy residuals. Related to Figures 1 and 2.

Figure S13. New York residuals. Related to Figures 1 and 2.



3.6 Bias of a naive comparison with last year data
Here we show the bias that would occur if instead of using the dynamic har­
monic ARIMA regression to estimate the baseline electricity consumption we
had simply taken 2019 electricity consumption. For this purpose, we first cal­
culate the weekly (weeks 12 to 30) change in electricity consumption between
2019 and 2020 (naive estimation) and compare it with the weekly­aggregated
results from our method using the dynamic harmonic ARIMA regression (see
Figure 2 in the main text). Figure S14 shows the difference between the naive
comparison and our main results. Whereas aggregating to weekly already re­
duces the error by removing weekly seasonality and short­term dynamics, we
can see that a naive comparison would overestimate the drop in electricity con­
sumption for most countries/states (except California where it would underesti­
mate it) up to 10 percentage points in some weeks.

Figure S14. Difference in the change of electricity consumption between
the naive estimation and the dynamic harmonic ARIMA regression.
Negative means that the simple comparison overestimates the drop in

electricity consumption. Related to Figures 1 and 2.



Supplemental references
Box, G E P, and; D R Cox. 1964. “An Analysis of Transformations.” J. R. Stat.
Soc. Ser. B 26 (2): 211–52.

Hyndman, Rob J, and Yeasmin Khandakar. 2008. “Automatic time series fore­
casting: The forecast package for R.” J. Stat. Softw. 27 (3): 1–22. https:
//doi.org/10.18637/jss.v027.i03.

Jun, Jongbyung, and A. Tolga Ergün. 2011. “A more accurate benchmark for
daily electricity demand forecasts.” Manag. Res. Rev. 34 (7): 810–20. https:
//doi.org/10.1108/01409171111146698.

https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.18637/jss.v027.i03
https://doi.org/10.1108/01409171111146698
https://doi.org/10.1108/01409171111146698

	isci_101639_mmc1.pdf
	Transparent methods
	Accuracy and method selection
	ARIMA dynamic harmonic regression

	Data
	Electricity consumption
	Temperature
	Stringency index

	Intermediate results
	Accuracy comparison between different methods.
	ARIMA parametrisation
	Actual vs. forecast (baseline) daily electricity consumption
	Regression results
	Residuals
	Bias of a naive comparison with last year data

	Supplemental references


