Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental sepsis

Marina Makrecka-Kuka^{1,*}, Stanislava Korzh¹, Melita Videja^{1,2}, Reinis Vilskersts^{1,2}, Eduards Sevostjanovs¹, Olga Zharkova-Malkova¹, Pavel Arsenyan¹, Janis Kuka¹, Maija Dambrova^{1,2}, Edgars Liepinsh¹

¹ Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga, LV-1006, Latvia
² Riga Stradins University, Faculty of Pharmacy, Dzirciema Str 16, Riga, LV-1007, Latvia

*Corresponding author: Marina Makrecka-Kuka, Ph.D. Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, Riga LV-1006, Latvia Phone/fax: +371 66155159 E-mail address: <u>makrecka@farm.osi.lv</u>

Supporting Information

Methods

Synthesis of aminocarnitine

Straightforward, totally stereo controlled synthesis of (R)-aminocarnitine was performed in 5 sequential steps from carnitine (Castagnani et al., 1995). Semi pure product was isolated as brownish foam. Taking in mind a necessity to utilize as pure as possible material in pharmacological studies this technical (R)-aminocarnitine was modified to Cbz-protected derivative, purified by reverse-phase chromatography on C18-silica gel to reed off all impurities. Then Cbz-protecting group was removed by bubbling of hydrogen gas in methanol solution of Cbz-(R)-aminocarnitine in the presence of palladium/charcoal (10%, wet). Finally, pure (R)-aminocarnitine was obtained as colourless foam after simple filtration, stirring of solution on Si-TMT (transition metal scavenger) and evaporation of a solvent.

Castagnani, R., et al., Stereospecific synthesis of (R)-aminocarnitine (emeriamine) starting from (R)-carnitine via double inversion of configuration. Journal of Organic Chemistry, 1995. 60(25): 8318-8319.

Gene accession number and primer sequences of qPCR primers

Gene	Full name	NCBI Accession	Forward primar sequence (5' >3')	Reverse primer sequence (5' >3')	Amplicon
symbol	r'un name	number	For ward primer sequence (5->5)	Reverse primer sequence (5 -> 5)	length, b
β-actin	Beta actin	<u>NM_007393.5</u>	CCTCTATGCCAACACAGTGC	CATCGTACTCCTGCTTGCTG	215
TNFa	Tumor necrosis	NM 013693 3	GACCCTCACACTCAGATCATCTTCT	CCTCCACTTGGTGGTTTGCT	80
1141 0	factor	1111_013073.3	Sheeerenenerenenereneren	eereenerrooroorrioer	00
IL6	Interleukin-6	<u>NM_001314054.1</u>	TCTATACCACTTCACAAGTCGGA	GAATTGCCATTGCACAACTCTTT	88
Il1β	Interleukin-1-beta	<u>NM_008361.4</u>	GGGCCTCAAAGGAAAGAATC	TTGCTTGGGATCCACACTCT	88

Ye J, et al., Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(1):134.

doi:10.1186/1471-2105-13-134

Results

Supplementary Table Si	. Echocardiographic	heart parameters 4 h	after LPS administration
------------------------	---------------------	----------------------	--------------------------

	Control	LPS 10 mg/kg			
	Saline	Control	C75	A769662	AminoCarnitine
Heart rate, bpm	473±17	516±11*	517±20	504±21	420±13 [#]
LVPWs, mm	1.40 ± 0.09	$1.08 \pm 0.07*$	1.15 ± 0.07	1.16±0.07	1.20 ± 0.07
LVPWd, mm	0.69 ± 0.05	0.67 ± 0.03	$0.72{\pm}0.05$	0.69 ± 0.06	$0.82{\pm}0.04^{\#}$
LVIDs, mm	2.51±0.03	2.49±0.12	$2.52{\pm}0.05$	2.59±0.13	2.44±0.15
LVIDd, mm	4.38±0.06	3.85±0.07*	3.84 ± 0.08	3.98±0.11	3.76±0.12
IVSs, mm	1.37±0.10	1.31±0.06	$1.30{\pm}0.03$	1.29 ± 0.03	1.33±0.05
IVSd, mm	0.67 ± 0.03	0.72 ± 0.02	0.75 ± 0.03	0.71±0.03	0.80 ± 0.05
ESV, ml	0.042 ± 0.002	0.042 ± 0.006	$0.043 {\pm} 0.002$	0.047 ± 0.007	0.041 ± 0.007
EDV, ml	0.200 ± 0.014	$0.144 \pm 0.008*$	0.144 ± 0.009	0.159±0.012	0.136±0.013
Stroke volume, ml	0.158±0.013	$0.102 \pm 0.005*$	0.101 ± 0.008	0.112 ± 0.008	0.096 ± 0.007

Left ventricular posterior wall thickness at end-systole (LVPWs) and at end-diastole (LVPWd), left ventricular internal dimension at end-systole (LVIDs) and at end-diastole (LVIDd), interventricular septal thickness at end-systole (IVSs) and at end-diastole (IVSd), left ventricular volume at end-systole (ESV) and at end-diastole (EDV), and stroke volume calculated as difference between EDV and ESV 4 h after LPS administration. Each value represents the mean \pm SEM of 5-6 animals. *Significant difference between saline control and LPS control groups (Student's t-test, P<0.05); #Significantly different from the LPS control group (ANOVA followed by Dunnett's test, P < 0.05).