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A Appendix: Additional Sequence Data Results

A.1 Seasonal Influenza

We consider one additional model for the USA/Canada influenza data with log-intensity,

�0 + �1�(t) + �2Iwinter(t) + �3Iautumn(t) + �4Isummer(t)

+ �2Iwinter(t) · �(t) + �3Iautumn(t) · �(t) + �4Isummer(t) · �(t),

abbreviated {�(t), Iwinter, Iautumn, Isummer, Iwinter · �(t), Iautumn · �(t), Isummer · �(t)}, or more
succinctly as {�(t), Iwinter, Iautumn, Isummer, interactions}. The results are summarized in
Figure A-1 and Table A-1. We see that only the coe�cients for �(t), Iwinter, and Iautumn

have credible intervals that do not contain zero, suggesting that additional terms are not
necessary.

A.2 Ebola Outbreak

We consider three additional models for our subsample of 200 sequences from the Sierra
Leone Ebola outbreak data with log-intensities,

�0 + �1�(t) + �2 · (�t) + �3 · (�t2)

+ �2�(t) · (�t) + �3�(t) · (�t2), and

�0 + �1�(t) + �2�(t) · (�t) + �3�(t) · (�t2),

Model Coef Q0.025 Median Q0.975
{�(t), Iwinter, Iautumn, Isummer, interactions} �(t) 0.64 1.20 1.97

Iwinter 1.83 3.48 5.58
Iautumn 1.31 3.16 5.28
Isummer -0.15 2.08 4.52
Iwinter · �(t) -1.08 -0.29 0.34
Iautumn · �(t) -1.00 -0.14 0.53
Isummer · �(t) -1.24 -0.24 0.92

Table A-1: Summary of USA/Canada influenza data inference. Posterior distribution
quantile summaries for SampESS with seasonal indicator and interaction covariates (model:
{�(t), Iwinter, Iautumn, Isummer,interactions}).
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Figure A-1: E↵ective population size and sampling rate reconstructions for the
USA and Canada influenza dataset. Upper row : Dashed lines and dotted black lines
are the pointwise posterior e↵ective population size estimates and credible intervals of the
sampling-conditional model. The blue line and the light blue region are the pointwise poste-
rior e↵ective population size estimates and credible intervals of that column’s sampling-aware
model. Lower row : Dashed lines and dotted black lines are the pointwise posterior sampling
rate estimates and credible intervals of a nonparametric sampling-time-only model. The
blue line and the light blue region are the pointwise posterior sampling rate estimates and
credible intervals of that column’s sampling-aware model.
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abbreviated as {�(t),�t,�t2, �t·�(t), �t2 ·�(t)}, and {�(t), �t·�(t), �t2 ·�(t)}, respectively.
The results are summarized in Figure A-2 and Table A-2. We see that the coe�cients for
�(t), �t, and �t2 tend to have credible intervals that do not contain zero (except for the
interaction-only model {�(t), �t · �(t), �t2 · �(t)}), but the other terms do not, suggesting
that the additional terms are not necessary.

Model Coef Q0.025 Median Q0.975
{�(t),�t,�t2,�t · �(t),�t2 · �(t)} �(t) 0.71 2.20 4.69

�t 1.21 9.75 20.29
�t2 -12.67 -6.00 -0.79
�t · �(t) -2.72 0.95 6.49
�t2 · �(t) -2.64 0.72 3.26

{�(t),�t · �(t),�t2 · �(t)} �(t) -3.00 -1.39 2.08
�t · �(t) -11.30 -6.59 2.00
�t2 · �(t) -0.16 4.90 8.16

Table A-2: Summary of Sierra Leone Ebola sequence data inference. Posterior
distribution quantile summaries for SampESS with models: {�(t),�t,�t2, �t·�(t),�t2·�(t)},
and {�(t),�t · �(t),�t2 · �(t)}.
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Figure A-2: E↵ective population size and sampling rate reconstructions for the
Sierra Leone Ebola dataset. Upper row : Dashed lines and dotted black lines are the
pointwise posterior e↵ective population size estimates and credible intervals of the sampling-
conditional model. The blue line and the light blue region are the pointwise posterior e↵ective
population size estimates and credible intervals of that column’s sampling-aware model.
Lower row : Dashed lines and dotted black lines are the pointwise posterior sampling rate
estimates and credible intervals of a nonparametric sampling-time-only model. The blue line
and the light blue region are the pointwise posterior sampling rate estimates and credible
intervals of that column’s sampling-aware model.
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B Appendix: Validation, Model Checks, and Model
Selection

B.1 Methods

B.1.1 Transformed Exponentials

Suppose random variable X ⇠ Exp(1), and thus its PDF is fX(x) = exp(�x). Define
g�(u) =

R u

0 �(t)dt for nonnegative �(·) integrable on [0,1). Then g�(u) is monotonic non-
decreasing, so g�1

� (·) is well-defined almost everywhere. If we let U = g�1
� (X), then the PDF

of U is fU(u) = �(u) exp(�
R u

0 �(t)dt).
We then have two useful results. If we wish to sample U , we may do so by sampling

an Exp(1) random variable X, then apply the transformations U = g�1
� (X), which will

result in the desired distribution. There generally is not an explicit, closed-form solution for
g�1(·), but it can be implicitly solved using root-finding methods and, if necessary, numerical
integration. Conversely, if we wish to recover the original Exp(1) random variable X from
U , we can apply the transformations X = g�(U).

B.1.2 Heterochronous Coalescent Time Transformation

Consider the heterochronous coalescent model, as presented in Section 2 of the main text.
Gri�ths and Tavaré [1994a] show that for isochronous data, the sequence of coalescent events
of a genealogy (and allowing variable e↵ective population size) is a continuous time Markov
chain and that the function An(t), representing the number of distinct ancestors at time t
and called the ancestral process, is a pure death process starting at value n at time 0 and
decreasing by one at every coalescent event proceeding into the past.

We seek to extend this framework to allow heterochronous genealogies as well. Consider
a Wright-Fisher population with population N(i), i generations in the past. We assume
that sampled individuals cannot be ancestors to future sampled individuals, so if we sample
an individual at generation i, we segregate that individual from the other N(i) individuals
in the population until the sampled individual “selects” an ancestor in generation i + 1, at
which point the usual Wright-Fisher process proceeds until another individual is sampled
farther in the past. Suppose we have a fixed schedule of n individuals sampled at generations
g1  g2  . . .  gn, and we consider any particular generation i, having counted k coalescent
events between generation 0 and generation i. Let bi =

Pn
i=1 1[gi>i] represent the number

of individuals that are sampled farther into the past than generation i. In an isochronous
scenario, bi would be 0 for all i, and the number of distinct lineages at generation i would be
n�k. However, here we suppose that bi > 0. We see that if there are no individuals sampled
at generations i or i + 1, then this iteration of the Wright-Fisher process is identical to an
iteration of an isochronous Wright-Fisher process with the same population and n � k � bi
distinct lineages. If there is an individual sampled at generation i + 1, the outcome is the
same since we can safely ignore the (segregated) sampled individual until iterating from
generation i+ 1 to i+ 2. If there is an individual sampled at generation i, then we consider

B-1



the (segregated) sampled individual to be an additional distinct lineage, but we see the
iteration still behaves as if it were an iteration of an isochronous Wright-Fisher process with
n� k � bi distinct lineages.

We now switch to continuous time, applying our heterochronous distinct lineage counts
into the results from [Gri�ths and Tavaré, 1994a]. Let b(t) =

Pn
i=1 1[si>t] be the count of

samples that occur farther into the past than time t. Let Bn(t) = n � k(t), where k(t) is
the number of coalescent events between time 0 and time t. Under isochronous sampling,
Bn(t) = An(t) is the ancestral process. Under heterochronous sampling, Bn(t) is merely
the pure death process that is directly analogous to An(t). Substituting our results from
the heterochronous Wright-Fisher process into the key results reveals the transition rates for
Bn(t),

Pr(Bn(t+ h) = j | Bn(t) = i) =

8
><

>:

�
i�b(t)

2

�
1

Ne(t)
h+ o(h), j = i� 1

1�
�
i�b(t)

2

�
1

Ne(t)
h+ o(h), j = i

0 otherwise,

and the joint density for the Markov chain of coalescent events,

Pr(g | Ne(t), s) =
nY

k=2

2

4�k(tk�1) exp

0

@�
tk�1Z

tk

�k(t)dt

1

A

3

5,

where �k(t) =
�
k�b(t)

2

�
1

Ne(t)
.

Following the results from [Gri�ths and Tavaré, 1994a], we note that the terms in the
product are in the form of transformed exponentials, and can be sampled by transforming
n� 1 independent, identically distributed (i.i.d.) Exp(1) random variables. Finally, we note
that we can recover these exact n� 1 i.i.d. Exp(1) random variables by applying the inverse
transformation.

B.1.3 Coalescent Posterior Predictive Checks

We consider the Bayesian approach for phylodynamic analysis laid out in Section 2 of the
main text. Similar to Gelman et al. [1996]’s mixed predictive distribution approach, we
simulate data and certain latent variables from our models, informed by our posterior sample,
in order to judge how well those models adhere to observed and inferred realities. In the
context of our posterior with no sampling time model, we replicate {yrep

i }Ni=1 and {grep
i }Ni=1

according to this joint posterior,

Pr(yrep,grep,�,,✓ | y, s) / Pr(yrep | grep,✓) Pr(grep | �, s) Pr(�,,✓ | y, s), (6)

simulating from the coalescent Pr(grep | �, s) and (if necessary, see below) the substitution
model Pr(yrep | grep). We sample the final term on the right side via MCMC.

With posterior-sampled replicates available, we construct a discrepancyDc [Gelman et al.,

B-2



1996, Sinharay and Stern, 2003] on the observables and the inferred latent variables. Let
G(g,�) be the transformation (explored in the previous section) that, given the correct
e↵ective population trajectory, and valid assumptions for the coalescent model, will produce
a sample of n � 1 i.i.d. Exp(1)-distributed random variables. Let K be the Kolmogorov-
Smirnov statistic [Massey Jr, 1951],

KExp(1)(e) = sup
x2R

|Fe(x)� FExp(1)(x)|, (7)

where Fe(x) is the empirical cumulative distribution function (ECDF) of e, and FExp(1)(x)
is the true cumulative distribution function (CDF) of the Exp(1) distribution. We define

Dc(y,g, s,�,) = KExp(1)(G(g,�)).

Then when we run MCMC, we then compare the observed discrepancies,

{Dc(y,gi, s,�i,i)}Ni=1,

to the replicate discrepancies,

{Dc(y
rep
i ,grep

i , s,�i,i)}Ni=1.

Note that the Dc we constructed does not depend on yrep, so we can save computation time
by not simulating yrep | grep. If we wish to check the sampling-aware posterior with the
sampling time model, the replicate posterior remains mostly the same as in Equation 6, but
the final term becomes Pr(�,,�,✓ | y, s,F) to match the sampling-aware posterior.

One method we have to compare the observed and replicate discrepancies is the posterior
predictive p-value [Gelman et al., 1996]. We calculate the posterior predictive p-value by
finding the proportion of MCMC iterations where the replicated discrepancy values are larger
than its corresponding observed discrepancy value. The smaller the posterior predictive p-
value, the more unusual the observed data is in the context of the chosen model. Note that
this posterior predictive p-value does not have the usual frequentist p-value properties such
as uniformity under a null model. However, values close to 50% suggest that the current
model is adequate, and for discrepancies that become larger as the observed data becomes
less likely given a set of parameters, the posterior predictive p-value tends to be smaller, to
some degree, under under inadequate models [Gelman et al., 1996].

B.1.4 Sampling Posterior Predictive Checks

Similarly to the previous section, we replicate {yrep
i }Ni=1, {g

rep
i }Ni=1, and {srepi }Ni=1 according

to this joint posterior,

Pr(yrep,grep, srep,�,,�,✓ | y, s) / Pr(yrep | grep) Pr(grep | �, srep) Pr(srep | �,�)
⇥ Pr(�,,�,✓ | y, s),

(8)
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with Pr(�,,�,✓ | y, s) sampled via MCMC. We simulate from the sampling model
Pr(srep | �, �), and, if necessary, the coalescent Pr(grep | �, s), and the substitution model
Pr(yrep | grep).

Suppose we divide the sampling interval into a grid K1, . . . , Kl, potentially the same grid
as used by grid-based priors for the e↵ective population trajectory. The sampling model is
inhomogeneous Poisson, so we can bin the numbers of sampling times within each interval
m1, . . . ,ml, each with expected values Ei =

R
Ki

�s(t)dt. A common approach to problems

with independent Poisson bins is a Chi-squared test with statistic �2
s =

Pl
i=1

(mi�Ei)2

Ei
[Pear-

son, 1900]. We can then define a discrepancy

D�2(y,g, s,�,) =
lX

i=1

(mi � Ei)2

Ei
, (9)

for mi and Ei derived from s as above.

B.1.5 Marginal likelihoods and Bayes factors

Another tool to aid model comparison are marginal likelihoods, which capture the evidence
brought by the data in favor of a given model once one integrates (averages) over the pa-
rameters. Let M0 and M1 be two models under consideration, with ⇠ the parameters of
interest and y be the observed data. A key quantity, that summarizes support for model i
is the marginal likelihood:

p(y | Mi) =

Z

X

L(⇠ | y,Mi)⇡(⇠ | Mi) d⇠. (10)

The marginal likelihoods of competing models can then be compared via Bayes factors.
The Bayes factor between models 0 and 1 is

BF01 =
p(y | M0)

p(y | M1)
(11)

and quantifies the support in favor of model 0 in comparison to model 1. See Kass and
Raftery [1995] for guidance on the interpretation of Bayes factors.

For models fitted using integrated nested Laplace approximation (INLA), we employ the
approximation

p(y | M) ⇡
Z

⇥

p(y, ⇠,⌘)

⇡G(⌘ | y, ⇠,M)

����
⌘=⌘⇤(⇠|M)

d⇠, (12)

where ⌘ is a vector of latent variables – in our case, ⌘ = �(t) = logNe(t) – and ⌘⇤(⇠ | M)
is some chose value, typically the posterior mode, and ⇡G is a Gaussian approximation of
the (marginal) posterior ⇡(⌘ | y,✓,M). For a detailed study of the performance of these
approximations, see Hubin and Storvik [2016].
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B.2 Results

B.2.1 Fixed-genealogy Simulation Study

In order to evaluate the use of INLA-based Bayesian estimation and marginal likelihood-
based for selecting the best model for population size reconstruction, we simulate data under
four scenarios:

• Scenario 1: Uniform. Sampling is uniform through time, i.e., �s(t) = exp(�0);

• Scenario 2: Preferential. Sampling proportional to �(t) = logNe(t), i.e., �s(t) =
exp(�0 + �1�(t));

• Scenario 3: Covariate. Sampling depends on �(t) and a time-covariate x(t), �s(t) =
exp(�0 + �1�(t) + �2x(t));

• Scenario 4: Unrelated. Sampling intensity depends on process that is independent of
�(t) and x(t), �s(t) = g(t).

Here, we pick x(t) = exp(�0.05t) and g(t) = P (t). We fit a suite of four models to each
scenario:

• Model 1: conditional model (BNPR) plus uniform sampling; assuming �s(t) = exp(�0);

• Model 2: preferential sampling model (BNPR-PS), assuming �s(t) = exp(�0+�1�(t));

• Model 3: preferential sampling with time covariate (BNPR-PS + Cov), assuming
�s(t) = exp(�0 + �1�(t) + �2x(t));

• Model 4: conditional model plus a non-parametric model of the sampling rate, assum-
ing �s(t) = exp(�0 + z(t)), where z(t) is a first-order random walk.

This simulation study is aimed at assessing, simultaneously, the accuracy of population
reconstructions under correctly-specified and misspecified scenarios, as well as the ability
of INLA-based marginal likelihoods to correctly identify the correct model, assuming it is
included in the set of models being considered. We begin by showing the mean absolute error
in population reconstructions, under the four scenarios considered, in Figure B-1. Overall,
the models behave as expected, with lower MADs being attained by the correctly-specified
model. An important feature is the sharp drop in performance experienced by the preferential
models (models 2 and 3) when the sampling process depends on a process unrelated to Ne(t)
(Scenario 4), shown in the bottom right panel.

Next, we show the mean width of credible intervals (MCIW) in Figure B-2 and we again
see that the correct model attains more confident estimates. Moreover, in addition to being
wrong in Scenario 4, models 2 and 3 also lead to smaller credibility intervals, meaning these
models give wrong estimates with high confidence.

Regarding the “power” of the model selection framework proposed here, Figure B-3 shows
that for larger sample sizes, one recovers the correct model with high probability. Note also
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Figure B-1: Mean absolute deviations (MAD) for the reconstructed �(t). We show
MAD for �(t) for several sample sizes and each of the four models in each of the four data-
generating scenarios. Colours show the true value of �2, when applicable.

that models 3 and 4 are harder to discern for most sample sizes, specially model 4. This is
to be expected, as model 4 relies on a non-parametric estimator of the sampling intensity,
which likely necessitates more data to achieve informative inferences.

Figure B-4 shows the results of estimating �2 in Scenario 3 (where model 3 is the correct
one) for various sample sizes, in the form of scaled absolute deviations from the true value.
Results are what one would expect in that the estimation error decreases with sample size.
Coverage of the true values by 95% credibility intervals is also close to the nominal value for
most combinations of true �2 and sample size (Figure B-5).

B.2.2 Simulations to evaluate posterior predictive checks

Genealogy Inference We perform a simulation study in order to explore the capabilities
of the posterior predictive checks proposed above in Sections B.1.3 and B.1.4. We begin
with a simplified version of the phylodynamic data-to-inference methodology. Here we take
genealogies to be our observed data (and move on to inference based on observed sequence
data in the next section). We simulate sampling times according to inhomogeneous Poisson
processes with di↵erent intensity trajectories via a time-transformation method [Çinlar, 1975]
as we implemented in our R package phylodyn [Karcher et al., 2017]. Give sampling time
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Figure B-2: Mean credibility interval width (MCIW) for the reconstructed �(t).
We show MCIW (95% BCI) for �(t) for several sample sizes and each of the four models
in each of the four data-generating scenarios. Colours show the true value of �2, when
applicable.

data, we simulate from the coalescent model using a similar time-tranformation method for
the coalescent [Slatkin and Hudson, 1991], again as implemented in phylodyn. For all of our
fixed-tree simulations, we use an e↵ective population size trajectory designed to mimic the
seasonal e↵ective population size changes of a seasonal disease such as influenza in North
America [Zinder et al., 2014], defined as follows:

Ne,l,u,p,o(t) =

8
><

>:

l + (u�l)

1+exp{2[3�( t+o
p (mod 12))]} , if t+o

p (mod 12)  6,

l + (u�l)

1+exp{2[3+( t+o
p (mod 12)�12]} , if t+o

p (mod 12) > 6.
(13)

Specifically, we use Ne,10,100,12,0(t) which is most comparable to an influenza e↵ective pop-
ulation size trajectory as measured in units of weeks, with t = 0 representing the summer
e↵ective population size minimum. We compare the results of our posterior predictive checks
across di↵erent sampling scenario and choice-of-posterior combinations.

In our first scenario, we simulate 500 sampling times, distributed according to a uniform
distribution between t = 0 and t = 24 (weeks), and simulate a genealogy with e↵ective
population size Ne,10,100,12,0(t). We infer the underlying e↵ective population size trajectory
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Figure B-3: Model selection via marginal likelihoods. Bars show the frequency with
which each model was the best fitting model (highest marginal likelihood) for each scenario
and sample size.

with a sampling-conditional posterior using a Markov chain Monte Carlo (MCMC) method
with an elliptical slice sampling transition kernel (ESS) [Murray et al., 2010] as implemented
in phylodyn (illustrated in the first row, first column of Figure B-6) We use the MCMC
output to generate replicate coalescent data as laid out in Section B.1.3 and calculate our
coalescent discrepancyDc for the observed MCMC results as well as for the replicated results.
We plot the discrepancy comparison in the second row, first column of Figure B-6, and note
that the posterior predictive p-value is 0.58, which is close to 0.5, correctly suggesting that
the model is adequate.

We proceed with several additional scenarios. We simulate 514 sampling times between
t = 0 and t = 24 (weeks), distributed proportionally to the e↵ective population size, with
sampling log-intensity log[�c(t)] = �0.97 +Ne,10,100,12,0(t). We infer the underlying e↵ective
population size trajectory with a sampling-aware posterior (illustrated in the second column
of Figure B-6), with sampling time model log[�s(t)] = �0 + �1 · �(t). We calculate the
posterior predictive p-value as 0.59, again correctly suggesting adequacy. We also simulate

B-8



0.5

1.0

1.5

2.0

2.5

50 100 500 1000
Sample size

Sc
al

ed
 a

bs
ol

ut
e 

de
via

tio
n

true_beta2
0.5
1
5
10

Figure B-4: Scaled absolute deviation in the estimation of �2. We show boxplots of
the absolute deviation in the estimate of �2 scaled by the true value in Scenario 2 for several
sample sizes. Colours show the true value of �2.

509 sampling times between t = 0 and t = 48 (weeks), distributed proportionally to a
piecewise constant function P (t) (illustrated in the second column of Figure B-7) unrelated
to the e↵ective population size, with log-sampling intensity log[�c(t)] = �1.67 + P (t). We
infer the underlying e↵ective population size trajectory using two di↵erent methods. We
use the sampling-conditional method (illustrated in the third column of Figure B-6) and
the sampling-aware method (illustrated in the fourth column of Figure B-6) with sampling
log-intensity log[�s(t)] = �0+�1 ·�(t). The sampling-conditional posterior predictive p-value
becomes 0.46, suggesting that this method (which only considers the coalescent model) does
produce an adequate estimate of the e↵ective population size trajectory. The sampling-aware
posterior predictive p-value becomes zero, suggesting that this method produced a very poor
estimate of the e↵ective population size trajectory (very visible in Figure B-6). This is likely
due to the sampling time model mistaking fluctuations in sampling intensity for information
about the e↵ective population size trajectory, illustrating the importance of model checking
when the true sampling model is uncertain.
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Figure B-5: Coverage of 95% credibility intervals for �2. The horizontal dashed line
marks the nominal coverage (0.95) and interval lines are 95% confidence intervals for the
allowable Monte Carlo error.

For our sampling-aware scenarios, we apply our sampling time posterior predictive check
as well. Our chi-squared sampling discrepancy D�2 generates a posterior predictive p-value
of 0.72, correctly suggesting a good fit. The unrelated sampling scenario also produces a
sampling posterior predictive p-value. We see a relatively low posterior predictive p-value of
0.15, reacting to di↵erences between the true and inferred sampling intensity trajectories.

B.3 Sequence Data Inference Simulation Study

B.4 Validation of Estimation Procedure

Now, we expand the scope of our simulation study to be based on simulated sequence align-
ment data instead of a known genealogy. In this section, all of our examples will be based on
an e↵ective population size trajectory of Ne,1,10,1,0.5(t), mimicking the trajectory of a seasonal
disease as measured in units of years. Similar to the previous section, we generate sampling
times and genealogies according to di↵erent sampling scenarios and the coalescent, respec-
tively. Given a genealogy, we simulate sequence data using the software SeqGen [Rambaut
and Grassly, 1997] using the Jukes-Cantor 1969 [Jukes et al., 1969] substitution model to
generate 1500 sites. We use two substitution rates, high and medium, producing 0.9 and 0.09
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Figure B-6: E↵ective population size inference and coalescent posterior predictive
check for fixed-tree simulations. The dashed black line represents the true e↵ective
population trajectory. The solid blue line represents the posterior median e↵ective pop-
ulation trajectory inferred by fixed-tree MCMC and the light blue region represents the
corresponding pointwise 95% credible intervals for the e↵ective population trajectory.

Scenario Sampling Model
Post. Pred. p-val
Coalescent Sampling

Uniform Conditional 0.58 —
Proportional Aware: �(t) 0.59 0.72
Unrelated Conditional 0.46 —
Unrelated Aware: �(t) 0.00 0.15

Table B-1: Posterior predictive p-values for simulated fixed-tree data.
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Figure B-7: Sampling intensity inference and sampling time posterior predictive
check for fixed-tree simulations. The dashed black line represents the true sampling
intensity. The solid blue line represents the posterior median sampling intensity inferred
by fixed-tree MCMC, and the light blue region represents the corresponding pointwise 95%
credible intervals for the sampling intensity.
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Figure B-8: E↵ective population size inference for sequence data simulations: high
substitution rate and no covariates.

Scenario Sampling Model
Post. Pred. p-val
Coalescent Sampling

Uniform Conditional 0.51 —
Proportional Conditional 0.50 —
Increasing Aware: �(t) 0.47 0.56
Unrelated Aware: �(t) 0.17 0.46

Table B-2: Posterior predictive p-values for simulated sequence data.

substitutions per site. We distribute 200 sampling times using preferential sampling model
with no covariates and with one time covariate. We repeat each combination of high/medium
and no covariates/one time covariate settings 10 times. We infer the underlying genealogy
and e↵ective population size trajectory using the software BEAST [Suchard et al., 2018] with
an elliptical slice sampling transition kernel (ESS) [Murray et al., 2010] as implemented
in Section 2, with a sampling-conditional posterior. Figures ?? show e↵ective population
estimation results of these simulations.

B.5 Testing Posterior Predictive Checks

Next, we use the same simulation set up to test our posterior predictive checking. Finally,
we generate replicate genealogies as in the previous section, and we calculate our coalescent
discrepancy Dc for the observed BEAST results as well as the replicates. In Figure B-12 (first
column), we see that the e↵ective population estimate is close to the true trajectory, and
when we compare the observed and replicate discrepancies, we calculate a posterior predictive
p-value of 0.51, corroborating the model’s adequacy. Next, we distribute 170 sampling times
between t = 0 and t = 2 (years) with sampling log-intensity log[�c(t)] = 2.90+Ne,1,10,1,0.5(t).
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Figure B-9: E↵ective population size inference for sequence data simulations: high
substitution rate and one time covariate.
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Figure B-10: E↵ective population size inference for sequence data simulations:
medium substitution rate and no covariates.
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Figure B-11: E↵ective population size inference for sequence data simulations:
medium substitution rate and one time covariate.
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Figure B-12: E↵ective population size inference and coalescent posterior predictive
check for sequence data simulations. The dashed black line represents the true e↵ective
population trajectory. The solid blue line represents the posterior median e↵ective popula-
tion trajectory inferred by BEAST, and the light blue region represents the corresponding
pointwise 95% credible intervals for the e↵ective population trajectory.
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Figure B-13: Sampling intensity inference and sampling time posterior predictive
check for sequence data simulations. The dashed black line represents the true sampling
intensity. The solid blue line represents the posterior median sampling intensity inferred
by BEAST, and the light blue region represents the corresponding pointwise 95% credible
intervals for the sampling intensity.
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Figure B-14: E↵ective population size inference and coalescent posterior predictive
check for seasonal influenza data. The solid blue line represents the posterior median
e↵ective population trajectory inferred by BEAST, and the light blue region represents the
corresponding pointwise 95% credible intervals for the e↵ective population trajectory.

We infer the underlying genealogy and e↵ective population size trajectory using the sampling-
conditional model and calculate discrepancies as above. Note this is a model misspecification
applying a sampling-conditional model to a preferential sampling sampling scenario in the
style of [Karcher et al., 2016]. Unfortunately, the posterior predictive p-value (0.50) does
not detect this mismatch, as the bias e↵ective population size estimate is hard to visually
detect in Figure B-12.

In our third scenario, we distribute 199 sampling times between t = 0 and t = 2 (years)
with increasing sampling log-intensity log[�c(t)] = 3.35 � 0.5t + Ne,1,10,1,0.5(t). We infer as
above, but targeting the sampling-aware posterior with sampling log-intensity log[�s(t)] =
�0 + �1 · �(t). This is again a misspecification, as the model cannot recover the �0.5t
term. However, the posterior predictive check does not clearly detect the mismatch, with a
posterior predictive p-value of 0.47. Our sampling posterior predictive check does not detect
the misspecification either, with a posterior predictive p-value of 0.56. In our final scenario,
we distribute 222 sampling times between t = 0 and t = 2 (years) with a sampling log-
intensity log[�c(t)] = 2.84+P 0(t) (P 0(t) illustrated in Figure B-13, second column) unrelated
to the e↵ective population size. We target the sampling-aware posterior, with sampling log-
intensity log[�s(t)] = �0 + �1 · �(t). The model reconstructs the e↵ective population size
trajectory poorly, and this is successfully reflected in the posterior predictive p-value of 0.17.
However, our sampling posterior predictive check does not detect the misspecification, with
a posterior predictive p-value of 0.46.
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Figure B-15: Sampling intensity inference and sampling time posterior predictive
check for seasonal influenza data. The dashed black line represents the true sampling
intensity. The solid blue line represents the posterior median sampling intensity inferred
by BEAST, and the light blue region represents the corresponding pointwise 95% credible
intervals for the sampling intensity.
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Sampling Model
Post. Pred. p-val
Coalescent Sampling

Conditional 0.47 —
Aware: �(t) 0.48 0.29

Aware: �(t),�t 0.47 0.32
Aware: �(t), Iw, Ia, Is 0.49 0.16

Aware: �(t), Iw, Ia, Is, {Iw, Ia, Is} · �(t) 0.49 0.16

Table B-3: Posterior predictive p-values for seasonal influenza data.

B.5.1 Seasonal Influenza

We apply our posterior predictive check methods to the North American subset of global
H3N2 influenza [Zinder et al., 2014]. The data contains 520 sequences aligned to form a
multiple sequence alignment with 1698 sites of the hemagglutinin gene. We use the same
sequence data BEAST framework as the previous section, choosing four di↵erent specific sam-
pling time models. We use a sampling-conditional model with no sampling time model, a
simple log-linear sampling time model, and sampling models with di↵erent sets of covariates,
including Iw(t) = I(t mod 1)2[0,0.25) as an indicator function for winter, Ia(t) = I(t mod 1)2[0.25,0.5)
as an indicator function for autumn, and Is(t) = I(t mod 1)2[0.5,075) as an indicator function
for summer.

Figure B-14 shows the inferred e↵ective population size trajectories and coalescent pos-
terior predictive checks for the models. All estimated trajectories follow a similar seasonal
trajectory, and the discrepancy comparison suggests that the estimated trajectory produces
reasonable results with large posterior predictive p-values (Table B-3). Figure B-15 shows
the inferred sampling intensities compared against a nonparametric sampling time-only es-
timate of the sampling intensity, as well as sampling posterior predictive checks for the four
models. The sampling posterior predictive check produces moderate-to-low posterior pre-
dictive p-values, suggesting some model inadequacy manifesting in the sampling intensity
estimates.

B.5.2 Ebola Outbreak

Next, we analyze a subset of sequence data from the recent African Ebola outbreak [Dudas
et al., 2017]. We use the same sequence data BEAST framework as the previous section,
choosing four di↵erent specific sampling time models. We use a sampling-conditional model
with no sampling time model, a simple log-linear sampling time model, and several additional
sampling-aware models with di↵erent sets of covariates.

Figure B-16 shows the inferred e↵ective population size trajectories and coalescent poste-
rior predictive checks for the four models. All estimated trajectories follow a similar e↵ective
population size trajectory that visually resembles a typical time trajectory of prevalence or
incidence that peaks in Autumn of 2014. The discrepancy comparison suggests that the esti-
mated trajectory produces reasonable results with large posterior predictive p-values (Table
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Figure B-16: E↵ective population size inference and coalescent posterior predictive
check for Sierra Leone Ebola data (part 1). The solid blue line represents the pos-
terior median e↵ective population trajectory inferred by BEAST, and the light blue region
represents the corresponding pointwise 95% credible intervals for the e↵ective population
trajectory.

B-4). Figure B-18 shows the inferred sampling intensities compared against a nonparametric
sampling time-only estimate of the sampling intensity, as well as sampling posterior predic-
tive checks for the four models. The sampling posterior predictive check produces small
posterior predictive p-values (Table B-4), suggesting notable model inadequacy manifesting
in the sampling intensity estimates.
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Figure B-17: E↵ective population size inference and coalescent posterior predictive
check for Sierra Leone Ebola data (part 2). The solid blue line represents the pos-
terior median e↵ective population trajectory inferred by BEAST, and the light blue region
represents the corresponding pointwise 95% credible intervals for the e↵ective population
trajectory.

Sampling Model
Post. Pred. p-val
Coalescent Sampling

Conditional 0.48 —
Aware: �(t) 0.47 0.15
Aware: �(t),�t 0.50 0.18
Aware: �(t),�t,�t · �(t) 0.50 0.06
Aware: �(t),�t,�t2 0.48 0.31
Aware: �(t),�t,�t2, {�t,�t2} · �(t) 0.51 0.17
Aware: �(t), {�t,�t2} · �(t) 0.51 0.22

Table B-4: Posterior predictive p-values for Sierra Leone Ebola data.
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Figure B-18: Sampling intensity inference and sampling time posterior predictive
check for Sierra Leone Ebola data (part 1). The dashed black line represents the true
sampling intensity. The solid blue line represents the posterior median sampling intensity
inferred by BEAST, and the light blue region represents the corresponding pointwise 95%
credible intervals for the sampling intensity.
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Figure B-19: Sampling intensity inference and sampling time posterior predictive
check for Sierra Leone Ebola data (part 2). The dashed black line represents the true
sampling intensity. The solid blue line represents the posterior median sampling intensity
inferred by BEAST, and the light blue region represents the corresponding pointwise 95%
credible intervals for the sampling intensity.
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Figure C-1: Comparison of e↵ective population size reconstructions with incidence
data in Sierra Leone. The solid blue line represents the posterior median e↵ective popu-
lation trajectory inferred by BEAST, and the light blue region represents the corresponding
pointwise 95% credible intervals for the e↵ective population trajectory. The solid black line
shows the observed incidence scaled by a constant so it is on the same scale as the e↵ective
population size.

C Appendix: Ebola incidence data

As we explain in Section 4.3, we compare estimated e↵ective population size trajectories with
observed incidence data. We multiplied incidence count by 0.01 — a number determined
by trial-and-error, to bring incidence and e↵ective population size to the same scale — and
plot e↵ective population size posterior summaries and incidence counts for Sierra Leone and
Liberia in Figures C-1 and C-2.
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Figure C-2: Comparison of e↵ective population size reconstructions with incidence
data in Liberia. See Figure C-1 caption for the legend explanation.
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