iScience, Volume 23

Supplemental Information

Trade-Off Relation between Fungicide Sensitivity and Melanin Biosynthesis in Plant Pathogenic Fungi Ken Harata, Hiroyuki Daimon, and Tetsuro Okuno

Figure S1. Average Colony Diameter in the Wild-type on the PDA Medium Containing Different Concentrations of Ferimzone. Related to Figure 1 and 6

Ferimzone-sensitivity tests of the wild-type. A mycelial block of the wild-type was placed on ferimzone-containing PDA medium and was incubated for 6 days at 24°C. Error bars represent standard deviation of the mean (n = 5). 0; PDA medium, 1; 1 µg/ml ferimzone-containing PDA medium, 2.5; 2.5 µg/ml ferimzone-containing PDA medium, 5; 5 µg/ml ferimzone-containing PDA medium, 10; 10 µg/ml ferimzone-containing PDA medium, 20; 20 µg/ml ferimzone-containing PDA medium, 20; 20 µg/ml ferimzone-containing PDA medium.

Figure S2. The FT1 Transformant Shows a Low Sensitivity to Ferimzone. Related to Figure 1

A ferimzone-tolerance assay of the FT1 transformant. A mycelial block of each strain was placed on PDA medium containing 2.5 µg/ml ferimzone and was incubated for 6 days at 24°C. WT, wild-type; FT1, the T-DNA insertion transformant with low ferimzone-sensitivity.

Figure S3. The Amino Acid Sequence of Colct1 Shows High Homology with Atx1 of *A. fumigatus* and *S. cerevisiae*. Related to Figure 1

The amino acids of *C. orbiculare* Colct1 were aligned with those of *A. fumigatus* Atx1 and *S. cerevisiae* Atx1 using the Clustal W program. Numbers on the right indicate amino acid residue positions. Identical amino acids are indicated by a black background, similar residues are indicated by a gray background and gaps introduced for alignments are indicated by a hyphen using GeneDoc.

Figure S4. Confirmation of Targeted Gene Disruptions by Southern Blotting Analyses. Related to Figure 1, 5 and 6 (A) A schematic diagram of the CoICT1 gene disruption construct in C. orbiculare by Agrobacterium tumefaciens-mediated transformation with the coict1 disruption vector to replace a hygromycin phosphotransferase gene (hph) fragment with the CoICT1 gene. Bars represent probes for DNA gel blot. Following double-crossover homologous recombination, an Xhol fragment of approximately 1.7 kb containing Co/CT1 in the wild-type is predicted to be replaced by a fragment of approximately 5.2 kb containing the hph fragment. CoICT1 gene disruption was confirmed by Southern blot analysis. Genomic DNAs from the wild-type 104-T and transformants were digested with Xhol and the probe with an upstream 1.0 kb fragment of the Co/CT1 gene. (B) Aschematic diagram of the CoCCC2 gene disruption construct in C. orbiculare by Agrobacterium tumefaciens-mediated transformation with the coccc2 disruption vector to replace the hygromycin phosphotransferase gene (hph) fragment with the CoCCC2 gene. Bars represent probes for the DNA gel blot. Following double-crossoverhomologous recombination, a BamHI fragment of approximately 8.7 kb containing CoCCC2 in the wild-type is predicted to be replaced by a fragment of approximately 6.5 kb containing the hph fragment. CoCCC2 gene disruption was confirmed by Southern blot analysis. Genomic DNAs from the wild-type 104-T and transformants were digested with BamHI and probed with a downstream 1.0 kb fragment of the CoCCC2 gene. (C) Aschematic diagram of the MolCT1 gene disruption construct in M. oryzae by Agrobacterium tumefaciens-mediated transformation with the moict1 disruption vector to replace a hygromycin phosphotransferase gene (hph) fragment with the Mo/CT1 gene. Bars represent probes for the DNA gel blot. Following double-crossover homologous recombination, a BamHI fragment of approximately 4.3 kb containing MolCT1 in the wild-type is predicted to be replaced by a fragment of approximately 5.4 kb containing the hph fragment. MoICT1 gene disruption was confirmed by Southern blot analysis. Genomic DNAs from the wild-type 104-T and transformants were digested with BamHI and probed with an downstream 1.0 kb fragment of the MoICT1 gene. (D) Aschematic diagram of the MoCCC2 gene disruption construct in M. oryzae by Agrobacterium tumefaciens-mediated transformation with the moccc2 disruption vector to replace a hygromycin phosphotransferase gene (hph) fragment with the MoCCC2 gene. Bars represent probes for the DNA gel blot. Following double-crossover homologous recombination, a BamHI fragment of approximately 1.6 kb containing MoCCC2 in the wild-type is predicted to be replaced by a fragment of approximately 6.7 kb containing the hph fragment. MoCCC2 gene disruption was confirmed by Southern blot analysis. Genomic DNAs from the wild-type 104-T and transformants were digested with BamHI and probed with an upstream 1.0 kb fragment of the MoCCC2 gene .

Figure S5. Pathogenicity Assays on mCherry:ICT1-Introduced Transformant and ICT1:3XFLAG-Introduced Transformant. Related to Figure 2 and 3

(A-B) Inoculation assays of the mCherry:ICT1-introduced transformant and ICT1:3XFLAGintroduced transformant on the intact leaves. Conidial suspensions (5.0×10⁵ conidia/ml) of each strain were inoculated with the cucumber cotyledons and inoculated leaves were incubated for 6 days at 24°C. WT, wild-type; ict1/mCherry:ICT1, *ict1* mutant expressing the *mCherry:ICT1* fusion gene; Ict1/ICT1:3XFLAG, *ict1* mutant expressing the *ICT1*:3XFLAG fusion gene.

Figure S6. Pathogenicity Assays on CuSO₄-treated wild-type and *coict1* mutant. Related to Figure 2

Inoculation assays of CuSO₄-treated wild-type and *coict1* mutant on the intact leaves. Ten μ M CuSO₄-treated conidial suspensions (5.0×10⁵ conidia/ml) of each strain were inoculated with the cucumber cotyledons and inoculated leaves were incubated for 6 days at 24°C. WT, wild-type; ict1, *ict1* mutant.

Figure S7. Ferimzone-Sensitivity Tests in Mutants of Melanin Biosynthesis Genes. Related to Figure 2

(A) The Colony in the melanin-deficient mutants on the ferimzone-supplemented PDA medium. Mycelia block of each strain was placed on ferimzone-supplemented PDA medium and was incubated for 6 days. WT; wild-type, pks1; *copks1* mutant, scd1; *coscd1* mutant, thr1; *cothr1* mutant, lac2; *colac2* mutant.

(B) Average of colony size in the melanin-deficient mutants on the ferimzone-supplemented PDA medium. Error bars represent standard deviation of the mean (n = 5). Different letters above scatter plots of each column represent significant differences (Tukey's HSD test; P < 0.01).

Table S1. PCR Primers Used in This Study. Related to F	igure 1-6

Primer name	Sequence (5´→3´)	Subject	
ColCT1F1B	TCCCTTAATTCTCCGTCTACAGCCTCAACCCCAAC		
ColCT1R1A	CAATCTGATCATGAGTAGATGCGCCTGCTCCTATT		
pBIG4MRBSF1A	ColCT1 gene complementation cons		
pBIG4MRBSR1B	CGGAGAATTAAGGGAGTCACGTTATGACCTCTAGT		
HPHF1B	TGATATTGAAGGAGCATTTTTTGGGCTTGGCTGGA		
HPHR1A	TGGTTCCCGGTCGGCATCTACTCTATTCCTTTGCC	coict1 gene replacement construct	
pBlcoict1F1A	GCCGACCGGGAACCAGGTCTTGCGAGGAGTTTTTG		
pBlcoict1R1B	GCTCCTTCAATATCAACGAGGGAGTGTTTCTGTCG		
glymCherryF1A	GGTGGTGGTGGTGGTGGTGAGCAAGGGCGAGGA	CoICT1-mCherry fusion gene construct	
mCherryR1B	TTAAGATCTGTACAGCTCGTCCATGCCGCCGGTGG		
pBICoICT1mCF1A	CTGTACAGATCTTAAAAGCAGGACGTGATTGATTT		
pBICoICT1mCR1B	ACCACCACCACCTGCGTCGTTGACGTCGACGC		
CoICT1M12AF1B	GCGAGCTGCGGCGGCTGCTCCGGCGCCGTCGATCG		
ColCT1AlaR1A	AATCACGTCCTGCTTCTATGCGTCGTTGACGTCGA	ColCT1M12A alanin scanning construct	
pBICoICT1AlaF1A	AAGCAGGACGTGATTGATTTCTTCTGGAAACGGGG		
pBICoICT1M12AR1B	GCCGCCGCAGCTCGCGCTGACGTTGAACTTGTAGG		
ColCT1S13AF1B	ATGGCCTGCGGCGGCTGCTCCGGCGCCGTCGATCG		
ColCT1AlaR1A	AATCACGTCCTGCTTCTATGCGTCGTTGACGTCGA	ColCT1C12A closin according construct	
pBICoICT1AlaF1A	AAGCAGGACGTGATTGATTTCTTCTGGAAACGGGG	Corc 17513A aranın scanning construct	
pBICoICT1S13AR1B	GCCGCCGCAGGCCATGCTGACGTTGAACTTGTAGG		
CoICT1C14AF1B	ATGAGCGCCGGCGGCTGCTCCGGCGCCGTCGATCG	ColCT1C14A alanin scanning construct	
ColCT1AlaR1A	AATCACGTCCTGCTTCTATGCGTCGTTGACGTCGA		
pBICoICT1AlaF1A	AAGCAGGACGTGATTGATTTCTTCTGGAAACGGGG		
pBICoICT1C14AR1B	GCCGCCGGCGCTCATGCTGACGTTGAACTTGTAGG		
CoICT1C17AF2B	GCCTCCGGCGCCGTCGATCGCGTCCTCAAGAAGCT		
CoICT1AlaR1A	AATCACGTCCTGCTTCTATGCGTCGTTGACGTCGA		
pBICoICT1AlaF1A	AAGCAGGACGTGATTGATTTCTTCTGGAAACGGGG	CoICI 1C1 / A alanın scannıng construct	
pBICoICT1C17AR2B	GACGGCGCCGGAGGCGCCGCCGCAGCTCATGCTGA		
CoICT1FLAGF1A	TCCACCCCAACAACAGGCGTCAAGTCTTACGAAGT		
ColCT1FLAGR1B	ACCCGCACCGCAGCCCGCTCGTTTCAAGGGTTATC	0-1071 0/5/ 40	
pBISColCT1glyFLAGF1B	GGCTGCGGTGCGGGTGCTGAATGTGCTTGCTGGGT	COICT1-3XFLAG construct	
pBISColCTglyFLAGR1A	TGTTGTTGGGGTGGAAAAAGGATGTCAGCGCACAG		
CoCCC2F1B	TCCCTTAATTCTCCGATCAACAGGCCGATAAGGTG	CoCCC2 gene complementation construct	

CoCCC2R1A	CAATCTGATCATGAGACGACATGATCACGCTTCTG		
pBIG4MRBSF1A	CTCATGATCAGATTGTCGTTTCCCGCCTTCAGTTT		
pBIG4MRBSR1B	CGGAGAATTAAGGGAGTCACGTTATGACCTCTAGT		
HPHF1B	TGATATTGAAGGAGCATTTTTTGGGCTTGGCTGGA		
HPHR1A TGGTTCCCGGTCGGCATCTACTCTATTCCTTTGCC		ecces2 construct	
pBIcoccc2F1A	GCCGACCGGGAACCAATTCATGGAATCAGTATTCC	Course gene replacement construct	
pBIcoccc2R1B	GCTCCTTCAATATCATTGCCGCGTATACGGCTGAG		
CCC23HAF1A	ACGCGCCCGAGTTACATGACTGACCCGTCGACGCA		
CCC23HAR1B	CGAAACCACAACAAGCTTGCAAGATGGGCTGATAA	CoCCC2-3XHA construct	
pBISCCC23HAF1B	CTTGTTGTGGTTTCGCCTAGCATAGCATCGGAGTC		
pBISCCC23HAR1A	GTAACTCGGGCGCGTCCAGAACTTCAGCAGCAAAC		
MoICT1F1B	TCCCTTAATTCTCCGCCTTGTGAACCATGGGCTAT		
MoICT1R1A	CAATCTGATCATGAGTTTTGACTCCTTTCGGGTTG	<i>MoICT1</i> gene complementation construct	
pBIG4MRBSF1A	CTCATGATCAGATTGTCGTTTCCCGCCTTCAGTTT		
pBIG4MRBSR1B	CGGAGAATTAAGGGAGTCACGTTATGACCTCTAGT		
HPHF1B	TGATATTGAAGGAGCATTTTTTGGGCTTGGCTGGA		
HPHR1A	TGGTTCCCGGTCGGCATCTACTCTATTCCTTTGCC		
pBImoictF1A	GCCGACCGGGAACCAAAAACCCCGCTTTTGGGTCG	moict1 gene replacement construct	
pBImoictR1B	GCTCCTTCAATATCATTTGATTTGTTTGAAATGGG		
MoCCC2F1B	TCCCTTAATTCTCCGATTTCGCAAGTTTGGTTGCT		
MoCCC2R1A	CAATCTGATCATGAGGAAGTTGTCCCTGCGAAAAG	MoCCC2 gene complementation construct	
pBIG4MRBSF1A	CTCATGATCAGATTGTCGTTTCCCGCCTTCAGTTT		
pBIG4MRBSR1B	CGGAGAATTAAGGGAGTCACGTTATGACCTCTAGT		
HPHF1B	TGATATTGAAGGAGCATTTTTTGGGCTTGGCTGGA		
HPHR1A	TGGTTCCCGGTCGGCATCTACTCTATTCCTTTGCC	moccc2 gene replacement construct	
pBImoccc2F1A	GCCGACCGGGAACCACATGGACTGAGGTGCACCGG		
pBImoccc2R1B	GCTCCTTCAATATCACCGTGGTCAAATGGGGCGAC		

1 Transparent Methods

2 **Fungal strains and fungal transformation**

The Colletotrichum orbiculare strain 104-T and Magnaporthe oryzae strain P2 were used as the wild-3 types. All C. orbiculare and M. oryzae strains were cultured on PDA media (3.9% [w/v] PDA; Nissui 4 Pharma) at 24 °C. For induction of conidia formation, M. oryzae strains were cultured on OTA media $\mathbf{5}$ 6 (7.25% [w/v] OTA; Difco Laboratories) under blue black light irradiation at 24 °C. Agrobacterium tumefaciens-mediated transformation (AtMT) and confirmation of targeted gene disruption by southern 7blot analysis were done as previously described (Tsuji et al., 2003; Harata and Kubo, 2014). 8 9 Screening of low sensitivity to ferimzone and identification of mutated genes 10 11 For screening of ferimzone-tolerant mutants, T-DNA insertional transformants generated by AtMT were incubated on PDA containing 10 µg/ml of ferimzone. After incubation for five days at 24 °C, we 12selected transformants that showed greater hyphal growth on ferimzone-containing media than the wild-13type. Genomic DNA fragments flanking the inserted T-DNA in selected mutants were amplified by 14thermal asymmetrical interlaced PCR (Tail PCR) with specific primers and sequenced (Tsuji et al., 2003). 1516

17 Plasmid construction for targeted gene disruption

18 All cloning for plasmid construction was carried out using an In-Fusion HD Cloning Kit (Clontech).

All primers used in this study are listed in Table S1. (Table S1. PCR Primers Used in This Study, Related
to Figure 1-6).

For the construction of the *CoICT1* gene complementation plasmid (pBIG4MRSCoICT1), an approximately 4.2 kb *CoICT1* fragment and pBIG4MRSrev vector fragment, including the sulfonylurearesistance gene, were amplified by PCR with appropriate primer pairs, respectively. pBIG4MRSCoICT1 was generated by insertion of the amplified *CoICT1* fragment into the linearized pBIG4MRSrev vector. *CoCCC2*, *MoICT1* and *MoCCC2* gene complementation plasmids were generated by the procedure described above.

27For the construction of the *coict1* gene replacement plasmid (pBIG4MRScoict1), an approximately 1.4 kb hygromycin-resistance gene fragment (HPH) and a pBIG4MRSCoICT1 vector fragment not 2829including the CoICT1 ORF region were amplified by appropriate primer pairs, respectively. pBIG4MRScoict1 was generated by insertion of HPH into the linearized pBIG4MRSCoICT1 vector. The 30 coccc2, moict1 and moccc2 gene replacement plasmids were generated by the procedure described above. 3132For the construction of the *CoICT1-mCherry* fusion gene, the *mCherry* fluorescent gene fragment and a pBIG4MRSCoICT1 vector fragment were amplified by PCR using appropriate primer pairs, 33respectively. pBIG4MRSCoICT1mC was generated by inserting the *mCherry* gene into the linearized 34pBIG4MRSCoICT1 vector. 35

36 For the construction of the plasmids used for alanine substitutions in the metal-binding site of *CoICT1*,

an approximately 0.4kb *CoICT1* fragment with designed mutations and the pBIG4MRSCoICT1 vector
 fragment not including the *CoICT1* ORF region (33-475 nt) were amplified by appropriate primer pairs,
 respectively.

40

41 Microscopic observation

For observation of infection-related morphogenesis, 20 μ l conidial suspensions (1.0×10⁵ or 5.0×10⁵ conidia/ml) with distilled water were placed on eight spots per cover slip and incubated for 24 h at 24°C. For the observation of hyphal growth, 50 μ l conidial suspensions (2.5×10⁴ conidia/ml) with 0.1% yeast extract or liquid PSY medium were placed on cover glasses and incubated at 28°C for 48 h or 72 h. The conidial germination, appressoria formation and hyphal growth of each strain were observed using an Olympus BX53 microscope. Melanin pigmentation of appressoria were measured by gray scale value in ImageJ.

mCherry fluorescent signals were observed by a Leica SP8 confocal laser scanning microscope equipped with a diode-pumped solid-state 561 nm laser. Existing mCherry signals were detected from 595 to 630 nm using a SP8 hybrid detector. Images were taken using a $10 \times$ lens and a $63 \times$ oil immersion lens. The intensity of mCherry fluorescent signal in an appressorial cell was measured by imageJ.

53

54 Western blot analysis

3

55	Total protein extraction from vegetative mycelia in PSY media with or without ferimzone and CuSO ₄
56	was performed as described previously (Harata and Kubo, 2014). Samples were separated by
57	SuperSep TM Ace (Wako) and transferred to polyvinylidene difluoride (PVDF) membranes. Anti-FLAG
58	M2-peroxidase monoclonal antibody (Sigma-Aldrich) was used as a primary antibody. SuperSignal TM
59	West Pico PLUS Chemiluminescent Substrate (Thermo Fisher) was used as a chemiluminescent substrate
60	and signals were detected with Amersham Imager 600 imagers (GE Healthcare).
61	
62	Measurement of intracellular Cu contents
63	Vegetative hyphae incubated for 42 h in liquid PSY media were treated with CuSO ₄ , ferimzone, or
64	both by additional incubation for six h. After a total incubation of 48 h, mycelia were collected, washed
65	two times with 100 μ M EDTA and immediately frozen using liquid nitrogen. Freeze-dried mycelial tissues
66	(100 mg) were digested in 60% HNO ₃ at 90 °C for 140 min and H ₂ O ₂ using DigiPREP Jr (GL SCIENCE).
67	The Cu content of samples was measured using an iCAP 7400 Duo system (Thermo Scientific).
68	
69	Pathogenicity assays
70	Droplet inoculations onto detached cucumber cotyledons (Cucumis sativus L. suyo) were performed
71	using C. orbiculare conidia suspended with distilled water. Spray inoculations and block inoculations onto
72	detached barley leaves (Nigrate) were performed using M. oryzae conidia suspended with 0.01% Tween

20 solution and mycelial blocks, respectively. Inoculated leaves were incubated in a humid box at 24°C
with a 16 h photoperiod for six days.

75

76 Statistical Analysis

Error bars of the graphs represent the mean value ± standard deviation (SD). To compare two different groups, Student's t-test was used as the parametric test and Mann-Whitney U test was used as the nonparametric test. To compare two same groups, Wilcoxon signed-rank test was used as the non-parametric test. To compare multi groups, one-way analysis of variance (ANOVA) with Turkey's HSD post-hoc test was used as the parametric test and Kruskal-Wallis Test with Steel-Dwass post-hoc test as the nonparametric test. Statistical analysis was performed using Microsoft Excel 2019 and R package.

83

84 Accession Numbers

GenBank accessions: CoIct1 (TDZ25172), CoCcc2 (TDZ20317), MoIct1 (EHA56579), MoCcc2
(EHA49837), Aspergillus fumigatus Atx1 (EAL90217), Saccharomyces cerevisiae Atx1 (DAA10300),
Saccharomyces cerevisiae Ccc2 (DAA12113).

88

89 **References**

90 Tsuji, G., Fujii, S., Fujihara, N., Hirose, C., Tsuge, S., Shiraishi, T. (2003). Agrobacterium tumefaciens-

 $\mathbf{5}$

- 91 mediated transformation for random insertional mutagenesis in *Colletotrichum lagenarium*. J Gen Plant
- 92 Pathol. 69: 230-239.
- 93 Harata, K., and Kubo, Y. (2014). Ras GTPase activating protein CoIra1 is involved in infection-related
- 94 morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in *Colletotrichum*
- 95 *orbiculare*. PLoS One. 9: e109045.