S1 Text. Two-layer Lasso

We compare the performance of our method with that of Lasso, a popular statistical method based on linear regression models for studying associations among SNPs, expression measurements, and phenotypes. We begin by setting up a two-layer multivariate regression model for genotypes $\mathbf{x} \in \{0, 1, 2\}^p$, expression measurements $\mathbf{y} \in \mathbb{R}^q$, and phenotypes $\mathbf{z} \in \mathbb{R}^r$ as follows:

$$\begin{split} \mathbf{y} &= \mathbf{A}_{\mathbf{x}\mathbf{y}}^T \mathbf{x} + \epsilon_{\mathbf{y}}, \quad \epsilon_{\mathbf{y}} \sim \mathcal{N}(\mathbf{0}_q, \mathbf{\Omega}_{\mathbf{y}}), \\ \mathbf{z} &= \mathbf{A}_{\mathbf{y}\mathbf{z}}^T \mathbf{y} + \epsilon_{\mathbf{z}}, \quad \epsilon_{\mathbf{z}} \sim \mathcal{N}(\mathbf{0}_r, \mathbf{\Omega}_{\mathbf{z}}), \end{split}$$

where $\mathbf{A}_{\mathbf{xy}} \in \mathbb{R}^{p \times q}$ and $\mathbf{A}_{\mathbf{yz}} \in \mathbb{R}^{q \times r}$ are regression coefficients, $\epsilon_{\mathbf{y}} \in \mathbb{R}^{q}$ and $\epsilon_{\mathbf{z}} \in \mathbb{R}^{r}$ are noise distributed with zero means and diagonal covariances $\mathbf{\Omega}_{\mathbf{y}} = \operatorname{diag}(\sigma_{\mathbf{y}_{1}}^{2}, \ldots, \sigma_{\mathbf{y}_{q}}^{2})$ and $\mathbf{\Omega}_{\mathbf{z}} = \operatorname{diag}(\sigma_{\mathbf{z}_{1}}^{2}, \ldots, \sigma_{\mathbf{z}_{q}}^{2})$. Given genotype data $\mathbf{X} \in \{0, 1, 2\}^{n \times p}$ for *n* samples and *p* SNPs, expression data $\mathbf{Y} \in \mathbb{R}^{n \times q}$ for *q* genes, and phenotype data $\mathbf{Z} \in \mathbb{R}^{n \times r}$ for *r* phenotypes, we obtain a Lasso estimate of the regression coefficients by minimizing L_1 -regularized negative log-likelihood as follows:

$$\min_{\mathbf{A}_{\mathbf{x}\mathbf{y}},\mathbf{A}_{\mathbf{y}\mathbf{z}}} \frac{1}{n} \operatorname{tr} \left(\left(\mathbf{Y} - \mathbf{X}\mathbf{A}_{\mathbf{x}\mathbf{y}} \right) \left(\mathbf{Y} - \mathbf{X}\mathbf{A}_{\mathbf{x}\mathbf{y}} \right)^{T} + \left(\mathbf{Z} - \mathbf{Y}\mathbf{A}_{\mathbf{y}\mathbf{z}} \right) \left(\mathbf{Z} - \mathbf{Y}\mathbf{A}_{\mathbf{y}\mathbf{z}} \right)^{T} \right) \\ + \gamma_{1} ||\mathbf{A}_{\mathbf{x}\mathbf{y}}||_{1} + \gamma_{2} ||\mathbf{A}_{\mathbf{y}\mathbf{z}}||_{1}.$$

We select the regularization parameters γ_1 and γ_2 using BIC.