
Supplementary Appendix
This supplementary text is intended to assist in the development of a solver for the
system of ordinary equations (8)-(12). Here, verification cases are discussed that can be
used to compare your solver against; if you use the indicated values then you should
produce the exact results as discussed. This supplementary text refers to sections,
equation numbers, and figures within the main text and should be use alongside it.

Numerical verification
In this appendix we test our computational platform by recovering the basic
homogeneous dynamics of the full network model. To do this we use two hypothetical
sets of illustrative, non-clinical parameters; one set of parameters for each regime. We
will illustrate the four possible patient states (stationary points) discussed in the
Methods section (An Analysis of the continuous model). In Section the primary and
secondary tauopathy (Methods, Stability) patient state transitions are simulated and
model patient dynamics are discussed in more detail. Front propagation in the brain
connectome network is confirmed using synthetic left-right hemisphere initial seedings
as discussed in the results section.

Patient states of the network system
We now briefly illustrate the four stationary states of the homogeneous system
(Methods, An Analysis of the continuous model). To demonstrate that each of the
predicted stationary points is indeed a stationary point of the homogeneous network
system, we select illustrative parameters that satisfy the requisite characterizing
inequalities. Every node in the brain network is then seeded with the initial value
corresponding to the selected fixed point. We expect, and demonstrate, that the system
remains stable at that fixed point.

(a) Healthy τP–Healthy Aβ (b) Healthy τP–Toxic Aβ

(c) Toxic τP–Healthy Aβ (d) Toxic τP–Toxic Aβ

Fig 26. Computational verification of the stationary points (14)-(17)

We will confirm the stationary points by selecting the effective diffusion constant, ρ



of (7), as unity and solving (8)-(12) for t ∈ [0, 10] using one thousand time-steps. For
the healthy Aβ-healthy τP state, c.f. (14), we select a0 = 0.75 and b0 = 0.5; all other
parameters are set to unity. All nodes were seeded with the corresponding initial value
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Figure 26a shows the plot of global mean tracer concentration with time and confirms
that the healthy Aβ-healthy τP state is stationary under the given conditions. For the
healthy τP-toxic Aβ fixed point, c.f. (15), we begin with the previous parameters and
reduce the toxic Aβ clearance by 40%. We therefore have ã1 = 0.6 and keep the
previous parameters fixed. We then have
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The stationary behavior is again demonstrated; c.f. Figure 26b. For the third stationary
state, given by (16), we begin once more with the parameters of the healthy Aβ-healthy
τP state and reduce the toxic tau clearance parameter by 60%. We then have b̃1 = 0.4
and keep all other parameters as in the healthy Aβ–healthy τP state. All nodes are
then set to the corresponding initial value
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Once more, Figure 26c, we see the stationary characteristic we expect. For the final
stationary point, c.f. (19), we use the reduced toxic clearance parameters from the
second and third stationary points above, ã1 = 0.6 and b̃1 = 0.4, in addition to the
original production values, a0 = 0.75 and b0 = 0.5, of Aβ and τP respectively. All other
parameters not explicitly mentioned are again taken to be unity. Given these choices we
can directly compute µ and v4, via (18)-(19), as
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= 0.32.

Using the above, along with the expressions for v1, v3, u1, u2 and ũ2 from (14)-(16), the
value of ṽ4 is given directly from the fourth entry of (19) as

(u4, ũ4, v4, ṽ4) = (u2, ũ2, v4, ṽ4) = (0.6, 0.25, 0.32, 0.45).

The final plot, for the fourth stationary point, is shown in Figure 26d. Coronal and
sagittal plane views of the stationary point verification computation at t = 10 are shown
in Figure 27.

Patient pathology transitions of the network system
We briefly illustrate the homogeneous state dynamics of the network system; verifying
the theoretical view of advanced in the Methods section (Methods, Stability and Disease
Phenomenology) on the complex brain network geometry of Figure 21.

Primary tauopathy

We consider a hypothetical susceptible model patient characterized by the parameters
previously chosen (S1 Appendix, Patient states of the network system). All four of the
stationary points (Methods, An Analysis of the continuous model) coexist with this



(a) Healthy τP–Healthy Aβ (b) Healthy τP–Toxic Aβ

(c) Toxic τP–Healthy Aβ (d) Toxic τP–Toxic Aβ

Fig 27. Network system stationary point realization; coronal (top) and sagittal
(bottom) views.

(a) HτP–HAβ to HτP–TAβ (b) HτP–HAβ to TτP–HAβ

(c) HτP–HAβ to TτP–TAβ (d) HτP–TAβ to TτP–TAβ (e) TτP–HAβ to TτP–TAβ

Fig 28. State transitions in primary tauopathy. Concentration (y axis) vs. simulation
time.



choice of parameters; hence, these parameters fall into the regime of primary tauopathy.
In this section we verify the homogeneous state transitions, between the states of
Figure 27, of (8)-(12) discretized on the brain network geometry of Figure 21. The
selected illustrative primary tauopathy parameters are collected in Table 1 for posterity.

The eigenvalues, (21) and (22), at the healthy Aβ–healthy τP stationary point
(u, ũ, v, ṽ) = (0.75, 0, 0.5, 0) can be calculated. We see that λAβ,1,λτP,1 < 0, i.e. stable
to healthy Aβ and τP perturbations, while λAβ,2,λτP,2 > 0 so that the otherwise
healthy patient brain is susceptible to perturbations in both toxic Aβ and toxic τP.
Utilizing the given parameters to evaluate the stability properties at the second
stationary point, (u, ũ, v, ṽ) = (0.6, 0.25, 0.5, 0) c.f. (15), we have λAβ,1,λAβ,2,λτP,1 < 0
and λτP,2 > 0; at this state the patient is susceptible only to a perturbation in toxic tau.
Likewise at the third stationary point, (u, ũ, v, ṽ) = (0.75, 0, 0.4, 0.25) c.f. (16), we have
λAβ,1,λτP,1,λτP,2 < 0 and λAβ,2 > 0 so that the patient in this state is only susceptible
to an addition of toxic Aβ. Finally the fixed point (17) is fully stable, i.e. all eigenvalues
are negative, and no further disease transition is possible from this state.

Verifications of the primary tauopathy homogeneous state transitions, first depicted
in Figure 22, for the full connectome simulation are shown in Figure 28. For instance
the healthy state, (u1, ũ1, v1, ṽ1), perturbation with respect to both toxic Aβ and toxic
τP results in the fully toxic state, (u4, ũ4, v4, ṽ4); this is shown in Figure 28c and
appears in Figure 22 as the blue (diagonal) path.

Secondary tauopathy

The secondary tauopathy disease model arises when v1 < v3, so that the stationary
point (16) is in an unphysical state, while (14), (15) and (17) remain well defined. One

Fig 29. HτP-HAβ, ṽ stable

way that this can be achieved is for b3, the coefficient mediating the effect of toxic Aβ
protein on inducing healthy tau toxification, to be such that both v4 < v1 and v4 < v3;
a decrease in b2 can also accomplish this goal, c.f. (17).

(a) HτP–HAβ to TτP–TAβ (b) HτP–HAβ to HτP–TAβ (c) HτP–TAβ to TτP–TAβ

Fig 30. State transitions in secondary tauopathy. Concentration vs. simulation time.



Fig 31. λτP,2 vs. θ = θ(ũ)

The condition v1 < v3 is equivalent to b0b2 < b̃1b1. One can transform the primary
tauopathy patient described by the parameters of Table 1 to a secondary tauopathy
patient by decreasing b2 by twenty-five percent; from 1.0 to 0.75. In this regime
v1 = 0.5 and v3 = 0.53̄ and the stationary point (16) is physically inadmissible. The
admissible stationary states are

(u1, ũ1, v1ṽ1) = (0.75, 0.0, 0.5, 0.0),
(u2, ũ2, v2ṽ2) = (0.6, 0.25, 0.5, 0.0), (u4, ũ4, v4ṽ4) = (0.6, 0.25, 0.4, 0.25).

We see that the first and second stationary points are identical to the case of primary
tauopathy and the fourth is perturbed in the (v, ṽ) components. Strictly speaking, the
healthy patient in this regime is susceptible only to toxic Aβ infection; that is
λAβ,1,λτP,1,λτP,2 < 0 and λAβ,2 > 0 at (u1, ũ1, v1, ṽ1). Verification of the healthy state
robustness to perturbations in toxic tau, ṽ, is shown in Figure 29.

At the healthy state λAβ,2 > 0 holds. Thus, the susceptible, but otherwise healthy,
secondary tauopathy patient is at risk of directly developing Aβ proteopathy. This is
verified by perturbing the healthy state by a small concentration in ũ; the pursuant
transition from the Healthy τP–Healthy Aβ state to the Healthy τP–Toxic Aβ state is
pictured in Figure 30b. Having arrived at (u2, ũ2, v2, ṽ2) the patient is now susceptible
to tauopathy as λτP,2 > 0 there; perturbing ṽ then develops to the Toxic τP–Toxic Aβ
state as shown in Figure 30c.

In fact, as postulated, (Results, Stability and Disease Phenomenology Figure 23) the
fully diseased state (u4, ũ4, v4, ṽ4) is reachable from the healthy state provided that
toxic Aβ is present alongside some toxic tau perturbation. This can be seen directly
from λτP,2 in (22). Consider the Taylor expansion of (22), evaluated with b2 = 0.75 and
all other parameters as in Table 1, about ṽ = 0. We first set θ = ũ+ 0.6 and we let
0 ≤ � � 1 be denote a small perturbation in ṽ. It is evident that the effect on λτP,2 due
to a perturbation in toxic tau depends here on both toxic amyloid, ũ, and healthy tau,
v, concentration levels. Then, using that ũ ≥ 0, and v ≥ 0, we approximate (22), to
order �2, around ṽ = 0 by

λτP,2(�) ≈ θv

�
1− �θ

θv + 0.6

�
− 0.4. (35)

If we presume, for instance, that the susceptible secondary tauopathy patient has
healthy levels of tau protein, i.e. that v = v1 = 0.5, we can directly visualize the effect
of toxic Aβ on λτP,2. Figure 31 shows the approximate value of λτP,2 (y-axis, c.f. (35))
versus the toxic Aβ value θ(ũ) = ũ+ 0.75 (x-axis) for three given perturbations �.
Evidently, as � decreases the effect of ũ on increasing λτP,2 is not diminished. Thus an
initial toxic τP seed will develop into a full blown infection provided ũ is present, or
quickly develops, in sufficient quantity to evolve λτP,2 above zero. This is precisely the



predicted behavior (Results, Figure 23). In accordance we see, c.f. Figure 30a, that
perturbing both ũ and ṽ simultaneously from the initial healthy state induces direct
evolution to fully diseased state.


