
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

I'm happy to see this review of methods allowing spatial mapping of gene expression patterns and 

how can be linked to bulk measurements. I'm glad to see the authors undertook this task given 

the many techniques and methods needed a review. 

 

1. In the introduction, it will be good to link this review to previous efforts to create 3D atlases of 

gene expression using bulk methods and the associated computational approaches and 

applications thereof. For example, the Allen Institute for Brain Sciences have created a 

comprehensive in situ hybridization-based atlas of the mouse brain and followed up with human 

and macaque atlases. These have led to significant advancement of our understanding of brain 

function despite the lack of quantitive data or the low resolution. 

2. The paper focuses mainly on mRNA and other species of RNA molecules are rarely mentioned. A 

discussion of these method’s ability to profile different isoforms will be very valuable for the 

reader. For instance, it is mentioned that smFISH requires using multiple probes which limits its 

application to short mRNAs. The same reason also limits its ability to profile different isoforms. 

3. Table 1 can be enhanced by adding columns to compare the methods in terms of sensitivity, 

ease of tissue preparation, ease of setup, commercial availability, etc. I find the "Throughput” 

column a bit confusing because the authors use a mix of categorical values and numerical values. I 

suggest unifying this for better comparisons. And I urge the authors to report range of numbers 

per method. 

4. Line 224: I don’t understand how this FACS example fits with the rest of the paragraph where 

the combination of spatial information from in situ studies, with the quantitative data obtained 

from RNA-seq is discussed. Please clarify. 

5. While there are several methods available to integrate scRNA-seq and spatial data, the authors 

only mentioned LIGER in association with SlideSeq (line 375). I suggest discussing these methods 

briefly in a separate paragraph to pinpoint the added value of the integration and the current 

limitation/challenges. 

6. The authors pinpointed challenges associated with visualization aspects of this data. While 

important, I believe a bigger challenge lies in the lack of standards in storing and sharing spatial 

transcriptomic data, compared to RNA-seq data. This is perhaps something the community can 

address now while these methods are still in the development phase. 

7. In the outlook section, perhaps it is good to pinpoint that we should learn from other domains. 

For instance, imaging mass spectroscopy. They have been ahead of RNA techniques. One thing we 

foresee is that we will need to integrate these spatial transcriptomic data with microscopy data 

(using image registration/alignment) to bring these technologies to clinical practice where 

thousands of pathology slides are scanned routinely. 

 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The author gave a comprehensive review of the single-cell spatial genomics technology. 

 

Commones: 

1. The author mentioned "quantitative accuracy" multiple times (e.g., line 20) and treated it as 

one of the major drawbacks of FISH tech compared to scRNA-seq. However, the definition of 

"quantitative accuracy" is not claimed in the article. The authors should give the 

definition/backgroud first since scRNA-seq is known to be highly noisy so the readers might feel 

confused that why FISH tech is even worse than scRNA-seq in the aspect of “accuracy”. 

 



2. The author introduced Seurat (line 231) and other methods (Distmap, etc.) for integrating 

scRNA-seq data with in situ. However, Seurat keeps actively updating since first published in 2015. 

For instance, in the paper “Comprehensive integration of single-cell data” (Cell, 2019), the authors 

of Seurat proposed a new single cell data integration algorithm, which showed nice results in 

integrating scRNA-seq data with FISH data. Another algorithm, Harmony (Fast, sensitive and 

accurate integration of single-cell data with Harmony, Nature Methods, 2019), also achived good 

integration of scRNA-seq data and FISH data. Therefore, this article should try to include more 

state-of-art methods in scRNA-seq / FISH data integration. 

 

3. Table 1 gives a summary of all methods in this article. It would be beneficial if this table can 

include some pros/cons or a very brief description of the strength of each technique. With such 

information, this summary table would be a better guide for method selection in practice. Also, 

why does only STARMap show the throughput as "~1000" while all the others show 

"low/med/high"? It would be better to keep it consistent, and the author may consider all use 

numbers instead of just "low/med/high" category. 

 

4. Figure 1 gives a summary of the primary mechanism of each technology. This figure needs 

more annotation since the current version is not intuitive, with lots of different symbols that lack 

annotation. 

 

Minor issues: 

 

1. several “in situ” are not italic. 

 

2. Figure 1 uses “bRNA-seq” as the abbreviation of bulk RNA-seq. This abbreviation is not 

commonly used. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

In this review, Waylen and colleagues comprehensively review emerging high-throughput 

technologies for spatially-resolved gene expression measurements. The review is overall very well 

organized, and highlights both imaging based (such as MERFISH, seqFISH) and next-generation 

sequencing based spatial transcriptomics technologies (Slide-seq, Spatial Transcriptomics (ST), 

etc). For each technology discussed the authors concisely describe the fundamentals of how the 

method works, its applications, and also its limitations. We believe that this is an excellently 

written review that concisely documents the development of tools driving the burgeoning field of 

spatial transcriptomics. 

 

Although the authors do cite studies demonstrating the integration of scRNA-seq with spatial 

transcriptomic data modalities, the authors may wish to make this more of a focal point in the 

‘Future Directions’ section of the review. While this is certainly cited and discussed (Rodrigues et al 

2019 for Slide-seq, Asp et al 2019 for ST), the review would benefit from a few sentences 

discussing how these spatial gene expression studies fit into the growing compendium of scRNA-

seq ‘atlasing’ projects. 

 

While the challenge of integrating spatial measurements and (sc)RNA-seq data is highlighted (lines 

447) particularly for heterogeneous tissue types such as the eye retina and tumors (lines 452), the 

authors may wish to consider citing other published methods that have been published for 

integrating spatial and RNA-seq data modalities (such as Moncada et al Nature Biotechnology, 

2020). 

 

In addition to these points, we have the following comments: 

• Lines 153-155: while the numbers mentioned are relevant to the original MERFISH technology, 



MERFISH+ (Xia et al PNAS 2019, Pubmed ID 31501331) detects transcripts from ~10,000 genes 

at cellular resolution. 

• Where the ‘Spatial Transcriptomics’ technology is discussed (starting on line 343), it should be 

highlighted that this particular microarray-based methodology provides histological information 

from the same tissue section used for the Spatial Transcriptomics assay. This is not the case for 

any of the other NGS based methods discussed. 

• The information regarding the Spatial Transcriptomics technology is outdated - since the 

acquisition of the technology by 10X Genomics, the assay boasts increased spatial resolution: from 

100 µm to 55 µm features, in addition to microarray spots being printed closer together. The 

authors may wish to consider mentioning this in the text and/or in Table 1. 

• The authors do not discuss the size of the tissue appropriate for the microarray based Spatial 

Transcriptomics nor the Slide-seq assays. For Spatial Transcriptomics, the barcoded array is about 

~ 6mm x 6mm, while Slide-seq uses a ~5 mm (diameter) circular bead puck. These details should 

be noted in the text. 

• The authors do not discuss the High Definition Spatial Transcriptomics method (Vickovic et al 

Nature Methods 2019, Pubmed ID 31501547) which uses 2 µm features. 

• On line 377, the authors write “Cell types can be visualised in 3D with computational 

programming however this is based on measurement of spatial information from 2D slides and 

careful sampling is required to ensure faithful recapitulation of spatial patterning.” This is written 

in the ‘Slide-seq’ section. Why? In the original Slide-seq manuscript the authors do not describe 

3D tissue reconstruction from the data. This statement seems generalizable to any of the 

technologies described in this review and should be moved to the ‘Future Directions’ section. 

• Furthermore, on line 380, the authors go on to write “Currently Slide-seq is capable of scaling to 

sequence large tissue volumes, and as sequencing costs drop, is forecast to be able to scale whole 

organisms.” This statement isn’t very well supported, given that the authors make no mention of 

the tissue size restrictions of the Slide-seq assay. This statement is also generalizable to all 

technologies. These comments may be better fit in the 'Future Directions’ section of the review. 

• On page 9 line 270, GRN is not defined (gene regulatory network?) 
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Response to Reviewers:  
 

We thank the reviewers for the positive and constructive feedback and for their support for 

the need for this review in the field of spatially resolved transcriptomics. We have addressed 

all their suggestions by substantially revising the manuscript and adding novel sections. 

Changes to the original manuscript have been highlighted in blue. 

Reviewer #1 
single-cell genomics/transcriptomics, computational methods 

 

I'm happy to see this review of methods allowing spatial mapping of gene expression patterns 

and how can be linked to bulk measurements. I'm glad to see the authors undertook this task 

given the many techniques and methods needed a review. 

 

Question #1:  

In the introduction, it will be good to link this review to previous efforts to create 3D atlases 

of gene expression using bulk methods and the associated computational approaches and 

applications thereof. For example, the Allen Institute for Brain Sciences have created a 

comprehensive in situ hybridization-based atlas of the mouse brain and followed up with 

human and macaque atlases. These have led to significant advancement of our understanding 

of brain function despite the lack of quantitive data or the low resolution. 

 

Response: 

We thank the Reviewer for this suggestion and have included a new paragraph discussing the 

previous efforts to generate 3D gene expression atlases and their subsequent updates. Page 4, 

lines 74-83. We very much welcomed the suggestion to explore the computational approaches 

and therefore have included a new section ‘Computational approaches for resolving spatial 

gene expression’ which discusses state-of-the-art computational approaches and their 

applications, in spatial gene expression technologies. Pages 13-14, lines 398-432. 

 

Page 4, lines 74-83: 
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Previous applications that have integrated bulk and computational methods with in situ 

hybridisation gene expression data include the mouse brain atlas constructed by the Allen 

Institute for Brain Sciences (14), later accompanied by human and macaque atlases (15, 16). 

Despite challenging low resolution and lack of quantitative data, these atlases significantly 

advanced the current understanding of brain structure and function. More recently, the Allen 

Mouse Brain Common Coordinate Framework (CCFv3) (17) sampled 1,675 mouse brains at 

10 μm voxel resolution, integrating multiple datasets in 3D. Virtual atlases are a valuable 

source of information for many model organisms including C. elegans (Wormbase) (18), 

frogs (Xenbase) (19), Drosophila (20), and zebrafish (21), and publicly available, browsable 

data supports myriad fields of research.  

 

Pages 13-14, lines 398-432: 

Computational approaches for resolving spatial gene expression 

 

Integrating spatial and expression information. It is possible to map scRNA-seq data onto 

Slide-seq data using non-negative matrix factorisation regression (NMFreg) which 

reconstructs Slide-seq expression as a combination of cell type signatures from scRNA-seq 

(62). LIGER (linked inference of genomic experimental relationships) is a computational 

method for spatially locating cells present in scRNA-seq data from in situ transcriptomic data, 

thereby increasing the resolution of the in situ data (65). The Harmony algorithm, which 

projects cells into a shared embedding in which cells group by cell type rather than dataset-

specific conditions, is shown to be both efficient and accurate (66). Another multiple datasets 

integration pipeline, inspired by multiple sequence alignment, utilises canonical correlation 

analysis (CCA) to identify anchor points across heterogeneous datasets (67). An alternative 

approach is SpaOTsc, which utilises genes with spatial measurements to extrapolate the 

spatial properties of scRNA-seq data (68). A different approach is found in Giotto, a user-

friendly workspace that integrates spatial expression data and cell type specific gene 

signatures to infer cell type enrichment scores for downstream analyses (69). Altogether, 

these computational approaches present timely developments to capitalise on the rapid growth 

of high-throughput tissue sectioning-based technologies and are summarised in Table 2. 

However, these methods are not yet capable of incorporating multiple data types, such as gene 

expression and intergenic methylation, in the definition of cell types.  
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de novo spatial position prediction using only expression data. Rather than combining two 

different datasets, a new class of advanced computational techniques enables the prediction of 

spatial information from a single gene expression dataset. NovoSpaRc is a recent gene 

expression cartography technique that performs mapping based on the variation of gene 

expression across a tissue section, using a probabilistic optimisation technique (70). However, 

the accuracy can be sub-par due to the lack of reference map, and a set of a priori marker 

genes with known expression patterns is desirable. In Drosophila, ScoMAP (Single�Cell 

Omics Mapping into spatial Axes using Pseudotime ordering) is another reference-free 

technique that spatially integrates expression data into a virtual latent space, resembling the 

organization of a 2D tissue (71). At the single-cell resolution level, the CSOmap (Cellular 

Spatial Organization mapper) algorithm can partially reconstruct the tissue spatial 

organisation based on ligand-receptor interaction (72). Altogether, these computational 

advances demonstrate the potential power of in silico techniques in de novo spatial mapping 

of expression data, but there is still room for improvement in prediction accuracy.  

 

Question #2 

The paper focuses mainly on mRNA and other species of RNA molecules are rarely 

mentioned. A discussion of these method’s ability to profile different isoforms will be very 

valuable for the reader. For instance, it is mentioned that smFISH requires using multiple 

probes which limits its application to short mRNAs. The same reason also limits its ability to 

profile different isoforms. 

 

Response: 

We agree with the Reviewer’s suggestions and have included a novel discussion on the 

capability of these methods to investigate the length and identity of RNA molecules. 

 

Page 18, lines 542-554: 

Several types of RNA molecules are active within the cell, and they engage in diverse roles 

from mRNA encoding proteins to non-coding and small RNA regulating gene expression at 

the transcriptional, post-transcriptional and epigenomic levels (89). To generate a 

transcriptomic map able to capture the true complexity of gene expression, it must be possible 

to detect a range of RNA molecules, unrestricted by length, and have the ability to distinguish 

between similar isoforms. Technologies which lack sequencing capabilities, also lack the 
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ability to discriminate between many alternate and splice forms, and cannot faithfully predict 

the effect of RNA structure. Approaches which require multiple probes binding such as 

smFISH, restrict the discovery of short sequences of RNA such as microRNA and tRNA, and 

limit its ability to profile different isoforms. Technologies which fail to capture subtle 

variations in sequence length and identity, or which lack the resolution to distinguish unique 

isoforms of RNA, comprise the complexity of these systems, and novel insights and 

information regarding cell type and gene function may be overlooked. 

 

Question #3:  

Table 1 can be enhanced by adding columns to compare the methods in terms of sensitivity, 

ease of tissue preparation, ease of setup, commercial availability, etc. I find the "Throughput” 

column a bit confusing because the authors use a mix of categorical values and numerical 

values. I suggest unifying this for better comparisons. And I urge the authors to report range 

of numbers per method. 

 

Response: 

We have incorporated the Reviewer’s suggestions into Table 1. The Reviewer is correct that 

previously “Throughput” column referred to a combination of number of genes and cells. This 

has now been clarified by separating the number of cells (referring to a bracket of number of 

cells assayed at the same time) and by the addition of number of genes column (which are 

now numerical values). In addition, a new “Coverage” column was added and “Spatial 

Resolution” has been revised to include more accuracy. A new row was added to cover a new 

technology HDST. We found that “ease of tissue preparation, ease of setup” is challenging to 

discuss as these parameters are fluid and context-dependant. However, commercialisation is 

an avenue to standardise the use of the technologies, therefore we included a paragraph on 

commercial availability in the revised Discussion section.  Pages 17-18. Lines 532-540. 

 

Table 1. Features of current methods for capturing spatial gene expression.  
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Methodology Coverage Number of 

Genes 

No. of 

cells1 

Spatial 

Resolution 

in situ hybridisation 

(20) 

Targeted 3 Low Tissue 

RNA-scope (27) Targeted 12 Low Cellular 

ClampFish (28) Targeted 3 Low Subcellular 

smFISH (31) Targeted 3 Low Subcellular 

osmFISH (30) Targeted 1-33+ Low Subcellular 

MERFISH (33) Targeted 10,000 Medium Subcellular 

DNA Microscopy 

(38) 

Targeted 24 Low Cellular 

seqFISH+ (39) Targeted 10,000 High Subcellular 

DistMap (49) Targeted 8000+ High Cellular 

STARMap (50) Targeted 1020+ High Cellular 

Tomo-seq (51) Transcriptome-

wide 

Whole 

transcriptome 

High Cellular 

Geo-seq (55) Transcriptome-

wide 

Whole 

transcriptome 

High Cellular 

Spatial 

Transcriptomics 

/10X Visium (58) 

Transcriptome-

wide 

Whole 

transcriptome 

Medium 100µm/55µm 

                                                      
1 Number of Cells; Low 0-100, Medium 100-1000, High 1000-10,000+ 
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Slide-seq (60) Transcriptome-

wide 

Whole 

transcriptome 

Medium 10µm 

HDST Transcriptome-

wide 

Whole 

transcriptome 

High 2µm 

novoSpaRc (68) Transcriptome-

wide 

Whole 

transcriptome 

High Cellular 

NASC-seq (71) Transcriptome-

wide 

Whole 

transcriptome 

High Cellular 

 

Pages 17-18. Lines 532-540: 

Accessibility to these spatially resolved methods will determine popularity and speed of 

incorporation into new research. Commercialisation of novel technologies not only supports 

consistency and reliability of results, but promotes competition-driven enhancements to 

sensitivity and efficiency. CARTANA (Sweden) offers kits and servicing for padlock-based 

in situ sequencing technologies, while 10X Genomics acquired Spatial Transcriptomics and 

their Visium Spatial Gene Expression system reduced barcode spacing leading to an 

improved resolution and 55µm microarray (87). Ongoing modifications and novel integration 

of data will enhance utility, providing new versions of existing technologies such as Slide-

seqV2 which is currently in development (88). 

 

Question #4: 

Line 224: I don’t understand how this FACS example fits with the rest of the paragraph where 

the combination of spatial information from in situ studies, with the quantitative data 

obtained from RNA-seq is discussed. Please clarify. 

 

Response: 

We apologise for the confusion; indeed the Reviewer is right, this study did not utilise ISH, 

but investigated different spatial zones of the infarcted heart, we have clarified this in the 

manuscript as follows.  
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Page 9, Lines 240-243: 

Recent experiments to combine spatial information, with the quantitative data obtained from 

RNA-seq have been used to query the transcriptional changes in different regions of the 

cardiac infarct zone following heart injury in adults and neonates, providing type specific 

quantitative expression data (45). 

Question #5:  

While there are several methods available to integrate scRNA-seq and spatial data, the 

authors only mentioned LIGER in association with SlideSeq (line 375). I suggest discussing 

these methods briefly in a separate paragraph to pinpoint the added value of the integration 

and the current limitation/challenges. 

 

Response: 

We have followed the Reviewer’s suggestion and introduced a novel section dedicated to 

discussing the advantages and limitations of a range of current data integration methods which 

include (in addition to LIGER), SpaOTsc, Giotto, ScoMAP, CSOmap and the Harmony 

algorithm. Pages 13-14. Lines 398-432, see also Response to Question #1. In this section 

entitled “Computational approaches for resolving spatial gene expression” we have 

articulated this discussion by dividing the computational tools into two classes: 1) Integrating 

spatial and expression information and 2) de novo spatial position prediction using only 

expression data. In addition, we have summarised the computational tools and their associated 

methods in a new Table 2. 

 

Table 2. Computational tools and associated methods for spatial transcriptomics data 

analysis and visualisation. 

 

Tools Underlying 

Methods 

Open-

source 

Programming 

languages 

Source code  

RNAscope 

(29) 

proprietary software No N/A N/A 

DistMap (51) distributed mapping 

scores 

Yes R https://github.com/rajews

ky-lab/distmap 

NMFreg (62) non-negative matrix Yes Python https://github.com/tudag
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factorization 

regression 

a/NMFreg_tutorial 

LIGER (65) integrative non-

negative matrix 

factorization 

Yes R https://github.com/Maco

skoLab/liger 

Harmony (66) maximum diversity 

clustering, linear 

batch correction 

Yes R https://github.com/immu

nogenomics/harmony 

SpaOTsc (68) structured optimal 

transport 

Yes Python https://github.com/zcang/

SpaOTsc 

NovoSpaRc 

(70) 

generalised optimal-

transport  

Yes Python https://github.com/rajews

ky-lab/novosparc 

ScoMAP (71) axial information 

extraction via 

pseudotime ordering

Yes R https://github.com/aertsla

b/ScoMAP 

CSOmap (72) Cellular Spatial 

Organization 

mapper 

Yes MatLab https://codeocean.com/ca

psule/2860903/tree/v1 

Giotto (69) binary spatial 

extraction, hidden 

Markov random 

field (HMRF) model

Yes R, Python https://rubd.github.io/Gi

otto/ 

SPOTlight 

(97) 

seeded non-negative 

matrix factorization 

(NMF) regression 

Yes R https://github.com/Marc

Elosua/SPOTlight 

 

 

 

 

 

Question #6: 
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The authors pinpointed challenges associated with visualization aspects of this data. While 

important, I believe a bigger challenge lies in the lack of standards in storing and sharing 

spatial transcriptomic data, compared to RNA-seq data. This is perhaps something the 

community can address now while these methods are still in the development phase. 

 

Response: 

This is indeed an essential discussion therefore we have included a novel section on Data 

Visualisation and Management.  

 

Page 16. Lines 485-498. 

Data Visualisation and Management 
[…] 

Data management standards. To promote reproducibility, spatial transcriptomics urgently 

needs standards for data storage, analyses, and exchange. Spatial transcriptomics currently 

lacks common standards and guidelines for data management, as compared to the more 

mature sequencing technologies (e.g. RNA-seq, scRNA-seq) (76). Fortunately, the majority of 

analysis tools in spatial transcriptomics are publicly available on GitHub (e.g. 

https://github.com/10XGenomics, https://github.com/SpatialTranscriptomicsResearch), which 

helps pave the way for building community standards, potentially enabling integration of 

different spatial transcriptomics technologies to address a common biological question. 

Lessons can be learned from the systems biology standards (77, 78), which can help 

accelerate the development of standards in spatial transcriptomics. Altogether, this presents a 

great opportunity and a critical goal for the spatial transcriptomics community now that 

various technologies are in the development phase. 

 

Question #7:  

In the outlook section, perhaps it is good to pinpoint that we should learn from other domains. 

For instance, imaging mass spectroscopy. They have been ahead of RNA techniques. One 

thing we foresee is that we will need to integrate these spatial transcriptomic data with 

microscopy data (using image registration/alignment) to bring these technologies to clinical 

practice where thousands of pathology slides are scanned routinely. 

 

Response: 
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We thank the Reviewer for this great suggestion, and have added the following paragraph 

accordingly.  

 

Pages 18. Lines 555-566. 

Many fields of science provide valuable insights into spatial genomics, however without a 

wide-ranging, collaborative effort, these assets will remain underutilised. Mass spectrometry 

imaging is one such avenue yet to be fully explored for its integrative potential, despite 

demonstrating clear benefits in applications such as proteogenomics where structural imaging 

is followed by RNA-sequencing (80). Computationally aligning spatially registered images 

with quantitative data will allow a unique appreciation of the complexity of tissue structure 

and composition. Beyond the research scope, there is an increasing demand for efficient 

analysis pipelines for clinical requirements in histology and pathology. High-throughput 

spatial transcriptomics are becoming an essential component of both bench and bedside 

medicine. The ultimate goal in this field of discovery is to be able to generate spatial-omics 

data, where a single sample may be non-destructively analysed to reveal temporal, spatial, and 

quantitative data simultaneously. 

 

Reviewer #2 

single-cell RNA-seq, bioinformatics, statistics 

 

The author gave a comprehensive review of the single-cell spatial genomics technology.  

Question #8:  

The author mentioned "quantitative accuracy" multiple times (e.g., line 20) and treated it as 

one of the major drawbacks of FISH tech compared to scRNA-seq. However, the definition of 

"quantitative accuracy" is not claimed in the article. The authors should give the 

definition/backgroud first since scRNA-seq is known to be highly noisy so the readers might 

feel confused that why FISH tech is even worse than scRNA-seq in the aspect of “accuracy”. 

 

Response: 

We agree with the Reviewer that a meaningfully quantitative method requires sufficiently 

high signal-to-noise ratio for comparison across different experimental conditions in a 
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reproducible manner. In a FISH experiment context, the expression levels are subject to 

imaging parameters and therefore not easily or objectively measured. Hence, we have 

described the lack of “quantitative accuracy” as a major drawback of FISH. We have clarified 

the intended meaning of “quantitative accuracy” by replacing this term where appropriate 

with more transparent language, and have added the following paragraph in the manuscript in 

Page 6. Lines 155-158. 

 

Replaced Page 1. Line 23: “quantitative accuracy” to “quantification” 

Replaced Page 17. Line 510: “quantitative accuracy” to “quantitative data” 

 

Page 6. Lines 155-158: 

Where sc-RNA-seq is subject to technical and biological variations, FISH approaches provide 

a clear visualisation of gene expression, but lack the numerical evaluation of expression 

provided by sequencing and rely on making comparative evaluations for quantification. 

 

Question #9: 

The author introduced Seurat (line 231) and other methods (Distmap, etc.) for integrating 

scRNA-seq data with in situ. However, Seurat keeps actively updating since first published in 

2015. For instance, in the paper “Comprehensive integration of single-cell data” (Cell, 

2019), the authors of Seurat proposed a new single cell data integration algorithm, which 

showed nice results in integrating scRNA-seq data with FISH data. Another algorithm, 

Harmony (Fast, sensitive and accurate integration of single-cell data with Harmony, Nature 

Methods, 2019), also achived good integration of scRNA-seq data and FISH data. Therefore, 

this article should try to include more state-of-art methods in scRNA-seq / FISH data 

integration. 

 

Response: 

We agree with the reviewer, given that this is a rapidly evolving field, we have endeavoured 

to capture the earliest and latest instances. We have now incorporated some recent algorithms, 

in addition to Seurat and Distmap, for integrating scRNA-seq and FISH data (SpaOTsc, CCA, 

Giotto, LIGER). CCA (used in Cell, 2019) and Harmony (Nature Methods, 2019) have now 

been extensively reviewed and discussed. Table 2 & Pages 13-14. Lines 398-432. Additional 
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computational tools have also been summarised in a new Table 2. For further details please 

also see the response to Questions 1 and 5.  

 

Question #10: 

Table 1 gives a summary of all methods in this article. It would be beneficial if this table can 

include some pros/cons or a very brief description of the strength of each technique. With 

such information, this summary table would be a better guide for method selection in 

practice. Also, why does only STARMap show the throughput as "~1000" while all the others 

show "low/med/high"? It would be better to keep it consistent, and the author may consider 

all use numbers instead of just "low/med/high" category. 

 

Response: 

The pros and cons have been discussed in the text in detail, as the technologies are constantly 

developing and also the pros and cons of the use of the technologies might depend on the 

laboratory set up and resources. We added new columns in Table 1 to improve the accuracy 

of the description of the methods, and this will assist users in making better informed 

decisions about the technology best fit for purpose. The “Number of cells” column now 

includes numerical ranges. See also response to Question 3. 

 

Question #11: 

Figure 1 gives a summary of the primary mechanism of each technology. This figure needs 

more annotation since the current version is not intuitive, with lots of different symbols that 

lack annotation. 

 

Response: 

We have expanded the legend of Figure 1 accordingly to describe in further details the 

mechanism of each technology, including a description of the symbols used. In addition, we 

have edited the figure to reflect the latest available version of the Spatial Transcriptomics 

technology which is now High Definition Spatial Transcriptomics. 

 

Figure 1. Principles of current methods for capturing spatial gene expression. 
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Schematic overview of methods based on imaging profiling of the entire specimen (a) in situ 

hybridisation/fluorescence staining where bound probes reveal spatial expression via 

fluorescent dyes (b) Digital Spatial Profiling where digital barcodes allow multiplexed spatial 

profiling (c) DNA Microscopy where chemical reactions permit spatial DNA imaging (d) 

seqFISH+ where accurate fluorescent imaging is performed sequentially to improve 

throughput and generate spatial atlases in situ (e) DistMap where Drop-seq technology 

integrates scRNA-seq data and ISH imaging to reveal spatial gene expression (f) STARmap 

where genes are sequenced in situ using padlock amplification (g) Tomo-seq where cryogenic 

tissue sections are individually analysed by bulk RNA-seq and spatial data triangulated in 

three axes (h) Geo-seq where cryogenic tissue samples are obtained through laser capture 

microdissection and analysed through bulk RNA-seq with results spatially mapped (i) High 

Definition Spatial Transcriptomics where cDNA synthesis is performed in situ and spatially 

barcoded prior to RNA-seq (j) Slide-seq where mRNA is barcoded in situ and spatially 

indexed by SOLiD (k) novoSpaRc where scRNA-seq is digitally profiled to virtually 

reconstruct the tissue (l) NASC-seq where 4sU labelling identifies temporal and spatial 

features of single cell data. Abbreviations: single-cell RNA-seq (scRNA-seq), in situ 

hybridisation (ISH), sequencing by oligonucleotide ligation and detection (SOLiD). 

  

Question #12:  

Several “in situ” are not italic.  

 

Figure 1 uses “bRNA-seq” as the abbreviation of bulk RNA-seq. This abbreviation is not 

commonly used. 

 

Response: 

We thank the Reviewer for highlighting this, we have corrected these instances accordingly 

throughout the manuscript. Page 6-7. Lines 165 and 170. The abbreviation bRNA-seq is no 

longer used in Figure 1, and the phrase ‘bulk RNA-seq’ is used. 

 

Reviewer #3 
computational biology, single-cell transcriptomics 
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In this review, Waylen and colleagues comprehensively review emerging high-throughput 

technologies for spatially-resolved gene expression measurements. The review is overall very 

well organized, and highlights both imaging based (such as MERFISH, seqFISH) and next-

generation sequencing based spatial transcriptomics technologies (Slide-seq, Spatial 

Transcriptomics (ST), etc). For each technology discussed the authors concisely describe the 

fundamentals of how the method works, its applications, and also its limitations. We believe 

that this is an excellently written review that concisely documents the development of tools 

driving the burgeoning field of spatial transcriptomics.  

 

 

Question #13: 

Although the authors do cite studies demonstrating the integration of scRNA-seq with spatial 

transcriptomic data modalities, the authors may wish to make this more of a focal point in the 

‘Future Directions’ section of the review. While this is certainly cited and discussed 

(Rodrigues et al 2019 for Slide-seq, Asp et al 2019 for ST), the review would benefit from a 

few sentences discussing how these spatial gene expression studies fit into the growing 

compendium of scRNA-seq ‘atlasing’ projects. 

 

Response: 

We thank the Reviewer for this suggestion, and have expanded the corresponding discussion. 

 

Page 17. Lines 527 and 532: 

Such approaches are paving the way towards the establishment of virtual atlases in order to 

achieve a whole-organism transcriptome at a cellular resolution. Several single cell atlasing 

projects are currently endeavouring to develop these public resources. For many model 

organisms, these virtual atlases are a valuable source of information including The Human 

Cell Atlas (86) and single-cell zebrafish transcriptome atlas (87). Ultimately, spatially 

resolved transcriptomics will be paramount in adding spatial coordinates to these single cell 

atlasing projects (88). 

Question #14:  
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While the challenge of integrating spatial measurements and (sc)RNA-seq data is highlighted 

(lines 447) particularly for heterogeneous tissue types such as the eye retina and tumors 

(lines 452), the authors may wish to consider citing other published methods that have been 

published for integrating spatial and RNA-seq data modalities (such as Moncada et al Nature 

Biotechnology, 2020). 

 

Response: 

We thank the reviewer for identifying this recent paper, and note that this area of data 

integration is rapidly developing, therefore we have also included a novel section on the 

development of novel computational methods to integrate spatial and RNAseq datasets 

(including single-cell). See response to Reviewer #1, Questions 1 and 5 for the new Section. 

Pages 13-14. Lines 398-432. 

 

Additionally, we have also referred to these new technologies in the revised Discussion 

section.  

 

Page 17. Lines 523 and 526: 

Methods to integrate spatial measurements with scRNA-seq data are beginning to emerge 

(79), employing “multimodal intersection analysis” to capitalise on the strength of 

information about cellular identity gained from scRNA-seq and the spatial data from 

microarrays to highlight spatially restricted gene networks and cell enrichment. 

 

Question #15:  

Lines 153-155: while the numbers mentioned are relevant to the original MERFISH 

technology, MERFISH+ (Xia et al PNAS 2019, Pubmed ID 31501331) detects transcripts 

from ~10,000 genes at cellular resolution.  

 

Response: 

We thank the reviewer for highlighting this, we have amended it accordingly. Table 1 has 

been modified accordingly where “Throughout” column has been replaced by “Number of 

genes” and “Number of cells” and this section now reads as: 

 

Page 7. Lines 171-173: 
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This approach generates in situ transcriptomic analyses and detects >1000 RNA species, and 

provides error correction for >100. Further improvements to the MERFISH gene throughput 

allow simultaneous imaging of ~10,000 genes at a detection efficiency of ~80% (34). While 

providing a high standard of sub-cellular resolution, the necessity for cell-dissociation 

challenges the spatial power of this approach. 

Question #16:  

Where the ‘Spatial Transcriptomics’ technology is discussed (starting on line 343), it should 

be highlighted that this particular microarray-based methodology provides histological 

information from the same tissue section used for the Spatial Transcriptomics assay. This is 

not the case for any of the other NGS based methods discussed.  

 

Response: 

We have further emphasised this advantage of Spatial transcriptomics, and updated the text 

accordingly. 

 

Page 12. Lines 366-368: 

The ability to generate histological data which precisely complements the tissue section 

involved in quantitative analysis is unique to Spatial transcriptomics among other NGS 

methods. 

 

Question #17: 

The information regarding the Spatial Transcriptomics technology is outdated - since the 

acquisition of the technology by 10X Genomics, the assay boasts increased spatial resolution: 

from 100 µm to 55 µm features, in addition to microarray spots being printed closer together. 

The authors may wish to consider mentioning this in the text and/or in Table 1. 

 

Response: 

We thank the reviewer for highlighting these recent developments and have updated the text 

and Table 1 accordingly.  

 

Page 18. Lines 534-542. 
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Accessibility to these spatially resolved methods will determine popularity and speed of 

incorporation into new research. Commercialisation of novel technologies not only supports 

consistency and reliability of results, but promotes competition-driven enhancements to 

sensitivity and efficiency. CARTANA offers kits and servicing for padlock-based in situ 

sequencing technologies, while 10X Genomics acquired Spatial transcriptomics and their 10X 

Visium system reduced barcode spacing leading to an improved resolution and 55µm 

microarray (80). Ongoing modifications and novel integration of data will enhance utility, 

providing new versions of existing technologies such as Slide-seqV2 which is currently in 

development (81). 

 

Question #18: 

The authors do not discuss the size of the tissue appropriate for the microarray based Spatial 

Transcriptomics nor the Slide-seq assays. For Spatial Transcriptomics, the barcoded array is 

about ~ 6mm x 6mm, while Slide-seq uses a ~5 mm (diameter) circular bead puck. These 

details should be noted in the text.  

 

Response: 

We thank the reviewer for this suggestion, and have included these pertinent details in the 

text. From the Supplemental Methods from Rodriques et al Science 2019 (62), we obtained 

the Slide-seq diameter as 3mm: “Each 3mm puck presented in this manuscript consists of 

roughly 70,000 beads”. 

 

 

Page 12. Lines 360-363: 

Spatial transcriptomics (Fig. 1i) is the least biased method to capture spatial gene expression 

from sections. cDNA is directly synthesised from fixed tissue sections on 6.2mm x 6.6mm 

pucks and is concomitantly labelled with molecular barcodes which record the spatial location 

of the transcript within the section (60). 

 

Page 13. Lines 382-385: 

Slide-seq (Fig. 1j) alleviates this limited resolution, and uses DNA-barcoding beads bound to 

3mm slides and exposed to fresh tissue sections releasing mRNA from which barcode 
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sequences can be determined with sequencing by oligonucleotide ligation and detection 

(SOLiD) (62). 

 

 

Question #19:  

The authors do not discuss the High Definition Spatial Transcriptomics method (Vickovic et 

al Nature Methods 2019, Pubmed ID 31501547) which uses 2 µm features. 

 

Response: 

We thank the Reviewer for highlighting this, this technology is now included.  

 

Page 13. Lines 394-396: 

Advancements have further improved spatial resolution, such as High-Definition Spatial 

Transcriptomics (HDST) which employs 2 μm spatial barcoding (62) and permits histological 

analysis which is not possible with Slide-seq. 

Question #20:  

On line 377, the authors write “Cell types can be visualised in 3D with computational 

programming however this is based on measurement of spatial information from 2D slides 

and careful sampling is required to ensure faithful recapitulation of spatial patterning.” This 

is written in the ‘Slide-seq’ section. Why? In the original Slide-seq manuscript the authors do 

not describe 3D tissue reconstruction from the data. This statement seems generalizable to 

any of the technologies described in this review and should be moved to the ‘Future 

Directions’ section.  

 

Response: 

We agree with the Reviewer and we have moved this accordingly. 

 

Page 17. Lines 515-518: 

Identification of spatial markers and archetypal expression patterns is the basis for these 

current integrative approaches. Cell types can be visualised in 3D with computational 
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programming however this is based on measurement of spatial information from 2D slides 

and careful sampling is required to ensure faithful recapitulation of spatial patterning. 

 

Question #21: 

Furthermore, on line 380, the authors go on to write “Currently Slide-seq is capable of 

scaling to sequence large tissue volumes, and as sequencing costs drop, is forecast to be able 

to scale whole organisms.” This statement isn’t very well supported, given that the authors 

make no mention of the tissue size restrictions of the Slide-seq assay. This statement is also 

generalizable to all technologies. These comments may be better fit in the 'Future Directions’ 

section of the review.  

 

Response: 

We agree with the Reviewer and have amended the future directions section which now 

includes the following. 

 

Page 17. Lines 518-520: 

While challenges remain in scaling these methods to accommodate large tissue volumes, as 

sequencing costs drop, it is forecast that these technologies will be feasible to scale to whole 

organisms. 

 

Question #22:  

On page 9 line 270, GRN is not defined (gene regulatory network?) 

 

Response: 

The introduction now includes the following definition. 

 

Page 3. Line 44: 

“Our body plan relies on spatial expression, achieved by correct deployment of a 

developmental gene regulatory network (GRN) where the location, timing, and level of 

developmental gene expression are crucial.” 
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REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

I would like to thank the authors for sufficiently addressing all the comments. I have no further 

remarks. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors did a thorough revision based on the reviewers' comments. I only have the following 

additional comments. 

 

The term "vitual atlases" was not defined. 

 

In the description of Giotto, it is unclear how spatial information is used "to infer cell type 

enrichment scores for downstream analyses" 

 

For "Computational approaches for resolving spatial gene expression," it would be useful to add a 

table that summarizes the input and output of each method. 

 

I suggest English editing, as there are many places where a singular countable noun was used 

without an article. Also, several sentences are long and difficult to read. Other examples include 

"development phase" should be "developmental phase" 

 

This sentence is still not clear: "Where sc-RNA-seq is subject to technical and biological variations, 

FISH approaches provide a clear visualisation of gene expression, but lack the numerical 

evaluation of expression provided by sequencing and rely on making comparative evaluations for 

quantification." I don't think it is fair to say that FISH lacks numerical evaluation because 

numerical values can be extracted from images. Maybe the authors can change it to "FISH 

approaches rely on downstream image analysis to extract numerical measurements of gene 

exoression." Meanwhile, scRNA-seq also requires reads filtering, mapping, and quality control to be 

converted into numerical measurements. Therefore, I do not think the authors should simply say 

that FISH is less quantitative than scRNA-seq. 

 

The response to Question 16 is unsatisfactory. The reviewer meant to emphasize that microarray-

based spatial transcriptomics assay is different from NGS. The response said that this assay is a 

type of NGS, contradicting to the reviewer's comment. 

 

The response to Question 21 is unsatisfactory. The reviewer meant that the generalization would 

not be trivial. However, the rewritten sentence still reads that the generalization is easy after the 

sequencing cost drops. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have addressed all of my concerns and I am happy to support publication at this time. 
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Author Response 

 

Reviewer #2: 
 

Comment #1: 

The term "vitual atlases" was not defined. 

 

Response: 

Where the term “virtual atlases” is first used, the description has been elaborated. 

 

Page 3. Lines 65-69: 

“Virtual atlases are publicly available, browsable cell reference maps where gene expression 

data is reconstructed in 3D, digital space. They support myriad fields of research through 

interactive visualisation and analysis, providing a valuable source of information for many 

model organisms including C. elegans (Wormbase), frogs (Xenbase), Drosophila, and 

zebrafish.” 

 

Comment #2: 

In the description of Giotto, it is unclear how spatial information is used "to infer cell type 

enrichment scores for downstream analyses" 

 

Response: 

The sentence has been clarified as follows. 

 

Page 12. Lines 384-386 

“A different approach is found in Giotto, a user-friendly workspace that utilises cell type 

specific gene signatures to infer cell type enrichment scores for downstream analyses with the 

capability for integration of spatial information.” 

 

Comment #3: 

For "Computational approaches for resolving spatial gene expression," it would be useful to 

add a table that summarizes the input and output of each method.  
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Response: 

Columns describing input and output have been added to Table 2. “Computational tools and 

associated methods for spatial transcriptomics data analysis and visualisation.” 

 

Comment #4: 

I suggest English editing, as there are many places where a singular countable noun was used 

without an article. Also, several sentences are long and difficult to read. Other examples 

include "development phase" should be "developmental phase" 

 

Response: 

Additional editing has been completed. 

 

Comment #5: 

This sentence is still not clear: "Where sc-RNA-seq is subject to technical and biological 

variations, FISH approaches provide a clear visualisation of gene expression, but lack the 

numerical evaluation of expression provided by sequencing and rely on making comparative 

evaluations for quantification." I don't think it is fair to say that FISH lacks numerical 

evaluation because numerical values can be extracted from images. Maybe the authors can 

change it to "FISH approaches rely on downstream image analysis to extract numerical 

measurements of gene exoression." Meanwhile, scRNA-seq also requires reads filtering, 

mapping, and quality control to be converted into numerical measurements. Therefore, I do 

not think the authors should simply say that FISH is less quantitative than scRNA-seq. 

 

Response: 

Reviewer #2’s suggestion has been incorporated and the text now reads. 

 

Page 5. Lines 137-139: 

“FISH approaches rely on downstream image analysis to extract numerical measurements of 

gene expression. Meanwhile scRNA-seq also requires reads filtering, mapping, and quality 

control to be converted into numerical measurements.” 

 

Comment #6: 
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The response to Question 16 is unsatisfactory. The reviewer meant to emphasize that 

microarray-based spatial transcriptomics assay is different from NGS. The response said that 

this assay is a type of NGS, contradicting to the reviewer's comment. 

 

Response: 

This distinction has been made clearer in the text to avoid confusion. 

 

Page 11. Lines 339-342: 

“The ability to generate histological data which precisely complements the tissue section 

involved in quantitative analysis is unique to Spatial transcriptomics (microarray-based 

technology) and not possible with NGS-based methods.” 

The discussion of challenges with scaling up these technologies has been expanded. 

 

Comment #7: 

The response to Question 21 is unsatisfactory. The reviewer meant that the generalization 

would not be trivial. However, the rewritten sentence still reads that the generalization is easy 

after the sequencing cost drops. 

 

Response: 

Discussion of challenges to scaling in addition to cost has been expanded. 

 

Pages 15-16. Lines 486-494: 

“High resolution, imaging-based approaches require high magnification and fine sectioning 

necessitating long imaging times, which will protract further with scaling. Methods which 

employ targeted probes carry the inherent limitation of finite available fluorophores, and will 

be challenging to scale. Underpinning these challenges is that, as more cells and tissues are 

analysed with higher resolution, more data points are required, demanding higher 

computational power, and scalable mathematical models for future 3D visualisation and data 

interpretation. Spatial technologies vary in their readiness for scaled analysis, and this will 

prove a key determinant of the lifespan and relevancy of the technology.” 

 


