Genes, NCBI Brachypodium distac	hyon Annotation Release 103, 20	018-04-02		•
XM_024459052.1	LO	C112270803	XP_024314820.1	NINJA
	21303 256		21303 256	protein
		mRI	BRADI_1g69970v3 NA-hypothetical protein KGK22901.1	LNJ
	18896 256		18896 256	microProtein

Supplementary Figure S1. Genome browser snapshot showing the

Brachypodium LOC112270803 gene. Annotated in the Brachypodium genome was BRADI1g69970v3 encoding the LNJ microProtein. In-depth analysis revealed that LNJ is a splice variant of a larger gene encoding a NINJA-like protein.

Supplementary Figure S2. LNJ and Brachypodium NINJA-like proteins multiple sequence alignment. Multiple protein sequence alignment of LNJ with related proteins was carried out using CLC Workbench 7 align tools. Gray box indicates Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif, defined by the consensus sequence patterns of either LxLxL or DLN xxP. The green box highlights domain B and the yellow box highlight domain C.

Supplementary Figure S3. Hypothetical model for the action mechanism of LNJ microProtein in the JA signaling. In the absence of jasmonic acid (left), JAZ proteins interacting through the TIFY motif with domain C of NINJA to keep MYC factors in a repressed state. The EAR motif of NINJA is essential for the interaction with the TPL co-repressors. In the presence of jasmonic acid (middle), JAZ proteins subsequently release NINJA/TPL complex from the MYC factors and induce jasmonate-responsive genes which mediate various responses including pathogen defense. In the case of introducing LNJ in the JA signaling (right), NINJA protein can interact with LNJ microProtein via its domain C. NINJA function can thereby be modulated by LNJ microProtein in various JA mediated response.

Supplementary Figure S4. MeJA treatment of wild type and BdLNJ-OX plants. a Pictures of wild-type Bd21-3 and the strongest overexpressing BdLNJ-OX line. Scale bar, 10 cm. **b**, **c** Quantification of height (**b**) and tiller number (**c**) depicted as box plots in wild-type and three independent wild-type Bd21-3, the strongest overexpressing BdLNJ-OX line +/- MeJA treatment. *P<0.05, **P<0.005, ***P<0.0005 determined by Student's T-Test. N = 15-20.

Supplementary Figure S5. Endogenous hormone levels in Brachypodium wildtype and BdLNJ-OX plants. The hormone levels in leaves were measured using UHPLC/TQ-MS. ACC, 1-aminocyclopropane-1-carboxylic acid; IAA, Indole-3-acetic acid; I3A, Indole-3-carboxaldehyde; tZ, trans-zeatin; tZR, tZ riboside; iPR, N6-(Δ 2isopentenyl) adenine (iP), iP riboside; tZ7G, Trans-zeatin-7-glucoside; tZ9G, Transzeatin-9-glucoside; tZROG, tZR-O-glucoside; ABA, abscisic acid; JA-IIe, jasmonoyl-L-isoleucine; SA, salicylic acid. Values are the means ±SD. N = 6-8. *P<0.05, **P<0.005, ***P<0.0005, determined by Student's T-Test.

Supplementary Figure S6. Relative expression levels of JA biosynthesis and response genes in wild-type and BdLNJ-OX plants in MeJA treatment. Relative expression levels of JA biosynthesis/response genes in wild-type and the strongest overexpressing BdLNJ-OX line determined by qRT-PCR with MeJA treatment (gray boxed). PAL is an ethylen response gene that is also induced by methyl-jasmonate (see Kouzai et al., BMC Plant Biology, 2016). Expression levels, determined as relative quantities and normalized against Brachypodium GAPDH gene, are depicted as bar graphs. *P<0.05, **P<0.005, ***P<0.0005 determined by Student's T-Test.

Supplementary Figure S7. Determination of pathogen susceptibility of wild type and transgenic barley plants. Wild type and transgenic *LNJ-OX* plants were infected with *Pyrenophora teres* (CP2189). Chlorotic and necrotic leaf areas were measured and percentages were calculated using Assess 2.0 from APS.

Supplementary Figure S8. Regeneration of transgenic plants transformed with a CRISPR/Cas9 guide RNAs targeting the *LNJ* gene. After isolation of transgenic calli, shoots were regenerated but transgenic plants failed root regeneration and died soon after. This indicated that the LNJ gene is essential for plant development.

Supplemental Table 1: Oligonucleotides used in this study.

Primer	Gene ID	Sequence	Purpose	
BdLNJ F	DD1000070	ggggacaagtttgtacaaaaaagcaggcttcATGCGGCAGAGGCTCAGGGA	Cloning	
BdLNJ R	PD1G09910	ggggaccactttgtacaagaaagctgggtcCTAGACTATGTTTTTC	CDS	
LNJ F	AT1C12740	ggggacaagtttgtacaaaaaagcaggcttcATGGCTACGTCTACTGGTTTGG	Cloning	
LNJ R	ATTG13/40	ggggaccactttgtacaagaaagctgggtcTTAAAAGGTCGAAGAAGAGGTG	CDS	
BTB-POZ F		ggggacaagtttgtacaaaaaagcaggcttcATGCTCCATTTTATCTACTGGGACG	Cloning	
	AT5G19000	ggggaccactttgtacaagaaagctgggtcTCACCTCGCCACATACTGCAATAGCTC	CDS	
		С	000	
BTB-ZF F	AT3G42170	ggggacaagtttgtacaaaaaagcaggcttcATGGCTAGAGACATCC	Cloning	
BTB-ZF R	/10012110	ggggaccactttgtacaagaaagctgggtcCTATGCTTCAGATTTGATGG	CDS	
SERPIN F	AT2G26390	ggggacaagtttgtacaaaaaagcaggcttcATGGTTGATTCGCCTTCGAACGG	Cloning	
SERPIN R		ggggaccactttgtacaagaaagctgggtcTCAATGTTTAGAAGGATCAAGAACTTG		
0214 1111		ACC	020	
XHXS F	AT3G12550	ggggacaagtttgtacaaaaaagcaggcttcATGTGGGAGGAATATCTTAAGGACCC	Cloning	
XHXS R		ggggaccactttgtacaagaaagctgggtcTTATGACTTGAGATGCTTCGC	CDS	
BdJAZ1 F	BRADI_1g21	ggggacaagtttgtacaaaaaagcaggctgcATGGCGGCTTCCACGAGGCC	Cloning	
BdJAZ1R	490	ggggaccactttgtacaagaaagctgggtcCTAAAGCTCAGGTTTGGCGG	CDS	
BdNINJA F	BRADI_2g11	caccATGGAGGATGGCCTTGAGCTTAG	Cloning	
BdNINJA R	790	CTAGTTTTGGGCTGAGGCTGC	CDS	
BdLNJ qF	BD1G69970	ACCAGGGAGTAGCAAGAGCA	aRT-PCR	
BdLNJ qR		CAGCTCCAGCATGCTTCATA		
LNJ qF	AT1G13740	GGTTGATATGCCTTGTGTGTTTACT	aRT-PCR	
LNJ qR		AAGAAGAGGTGTTGACAACGATATG	quirion	
BTB-POZ qF	AT5G19000	GAGCGGCTTAAAGCAATCTG	aRT-PCR	
BTB-POZ qR	/10010000	CTGCAAACAATGATGCTGCT	quirion	
BTB-ZF qF	AT3G42170	TCAGCTGCAGCCTTTGACTA	aRT-PCR	
BTB-ZF qR	////00421/0	CTCAAGAAGCCATTCCCTTG		
SERPIN qF	AT2G26390	GCCTTCGAACGGTGATAAAC	aRT-PCR	
SERPIN qR	/1/2020000	ATCAAACATTGGGGCATCAT	quirion	
XHXS qF	AT3G12550	CCCAGATTGGCATCCTTTTA		
XHXS qR	///00/2000	TCCCCCAGTTCATTCTTCAG	quirion	
AtGAPDH qF	AT1G13440	AAAGTGTTGCCATCCCTCAA	aRT-PCR	
AtGAPDH qR		TCGGTAGACACAACATCATCCT		
PR14 qF	BD1G19470	CCATCTGCGACATCTCCAGC	aRT-PCR	
PR14 qR	BB1010470	CGCTCTTGTACCGGCAGAG	quirion	
PR2 qF	BD3G07960	GTTCAACGTCGCCATGGAC	aRT-PCR	
PR2 qR	BB0007300	TGGGTCTTAACGTCGTTGGG	YN FOR	
DOF qF	BD3G51510	GAATAATCAACCACCGGCGC		
DOF qR	55551510	GCAGTTGATCGCCTTCTCCT		
MYB86 qF	BD2G17982	TGGAACAGCTGCCTCAAGAA		
MYB86 qR		CGGCTTCTGGTCTTCGTCTT		

JMT qF	BD2G47550	TCTTCCCCTTGTTGATCGGC	qRT-PCR
JMT qR		GTTCAACGTCGCCATGGAC	
SnR-Kinase qF	BD4G30390	GGCATGTCGGAGCAGATGAA	qRT-PCR
SnR-Kinase qR		CTCCAGGGCCAGGTAGATCT	

Primer	Gene ID	Sequence	Purpose
MADS qF	BD1G21980	CCAGAATCTCAGCCGTCTCC	qRT-PCR
MADS qR	BB1021000	CTGATGGCACCGATATCCCC	
AGL7 qF	BD1C08340	AAGAAGGCGCACGAGATCTC	
AGL7 qR	BD1000340	CATACATGAGTCGGTGGCGA	
AOS7 qF	BD1G69330	ACCGCCTGGACTTCTACTAC	qRT-PCR
AOS7 qR	DD1000000	GAGGTTCTTCTCCACCT	
LOX qF	BD1G11670	TCAACTTGCCCTTTCCACATG	
LOX qR	BEIGHIOIO	GCAAACCGGATTAACTCCTGC	
4CL qF	BD3G37300	GTTCGAGACGGTGAGGATGTTC	
4CL qR	DD3C37300	CATACTTTCCAACAGCGTCGC	
PAL qF	BD3G48840	TCTTTGAGGCAAACATTCTT	qRT-PCR
PAL qR	00000000	ATAGCAGCAGCCTCTATTTG	
BdGAPDH qF	BD3G14040	TTGCTCTCCAGAGCGATGAC	
BdGAPDH qR	000014040	CTCCACGACATAATCGGCAC	YN FOR
HvGAPDH qF	HV/1G074690	GCCAAGACCCAGTAGAGC	qRT-PCR
HvGAPDH qR	11010074090	CACATTTATTCCCATAGACAAAGG	
OsACTIN qF	OS08T0126300	CCCAGGAATTGCTGACCGTA	qRT-PCR
OsACTIN qR	00010120300	TTTTCTCTCTGGCGGTGCA	

Supplementary data sets

Supplementary dataset 1. Identification of differentially expressed genes using RNA-seq. The file contains two spreadsheets containing differentially expressed genes in Col-0 wilt type versus transgenic *LNJ-OX* plants and differentially expressed genes in Col-0 wilt type versus *jazD* mutant plants.

Supplementary dataset 2. Identification of differentially expressed genes in Brachypodium. Shown is own spreadsheet containing all comparision of the four different datasets (wild type mock; wild type MeJA-treament; *LNJ-OX* mock; *LNJ-OX* MeJatreatment).