Supplementary Information

Supplementary Figure Legends

Figure S1. (A) Histograms represent median fluorescence intensity of surface immunoglobulin expression in LCLs determined by flow cytometry. **(B)** Correlation matrix (Pearson's correlation coefficient) between biological replicates for the LCL GPome, based on SILAC fold change values for all quantified p-sites. H: heavy (BCR-stimulated LMP2A-KO), M: medium (EBV-WT), L: light (LMP2A-KO). **(C-D)** Western blot analysis of total tyrosine phosphorylation (C) and selective BCR downstream effectors (D) in 5-minute BCR-stimulated and unstimulated LCLs. **(E)** Pathway enrichment analysis (Reactome terms) for proteins differentially phosphorylated (Up: significantly increased, Down: significantly decreased; Benjamini-Hochberg adjusted p-value < 0.001 and absolute log₂ fold change \geq 1) in the GPome of EBV-WT (blue) or BCR-stimulated LMP2A-KO (orange) LCLs relative to LMP2A-KO cells.

Figure S2. (**A**) Scatter plot of log2 SILAC ratios for the GPome from BCR-stimulated or LMP2Apositive MYC-expressing mouse B cells, normalized to unstimulated MYC-expressing mouse B cells. The Spearman's rank correlation coefficient (r) is shown. Orange and blue dots indicate significantly concordantly and discordantly regulated p-sites, respectively, and selected hits are labeled. (**B**) Same as (A), for the pYome. (**C**) Pathway enrichment analysis (Reactome terms) for proteins differentially phosphorylated (Up: significantly increased, Down: significantly decreased) in the GPome of LMP2A-positive MYC-expressing mouse B cells, normalized to unstimulated MYC-expressing mouse B cells. Pathways that were also significantly enriched in LCLs are indicated in boldface.

Figure S3. (A) The network topology of genes encoding proteins related to BCR signaling is shown. For each protein, significant changes in phosphorylation in the LCL pYome are color-coded as indicated (left icon: EBV-WT; right icon: BCR-stimulation LMP2A-KO). Proteins that do not exhibit concordantly increased or decreased phosphorylation across all p-sites are referred to as 'mixed'.

Figure S4. (A) Principal component analysis of EBV-WT, LMP2A-KO and BCR-stimulated LMP2A-KO LCL gene expression. Genes with zero counts across all samples were excluded from the analysis. **(B)** Hierarchical clustering of the top 50 differentially expressed genes (adjusted p-value \leq 10–5, likelihood ratio test). **(C)** Pathway enrichment analysis (Reactome terms) for genes

that were differentially expressed in the indicated conditions.

Figure S5. (A) Validation of indicated pro- and anti-apoptotic protein expression in LCLs by Western blot analysis.

Dataset Legends

Dataset S1. Quantified p-sites from the global phosphoproteome (GPome) in human LCLs, and significantly differentially phosphorylated p-sites.

Dataset S2. Quantified p-sites from the tyrosine phosphoproteome (pYome) in human LCLs, and significantly differentially phosphorylated p-sites.

Dataset S3. Quantified p-sites from the global phosphoproteome (GPome) in Myc-expressing transgenic mouse cells, and significantly differentially phosphorylated p-sites.

Dataset S4. Quantified p-sites from the tyrosine phosphoproteome (pYome) in Myc-expressing transgenic mouse cells, and significantly differentially phosphorylated p-sites.

Dataset S5. Differentially expressed genes from RNA-seq profiling of human LCLs.

Dataset S6. Enriched gene signatures from gene signature enrichment analysis based on quantified gene expression.

Dataset S7. Quantified proteins from total proteome analysis of human LCLs, and differentially expressed proteins.

Figure S1

Figure S2

Figure S5

A