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S1.1: Developing three-dimensional LiDAR metrics 

The method we employed to estimate the vertical profile of leaf area from LiDAR point 

clouds is based on a simple one-dimensional Beer-Lambert approximation of light 

propagation through a turbid medium, (e.g. 1, 2, 3), which has been validated against 

directly harvested foliage profiles in tropical forests in both the Brazilian Amazon (2) and 

Costa Rica (3). This model assumes a laterally homogeneous canopy, with a vertical 

distribution of plant density described by the function, PAD(z), where z is the depth into 

the canopy from its top. The rate at which propagating ray traces are intersected by 

vegetation is proportional to PAD(z): 

𝑑∅(𝑧)

𝑑𝑧
= −𝜅𝑃𝐴𝐷(𝑧)∅(𝑧)            

where Φ(z) is a function describing the probability that a ray penetrates to a canopy 

depth z without prior interception, and κ is a correction factor that accounts for canopy 

features, such as the leaf angle distribution, that modulate this relationship.  Integrating this 

equation over a canopy layer of thickness ∆z, then approximating Φ(z=x) as the ratio of 

pulses that penetrate to a depth z=x before intercepting vegetation, n(z≤x), to the total 

number of pulses n yields: 

𝑃𝐴𝐷𝑀1𝑎,𝑖 =  
1

𝜅∆𝑧
𝑙𝑛 (

∑ 𝑛𝑖,𝑘=1
𝑧𝑖=𝑧
𝑧𝑖=0

∑ 𝑛𝑖,𝑘=1
𝑧=𝑧2
𝑧=0

)            

The numerator in the log-term defines the number of returns entering the top of a 

canopy layer; the denominator defines the number of returns penetrating through the 

canopy layer into the underlying layers.  We consider only the first point of contact for 

each LiDAR pulse within the canopy, which closely mimics the field sampling approach 
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published by MacArthur and Horn (4). Representing the canopy as a series of layers, it is 

thus possible to estimate the vertical distribution of vegetation within the canopy. In order 

to produce these profiles, the point cloud is aggregated at a horizontal resolution of 20-m. 

The lowermost 2-m of the canopy is not considered.  

From the estimated canopy profiles, we derived four of the metrics used in the 

subsequent analysis: 

 Plant area index: the total intercepting plant area in the canopy, calculated by 

integrating PAD(z) over the full canopy profile. 

𝑃𝑙𝑎𝑛𝑡 𝑎𝑟𝑒𝑎 𝑖𝑛𝑑𝑒𝑥 =  ∑ 𝑃𝐴𝐷𝑖

𝑁

𝑖=1

 

This provides a first order measure of the density of the vegetation, although is 

also correlated with canopy height in this forest (5). 

 Structural diversity index: describes the range of niches available within the 

canopy. It increases both with the number of canopy layers (canopy height) with 

vegetation, and as PAD is more evenly distributed between the canopy layers. 

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  ∑ 𝑃𝐴𝐷𝑖𝑙𝑛(𝑃𝐴𝐷𝑖)
𝑁
𝑖=1      

This has previously been used with regards to related canopy structure to tropical 

forest dynamics (2). 

 Shape: a morphological parameter that describes the relative distribution of 

material within the canopy (6), here calculated as the ratio of the height in the 

canopy with the highest PAD to the height of the 99th percentile of the PAD 

distribution. 
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 Number of contiguous canopy layers: calculated as the number of canopy layers 

based on regions of continuous PAD – essentially mimicking the field process of 

counting canopy layers (e.g. Clark et al., 2008). Layer continuity is defined based 

on contiguous regions with PAD greater than a threshold value of 0.1 m2m-3. 

 

S1.2: Bayesian linear model specification 

As a preliminary assessment of the structural signature of forest degradation, we employed 

a series of Bayesian linear models to determine differences in forest canopy properties 

across categorical degradation classes. Linear models were implemented in the statistical 

software JAGS (Just Another Gibbs Sampler) version 4.3.0 (7), called through R using the 

package “jagsUI” (6). Uninformative priors were used throughout, incorporating flat 

normal and wide uniform priors for intercept/slope and variance parameters respectively. 

We specified three Markov chains per parameter, each comprising 12,000 iterations 

thinned by a factor of 10, 2,000 of which were discarded during the burn-in period. 

Convergence was assessed visually, to determine adequate mixing of chains, and 

statistically, using the Gelman-Rubin statistic, with values <1.1 indicating convergence (8). 

Model fit was assessed using a predictive posterior check, which compares the observed 

data against a simulated, idealized dataset (9). We extracted Bayesian P values as a 

numerical summary of the posterior predictive distribution, with values of 0.5 indicating 

adequate model fit.  
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S2.1: Occupancy model description 

Our model formulation employed single-species models as analytical building blocks (10). 

Within a traditional single-season, single-species framework, occupancy is estimated at 

defined locations using spatially or temporally replicated samples to account for imperfect 

detection (11). Here, we extend this to incorporate spatial and temporal replication and 

multi-species inference. Our framework comprises three conditionally-dependent sub-

components describing the partially observed processes of occupancy (z), habitat use (ɑ) 

(state process models) and detection (observation model). These sub-models correspond to 

the hierarchical nature of our sampling design, equivalent to sampling location, camera trap 

station (spatial replicate) and survey (temporal replicate) respectively. We modelled 

occurrence, z, of species i at sampling location j as the realization of Bernoulli trial: 

zi,j ~ Bernoulli(ψi,j) 

where zi,j  is a binary variable indicating species presence/absence and ψi,j expresses 

the probability of species occurrence at a given sampling location. Habitat use, α, of species 

i within sampling location j at camera trap station l, is defined as the outcome of a second 

Bernoulli process conditional on species presence, zi,j :  

ɑi,j,l|zi,j  ~ Bernoulli(zi,j · ϑi,j,l)  

where ɑi,j,l is a binary variable indicating presence/absence at the camera trap station 

and ϑ expresses the probability-of-use. To account for imperfect detection in habitat use, 

we specified a third Bernoulli process: 

yi,j,l,k|ɑi,j,l ~ Bernoulli(ɑi,j,l,k · pi,j,l,k) 

where yi,j,l,k represents a four-dimensional array containing the observed 

detection/non-detection data, k is the temporal replicate and pi,j,l,k is the detection 



 

 

6 

 

probability conditional on species presence. Under this formulation we interpret model 

parameters as: (1) the probability that a sampling location lies within the home range of at 

least one individual of a given species relative to coarse-scale structural covariates 

describing home range characteristics; (2) the probability that a camera trap station is 

preferentially selected to meet ecological demands relative to fine-scale structural 

properties given that the sampling location is represented in the home range, and, (3) the 

probability of detecting a mammal species during a survey replicate given that the camera 

trap station was being utilized. 

Prior to modelling, detection/non-detection data for each camera trap were binned 

into independent sampling occasions of six-days in length (2-7 replicates per site). We 

excluded three species with fewer than five detections throughout sampling (banded 

linsang, Prionodon linsang; banteng, Bos javanicus; smooth-coated otter, Lutrogale 

perspicillata), as models are unable to discern changes in occupancy from those in 

detection when observations are very sparse (12). We also acknowledge that strictly 

arboreal species (i.e. gibbons, Hylobates sp., langurs, Presbytis sp., small-toothed palm 

civets, Arctogalidia trivirgata) cannot be reliably monitored using our sampling design and 

restrict inference to terrestrial/semi-arboreal species.  

Multi-scale occupancy models assume independence between spatial replicates 

(13), however, spatially clustered designs may result in Markovian dependence as a result 

of animal ranging behavior (14). To test this assumption, we employed a Jaccard Index (J), 

to determine the degree of similarity in detection histories between camera stations nested 

within sites for all study species (15). We found little evidence of similarity, with the 

exception of the bearded pig (J=0.51; P=0.008), Bornean yellow muntjac (J=0.33; 0.015), 
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red muntjac (J=0.27; P=0.048) and pig-tailed macaque (J=0.31; 0.008), for which 

correspondence was attributed to high levels of abundance. 

Single-species models were linked by an additional hierarchical component that 

modelled species-specific parameters as realizations from a community-level distribution. 

This approach assumes species respond similarly, but not identically, to environmental 

conditions. Species-specific parameter estimates thus reflect a compromise between 

individual response and the average response of the community, modulated by detection 

history. This process induces shrinkage (the borrowing of statistical strength by individual 

species across the community), which has been shown to improve estimation precision for 

data-poor species infrequently detected during sampling (16).  

Hierarchical multi-species occupancy models were implemented using a Bayesian 

framework, specified with uninformative priors for intercept and slope parameters. We 

modelled variance parameters associated with temporal random effects hierarchically using 

a half-Cauchy distribution to mitigate potential overestimation due to few factor levels 

(17). We specified three Markov chains per parameter, each comprising 150,000 iterations 

with a thin rate of 100 and a burn-in period of 50,000. Convergence was inspected visually 

to determine adequate mixing of chains, and using the Gelman-Rubin statistic, with values 

<1.1 indicating convergence (9). Model fit was quantified using a predictive posterior 

check, which compares the observed data against a simulated, idealized dataset (9). We 

extracted Bayesian P values as a numerical summary of the posterior predictive 

distribution, with values of 0.5 indicating adequate model fit. We assessed model fit using 

a Pearson χ2 discrepancy measure for binomial data and a “lack of fit” statistic (18) (Table 

S2). 
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To determine optimal spatial extents for structural covariates, we implemented 

scale optimization methods proposed by McGarigal et al. (19), which have been shown to 

improve the predictive performance of statistical models. We constructed 126 multi-scale 

multi-species occupancy models to compare structural covariates aggregated across a range 

of buffer radii (occupancy covariates: 1-2 km, N=3; probability-of-use covariates: 10-500 

m, N=7). The best-supported spatial extent for each structural covariate was identified by 

ranking models according to WAIC (Watanabe Akaike-Information-Criterion; Table S2).    

 

S2.2: Model code 

  

We provide model code for the hierarchical Bayesian multi-species, multi-scale occupancy 

model, written in the BUGS language and implemented in JAGS called through R. 

model { 

    # Hyper-priors for occupancy, habitat use and detection intercepts 

    #============================================== 

    mu.alpha.psi ~ dnorm(0, 0.01) 

    sigma.alpha.psi ~ dunif(0, 10) 

    tau.alpha.psi <- pow(sigma.alpha.psi, -2) 

 

    mu.alpha.theta ~ dnorm(0, 0.01) 

    sigma.alpha.theta ~ dunif(0, 10) 

    tau.alpha.theta <- pow(sigma.alpha.theta, -2) 

 

    mu.alpha.p ~ dnorm(0, 0.01) 

    sigma.alpha.p ~ dunif(0, 10) 

    tau.alpha.p <- pow(sigma.alpha.p, -2) 

   

    # Hyper-priors for occupancy, habitat use and detection covariate coefficients 

    #======================================================= 

    mu.beta1.psi ~ dnorm(0, 0.01) 

    sigma.beta1.psi ~ dunif(0, 10) 

    tau.beta1.psi <- pow(sigma.beta1.psi, -2) 

 

    mu.beta2.psi ~ dnorm(0, 0.01) 

    sigma.beta2.psi ~ dunif(0, 10) 
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    tau.beta2.psi <- pow(sigma.beta2.psi, -2) 

 

    mu.beta1.theta ~ dnorm(0, 0.01) 

    sigma.beta1.theta ~ dunif(0, 10) 

    tau.beta1.theta <- pow(sigma.beta1.theta, -2) 

 

    mu.beta2.theta ~ dnorm(0, 0.01) 

    sigma.beta2.theta ~ dunif(0, 10) 

    tau.beta2.theta <- pow(sigma.beta2.theta, -2) 

 

    mu.beta1.p ~ dnorm(0, 0.01) 

    sigma.beta1.p ~ dunif(0, 10) 

    tau.beta1.p <- pow(sigma.beta1.p, -2) 

 

    mu.beta2.p ~ dnorm(0, 0.01) 

    sigma.beta2.p ~ dunif(0, 10) 

    tau.beta2.p <- pow(sigma.beta2.p, -2) 

 

    mu.beta3.p ~ dnorm(0, 0.01) 

    sigma.beta3.p ~ dunif(0, 10) 

    tau.beta3.p <- pow(sigma.beta3.p, -2) 

 

    # Hyperprior for half-Cauchy scale parameter for occupancy and habitat use models 

    #=========================================================== 

    xi.sd.psi ~ dunif(0, 10) 

    xi.tau.psi <- pow(xi.sd.psi, -2) 

    xi.sd.theta ~ dunif(0, 10) 

    xi.tau.theta <- pow(xi.sd.theta, -2) 

 

    # Species-specific parameters drawn as realisations from the community distributions 

    #============================================================ 

    for(i in 1:n.sp){ 

        alpha.psi[i] ~ dnorm(mu.alpha.psi, tau.alpha.psi) 

        alpha.theta[i] ~ dnorm(mu.alpha.theta, tau.alpha.theta) 

        alpha.p[i] ~ dnorm(mu.alpha.p, tau.alpha.p) 

 

        beta1.psi[i] ~ dnorm(mu.beta1.psi, tau.beta1.psi) 

        beta2.psi[i] ~ dnorm(mu.beta2.psi, tau.beta2.psi) 

        beta1.theta[i] ~ dnorm(mu.beta1.theta, tau.beta1.theta) 

        beta2.theta[i] ~ dnorm(mu.beta2.theta, tau.beta2.theta) 

        beta1.p[i] ~ dnorm(mu.beta1.p, tau.beta1.p) 

        beta2.p[i] ~ dnorm(mu.beta2.p, tau.beta2.p) 

        beta3.p[i] ~ dnorm(mu.beta3.p, tau.beta3.p) 

        } 
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    # Hyperpriors/priors for temporal random effect 

    #==================================   

    for(i in 1:n.sp){ 

        # Random year effects for psi component 

        for(year in 1:n.year){ 

            eps.psi[year, i] ~ dnorm(0, eps.tau.psi[i]) 

            eps.theta[year, i] ~ dnorm(0, eps.tau.theta[i])  

            } 

 

        eps.tau.psi[i] ~ dgamma(0.5, 0.5) 

        xi.psi[i] ~ dnorm(0, xi.tau.psi) 

        sigma.cauchy.psi[i] <- abs(xi.psi[i]) / sqrt(eps.tau.psi[i]) 

 

        eps.tau.theta[i] ~ dgamma(0.5, 0.5) 

        xi.theta[i] ~ dnorm(0, xi.tau.theta) 

        sigma.cauchy.theta[i] <- abs(xi.theta[i]) / sqrt(eps.tau.theta[i]) 

        } 

 

    # Ecological model for occurrence of species i in site j 

    #=========================================== 

    for(i in 1:n.sp){ 

        for(j in 1:n.sites){ 

            logit(psi[j,i]) <- alpha.psi[i] + beta1.psi[i]*ForCov[j] + beta2.psi[i]*CH_SD.psi[j]  

                                      + xi.psi[i]*eps.psi[year.counter.psi[j],i] 

            z[j,i] ~ dbern(psi[j,i]) 

 

    # Sub-unit model, occurrence of species i within spatial replicate l 

            for(l in 1:n.spatial[j]){ 

                logit(theta[j,l,i]) <- alpha.theta[i] + beta1.theta[i]*Structure1[j,l] + 

                                               beta2.theta[i]*Structure2[j,l] +   

                                               xi.theta[i]*eps.theta[year.counter.theta[j,l],i] 

                mu.a[j,l,i] <- z[j,i] * theta[j,l,i] 

                a[j,l,i] ~ dbern(mu.a[j,l,i]) 

 

    # Detection model for replicated detection/non-detection observations 

                for(k in 1:n.temporal[j,l]){ 

                    logit(p[j,l,k,i]) <- alpha.p[i] + beta1.p[i]*PAI_Herb.p[j,l] +  

                                                 beta2.p[i]*Nlay.p[j,l] +  beta3.p[i]*TrapEffort[j,l] 

                    mu.p[j,l,k,i] <- a[j,l,i] * p[j,l,k,i] 

                    y[j,l,k,i] ~ dbern(mu.p[j,l,k,i]) 

 

    # Calculate Pearson's Chi-squared residuals to assess goodness of fit 

    # Based on Kery and Royle: Applied hierarchical modelling in ecology, pp. 235 

    # Calculate the observed and expected residuals 

    # Add small value to prevent division by zero 
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    #================================ 

                    y.sim[j,l,k,i] ~ dbern(mu.p[j,l,k,i])                                                     

                    chi2.obs[j,l,k,i] <- pow(y[j,l,k,i] - mu.p[j,l,k,i], 2)/ (mu.p[j,l,k,i] + 0.0001) 

                    chi2.sim[j,l,k,i] <- pow(y.sim[j,l,k,i] - mu.p[j,l,k,i], 2)/ (mu.p[j,l,k,i] +  

                                                  0.0001)                    

                } 

                chi2.obs.sum[j,l,i] <- sum(chi2.obs[j,l,1:n.temporal[j,l],i]) 

                chi2.sim.sum[j,l,i] <- sum(chi2.sim[j,l,1:n.temporal[j,l],i]) 

            } 

            chi2.obs.sum2[j,i] <- sum(chi2.obs.sum[j,1:n.spatial[j],i])             

            chi2.sim.sum2[j,i] <- sum(chi2.sim.sum[j,1:n.spatial[j],i]) 

        } 

     

    # Calculate chi-squared discrepancy for each species 

    #===================================== 

        fit.sp.obs[i] <- sum(chi2.obs.sum2[,i])                     

        fit.sp.sim[i] <- sum(chi2.sim.sum2[,i])                     

        c.hat.sp[i] <- fit.sp.obs[i]/fit.sp.sim[i]                    

        bpv.sp[i] <- step(fit.sp.sim[i] - fit.sp.obs[i])            

    } 

 

    # Calculate model discrepancy measure and fit statistics 

    #======================================= 

    fit.obs <- sum(chi2.obs.sum2[1:n.sites, 1:n.sp]) 

    fit.sim <- sum(chi2.sim.sum2[1:n.sites, 1:n.sp]) 

    c.hat <- fit.obs/fit.sim 

    bpv <- step(fit.sim - fit.obs) 

 

    # Derived quantities 

    # Number of occupied sites 

    #=================== 

    for(i in 1:n.sp) { 

        Nocc.fs[i] <- sum(z[,i]) 

        } 

     

    

  



 

 

12 

 

 # Number of species occurring at each site 

    #============================== 

    for(j in 1:n.sites) { 

        Nsite[j] <- sum(z[j,]) 

        } 

} 
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Figure S1: Landscape context factors influencing Bornean mammal occupancy. 

Covariates describe the (a) extent (forest cover) and (b) quality (canopy height variability) 

of forest habitat. Effect sizes are presented as posterior means (points) and 95% Bayesian 

credible intervals (BCI). Effects were considered substantial if the 95% BCI did not overlap 

zero (vertical dashed line). Responsive species are presented in blue.  
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Figure S2: Occupancy relative to forest cover. Outputs are presented for the 28 medium-

large terrestrial mammals encountered during sampling. Predicted posterior mean 

distribution values are presented in dark blue, while uncertainty, as indicated using 95% 

Bayesian credible intervals is visualized in light blue.  
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Figure S3: Occupancy relative to forest quality. Forest quality was defined using canopy 

height variability (m), with greater variability indicating better quality forest habitat. 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during 

sampling. Predicted posterior mean distribution values are presented in dark blue, while 

uncertainty, as indicated using 95% Bayesian credible intervals is visualized in light blue.  
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Figure S4: Probability-of-use relative to canopy height (m). Outputs are presented for the 

28 medium-large terrestrial mammals encountered during sampling. Predicted posterior 

mean distribution values are presented in dark blue, while uncertainty, as indicated using 

95% Bayesian credible intervals is visualized in light blue.  
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Figure S5: Probability-of-use relative to gap fraction. We quantify gap fraction as the 

proportion of canopy gaps (< 5 m in height) within a 250 m radius of the camera trap. 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during 

sampling. Predicted posterior mean distribution values are presented in dark blue, while 

uncertainty, as indicated using 95% Bayesian credible intervals is visualized in light blue. 
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Figure S6: Probability-of-use relative to the number of contiguous layers of vegetation 

within the canopy. Outputs are presented for the 28 medium-large terrestrial mammals 

encountered during sampling. Predicted posterior mean distribution values are presented in 

dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals is 

visualized in light blue.  
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Figure S7: Probability-of-use relative to plant area index. Outputs are presented for the 28 

medium-large terrestrial mammals encountered during sampling. Predicted posterior mean 

distribution values are presented in dark blue, while uncertainty, as indicated using 95% 

Bayesian credible intervals is visualized in light blue.  
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Figure S8: Probability-of-use relative to the structural diversity index. This measure is 

indicative of niche availability and calculated as the Shannon Index of the plant area 

distribution. Outputs are presented for the 28 medium-large terrestrial mammals 

encountered during sampling. Predicted posterior mean distribution values are presented in 

dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals is 

visualized in light blue.  
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Figure S9: Probability-of-use relative to shape. We define shape as the distribution of 

vegetation throughout the vertical column. Outputs are presented for the 28 medium-large 

terrestrial mammals encountered during sampling. Predicted posterior mean distribution 

values are presented in dark blue, while uncertainty, as indicated using 95% Bayesian 

credible intervals is visualized in light blue.  
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Figure S10: Environmental and sampling covariates influencing detection probability. 

Outputs are presented for the 28 medium-large terrestrial mammals encountered during 

sampling. Effect sizes are presented as posterior means (points) and 95% Bayesian credible 

intervals (BCI). Effects were considered substantial if the 95% BCI did not overlap zero 

(vertical dashed line). Responsive species are presented in blue.  
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Figure S11: Detection probability relative to plant area index in the herbaceous layer (2-5 

m). Outputs are presented for the 28 medium-large terrestrial mammals encountered during 

sampling. Predicted posterior mean distribution values are presented in dark blue, while 

uncertainty, as indicated using 95% Bayesian credible intervals is visualized in light blue.  
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Figure S12: Detection probability relative to the number of contiguous layers of vegetation 

in the canopy. Outputs are presented for the 28 medium-large terrestrial mammals 

encountered during sampling. Predicted posterior mean distribution values are presented in 

dark blue, while uncertainty, as indicated using 95% Bayesian credible intervals is 

visualized in light blue. 
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Figure S13: Detection probability relative to sampling effort.  We define sampling effort 

based on the number of nights each camera trap station was operational. Outputs are 

presented for the 28 medium-large terrestrial mammals encountered during sampling. 

Predicted posterior mean distribution values are presented in dark blue, while uncertainty, 

as indicated using 95% Bayesian credible intervals is visualized in light blue. 
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Figure S14: A spatial delineation of conservation and restoration priority areas for the 

banded civet (Hemigalus derbyamus). Priority conservation and restoration areas (a) as 

predicted by Bayesian change point analysis on predicted occupancy trends (blue lines) 

relative to informative structural characteristics (b-g). Vertical dashed red lines (b-g) 
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represent the lower and upper bounds of the zone of transition, characterized in red line 

graphs by the highest posterior probability of change.  
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Figure S15: A spatial delineation of conservation and restoration priority areas for the 

binturong (Arctictis binturong). Priority conservation and restoration areas (a) as predicted 

by Bayesian change point analysis on predicted occupancy trends (blue lines) relative to 

informative structural characteristics (b-c). Vertical dashed red lines represent the lower 
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and upper bounds of the zone of transition, characterized in red line graphs by the highest 

posterior probability of change. 
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Figure S16: A spatial delineation of conservation and restoration priority areas for the 

Bornean yellow muntjac (Muntiacus atherodes). Priority conservation and restoration 

areas (a) as predicted by Bayesian change point analysis on predicted occupancy trends 

(blue lines) relative to informative structural characteristics (b-d). Vertical dashed red lines 
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represent the lower and upper bounds of the zone of transition, characterized in red line 

graphs by the highest posterior probability of change. 
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Figure S17: A spatial delineation of conservation and restoration priority areas for the 

marbled cat (Pardofelis marmorata). Priority conservation and restoration areas (a) as 

predicted by Bayesian change point analysis on predicted occupancy trends (blue lines) 
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relative to informative structural characteristics (b). The vertical dashed red line represent 

the lower and upper bounds of the zone of transition, characterized on the red line graph 

by the highest posterior probability of change. 
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Figure S18: A spatial delineation of conservation and restoration priority areas for the 

sambar deer (Rusa unicolor). Priority conservation and restoration areas (a) as predicted 

by Bayesian change point analysis on predicted occupancy trends (blue lines) relative to 

informative structural characteristics (b-c). Vertical dashed red lines represent the lower 
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and upper bounds of the zone of transition, characterized in red line graphs by the highest 

posterior probability of change. 
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Figure S19: A spatial delineation of conservation and restoration priority areas for the 

Sunda clouded leopard (Neofelis diardi). Priority conservation and restoration areas (a) as 

predicted by Bayesian change point analysis on predicted occupancy trends (blue lines) 

relative to informative structural characteristics (b-e). Vertical dashed red lines represent 
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the lower and upper bounds of the zone of transition, characterized in red line graphs by 

the highest posterior probability of change. 
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Figure S20: A spatial delineation of conservation and restoration priority areas for the 

tufted ground squirrel (Rheithrosciurus macrotis). Priority conservation and restoration 

areas (a) as predicted by Bayesian change point analysis on predicted occupancy trends 

(blue lines) relative to informative structural characteristics (b-c). Vertical dashed red lines 
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represent the lower and upper bounds of the zone of transition, characterized in red line 

graphs by the highest posterior probability of change. 
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Table S1: Response of forest architectural properties to structural degradation. Using 

outputs from a mean parameterization of a Bayesian linear model, we detail average 

structural covariate value across each degradation class (Old Growth, Managed Forest, 

Heavily-degraded Forest, Remnant Forest) and structural differences between classes. 

Parameter estimates are presented as the mean, standard deviation, 2.5th and 97.5th 

percentile values of posterior distributions. Differences in structural covariates between 

degradation classes were considered significant if Bayesian credible intervals (2.5th 

percentile and 97.5th percentile) did not overlap zero (highlighted in bold).   

 

Structural 

Variable 

Parameter Mean SD 2.5th 

Percentile 

97.5th 

Percentile 

Canopy height Old Growth 24.22 1.27 21.82 26.79 

 Managed Forest 23.37 1.24 20.92 25.85 

 Heavily-degraded Forest 13.95 0.71 12.56 15.31 

 Remnant Forest 9.93 0.90 8.14 11.75 

 Old Growth vs. Managed -0.84 1.75 -4.24 2.61 

 Old Growth vs. Heavily-

degraded 

-10.27 1.44 -13.15 -7.54 

 Old Growth vs. 

Remnant 

-14.29 1.55 -17.32 -11.28 

 Managed vs. Heavily-

degraded 

-9.43 1.44 -12.21 -6.56 

 Managed vs. Remnant -13.44 1.52 -16.46 -10.46 

 Heavily-degraded vs. 

Remnant 

-4.01 1.15 -6.26 -1.73 

Gap fraction Old Growth 0.24 0.05 0.15 0.34 

 Managed Forest 0.09 0.05 0.00 0.18 

 Heavily-degraded Forest 0.39 0.03 0.33 0.44 

 Remnant Forest 0.61 0.03 0.54 0.67 

 Old Growth vs. 

Managed 

-0.15 0.07 -0.28 -0.03 

 Old Growth vs. Heavily-

degraded 

0.14 0.05 0.04 0.25 

 Old Growth vs. 

Remnant 

0.36 0.06 0.25 0.47 
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 Managed vs. Heavily-

degraded 

0.29 0.05 0.19 0.40 

 Managed vs. Remnant 0.51 0.06 0.40 0.63 

 Heavily-degraded vs. 

Remnant 

0.22 0.04 0.13 0.31 

Number of 

layers 

Old Growth 2.83 0.08 2.66 2.99 

 Managed Forest 2.96 0.08 2.79 3.12 

 Heavily-degraded Forest 2.47 0.05 2.38 2.56 

 Remnant Forest 2.07 0.06 1.95 2.19 

 Old Growth vs. Managed 0.13 0.12 -0.10 0.36 

 Old Growth vs. Heavily-

degraded 

-0.36 0.10 -0.55 -0.16 

 Old Growth vs. 

Remnant 

-0.75 0.11 -0.96 -0.55 

 Managed vs. Heavily-

degraded 

-0.49 0.10 -0.67 -0.30 

 Managed vs. Remnant -0.88 0.10 -1.08 -0.68 

 Heavily-degraded vs. 

Remnant 

-0.39 0.08 -0.55 -0.24 

Plant area 

index 

Old Growth 5.24 0.33 4.61 5.89 

 Managed Forest 6.71 0.33 6.07 7.36 

 Heavily-degraded Forest 3.96 0.19 3.58 4.33 

 Remnant Forest 2.08 0.24 1.60 2.56 

 Old Growth vs. 

Managed 

1.47 0.46 0.54 2.35 

 Old Growth vs. Heavily-

degraded 

-1.28 0.38 -2.04 -0.54 

 Old Growth vs. 

Remnant 

-3.16 0.41 -3.98 -2.38 

 Managed vs. Heavily-

degraded 

-2.75 0.38 -3.50 -1.99 

 Managed vs. Remnant -4.63 0.41 -5.43 -3.82 

 Heavily-degraded vs. 

Remnant 

-1.89 0.31 -2.48 -1.27 

Structural 

diversity index 

Old Growth 2.76 0.09 2.57 2.94 

 Managed Forest 2.69 0.09 2.50 2.86 

 Heavily-degraded Forest 1.63 0.05 1.53 1.73 

 Remnant Forest 1.35 0.07 1.22 1.48 

 Old Growth vs. Managed -0.07 0.13 -0.32 0.18 

 Old Growth vs. Heavily-

degraded 

-1.12 0.11 -1.34 -0.91 
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 Old Growth vs. 

Remnant 

-1.40 0.11 -1.63 -1.18 

 Managed vs. Heavily-

degraded 

-1.06 0.11 -1.26 -0.85 

 Managed vs. Remnant -1.33 0.11 -1.55 -1.11 

 Heavily-degraded vs. 

Remnant 

-0.28 0.08 -0.44 -0.11 

Shape Old Growth 0.21 0.03 0.16 0.27 

 Managed Forest 0.20 0.03 0.15 0.25 

 Heavily-degraded Forest 0.20 0.02 0.17 0.23 

 Remnant Forest 0.22 0.02 0.18 0.25 

 Old Growth vs. Managed -0.01 0.04 -0.09 0.06 

 Old Growth vs. Heavily-

degraded 

-0.01 0.03 -0.08 0.05 

 Old Growth vs. Remnant 0.00 0.03 -0.06 0.07 

 Managed vs. Heavily-

degraded 

0.00 0.03 -0.06 0.06 

 Managed vs. Remnant 0.01 0.03 -0.05 0.08 

 Heavily-degraded vs. 

Remnant 

0.02 0.03 -0.03 0.07 
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Table S2: Model selection, scale optimization and model fit summary statistics. Model 

selection and scale optimization were based on comparison of Watanabe AIC values, with 

the lowest scoring WAIC values indicating the overall best model (presented in bold and 

italics) and the most responsive scales for each structural covariate (presented in bold). We 

quantify support for competing models using ΔWAIC and WAICw. ΔWAIC indicates 

variation in WAIC relative to the highest ranked model, we consider equivalent statistical 

support for models within two ΔWAIC. WAICw describes Akaike weights and specifies 

the probability that a model is the top ranking formulation amongst the competing candidate 

set. Model fit was judged using Bayesian P values (BPV) and the “lack-of-fit” statistic 

(Chat). BPV values between 0.05 and 0.95 and Chat scores ~1 indicate adequate model fit. 

For comparative purposes, we provide model selection and fit statistics for null models 

(denoted with NA values in the Course- and Fine-scale (m) columns). 

 

Model Coarse-

scale 

(m) 

Fine-

scale 

(m) 

BPV Chat WAIC ΔWAIC WAICw 

Forest cover + Forest quality +  2000 250 0.41 1.03 2039.60 0.00 0.66 

Canopy height 2000 500 0.49 1.02 2041.85 2.25 0.22 

 2000 10 0.43 1.03 2043.00 3.40 0.12 

 2000 50 0.35 1.03 2073.89 34.29 0.00 

 2000 150 0.43 1.02 2074.70 35.10 0.00 

 2000 25 0.36 1.03 2082.02 42.42 0.00 

 1500 500 0.46 1.02 2089.22 49.62 0.00 

 1500 250 0.43 1.02 2095.71 56.11 0.00 

 1500 100 0.43 1.01 2100.56 60.96 0.00 

 2000 100 0.40 1.02 2109.40 69.80 0.00 

 1000 25 0.43 1.02 2112.06 72.46 0.00 

 1000 500 0.57 1.00 2112.66 73.06 0.00 

 1500 10 0.43 1.02 2113.98 74.38 0.00 

 1000 150 0.45 1.01 2115.11 75.51 0.00 

 1000 250 0.52 1.00 2144.21 104.61 0.00 

 1000 10 0.45 1.01 2150.68 111.08 0.00 

 1000 100 0.49 1.02 2152.13 112.53 0.00 

 1500 150 0.51 1.01 2166.22 126.62 0.00 

 1500 25 0.46 1.01 2169.51 129.91 0.00 
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 1000 50 0.39 1.02 2177.02 137.42 0.00 

 1500 50 0.43 1.02 2217.24 177.64 0.00 

 NA NA 0.39 1.03 2219.60 180.00 0.00 

Forest cover + Forest quality +  2000 250 0.47 1.02 2057.30 0.00 0.56 

Gap fraction 1000 500 0.50 1.01 2059.08 1.78 0.23 

 2000 500 0.33 1.03 2060.42 3.12 0.12 

 2000 150 0.35 1.04 2061.01 3.71 0.09 

 1500 10 0.44 1.02 2067.09 9.79 0.00 

 1500 500 0.44 1.02 2071.38 14.08 0.00 

 1500 150 0.49 1.01 2071.86 14.56 0.00 

 2000 10 0.47 1.02 2075.88 18.58 0.00 

 1000 50 0.44 1.02 2085.62 28.32 0.00 

 1000 150 0.38 1.02 2108.36 51.06 0.00 

 1500 50 0.49 1.01 2108.49 51.19 0.00 

 2000 50 0.45 1.02 2111.67 54.37 0.00 

 1000 100 0.43 1.02 2118.44 61.14 0.00 

 2000 25 0.47 1.01 2133.52 76.22 0.00 

 1500 100 0.34 1.03 2136.28 78.98 0.00 

 1500 250 0.41 1.03 2138.21 80.91 0.00 

 1000 10 0.41 1.03 2140.72 83.42 0.00 

 2000 100 0.38 1.02 2142.91 85.61 0.00 

 1000 25 0.41 1.02 2143.88 86.58 0.00 

 1000 250 0.50 1.01 2151.82 94.52 0.00 

 1500 25 0.38 1.03 2179.06 121.76 0.00 

 NA NA 0.39 1.03 2219.60 162.30 0.00 

Forest cover + Forest quality +  2000 250 0.41 1.02 2072.13 0.00 1.00 

Number of layers 1500 250 0.41 1.03 2088.62 16.49 0.00 

 2000 500 0.38 1.02 2096.35 24.22 0.00 

 1000 500 0.51 1.01 2098.42 26.29 0.00 

 1500 150 0.43 1.03 2111.04 38.91 0.00 

 1500 500 0.40 1.03 2111.11 38.98 0.00 

 2000 150 0.43 1.03 2112.24 40.11 0.00 

 1500 50 0.40 1.03 2115.06 42.93 0.00 

 2000 100 0.44 1.01 2121.95 49.82 0.00 

 2000 10 0.47 1.02 2126.80 54.67 0.00 

 1500 25 0.43 1.02 2134.85 62.72 0.00 

 1500 100 0.40 1.03 2143.96 71.83 0.00 

 1000 50 0.39 1.03 2144.92 72.79 0.00 

 1000 100 0.41 1.02 2152.17 80.04 0.00 

 1000 10 0.44 1.01 2161.04 88.91 0.00 

 2000 25 0.38 1.03 2162.80 90.67 0.00 

 2000 50 0.49 1.01 2167.38 95.25 0.00 

 1000 150 0.37 1.03 2178.11 105.98 0.00 

 1000 250 0.46 1.01 2197.16 125.03 0.00 

 1500 10 0.40 1.03 2203.62 131.49 0.00 

 NA NA 0.39 1.03 2219.60 147.47 0.00 

 1000 25 0.41 1.02 2220.23 148.10 0.00 

Forest cover + Forest quality +  2000 500 0.46 1.01 1979.98 0.00 1.00 

Plant area index 2000 25 0.45 1.02 1996.37 16.39 0.00 

 1500 100 0.41 1.02 2027.27 47.29 0.00 

 2000 50 0.38 1.02 2049.63 69.65 0.00 

 2000 250 0.39 1.02 2061.02 81.04 0.00 

 2000 10 0.50 1.01 2076.72 96.74 0.00 

 2000 150 0.43 1.02 2079.39 99.41 0.00 
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 1500 10 0.46 1.01 2085.83 105.85 0.00 

 2000 100 0.37 1.04 2089.81 109.83 0.00 

 1000 25 0.49 1.01 2094.70 114.72 0.00 

 1000 500 0.45 1.01 2101.87 121.89 0.00 

 1500 25 0.45 1.02 2107.45 127.47 0.00 

 1000 10 0.35 1.03 2110.17 130.19 0.00 

 1000 50 0.39 1.02 2113.79 133.81 0.00 

 1000 250 0.45 1.01 2117.06 137.08 0.00 

 1000 100 0.37 1.03 2122.11 142.13 0.00 

 1500 250 0.48 1.01 2125.74 145.76 0.00 

 1500 50 0.56 1.01 2128.49 148.51 0.00 

 1000 150 0.51 1.01 2133.49 153.51 0.00 

 1500 150 0.45 1.02 2147.01 167.03 0.00 

 1500 500 0.44 1.01 2156.04 176.06 0.00 

 NA NA 0.39 1.03 2219.60 239.62 0.00 

Forest cover + Forest quality + 2000 500 0.45 1.02 2016.74 0.00 0.99 

Structural diversity index 2000 25 0.49 1.01 2027.01 10.27 0.01 

 2000 50 0.41 1.02 2032.58 15.84 0.00 

 1500 10 0.37 1.02 2044.55 27.81 0.00 

 2000 150 0.45 1.01 2054.50 37.76 0.00 

 2000 250 0.48 1.02 2070.89 54.15 0.00 

 1500 500 0.40 1.02 2071.30 54.56 0.00 

 2000 10 0.39 1.03 2074.32 57.58 0.00 

 1000 25 0.49 1.01 2077.82 61.08 0.00 

 1000 50 0.49 1.01 2083.64 66.90 0.00 

 1500 50 0.52 1.01 2090.21 73.47 0.00 

 1000 150 0.41 1.03 2112.02 95.28 0.00 

 1000 250 0.39 1.03 2117.09 100.35 0.00 

 1500 25 0.37 1.04 2119.33 102.59 0.00 

 2000 100 0.46 1.02 2123.47 106.73 0.00 

 1500 250 0.41 1.02 2123.93 107.19 0.00 

 1000 100 0.45 1.02 2129.03 112.29 0.00 

 1000 10 0.44 1.01 2132.22 115.48 0.00 

 1500 150 0.41 1.01 2135.54 118.80 0.00 

 1500 100 0.45 1.02 2143.25 126.51 0.00 

 1000 500 0.40 1.03 2159.95 143.21 0.00 

 NA NA 0.39 1.03 2219.60 202.86 0.00 

Forest cover + Forest quality +  2000 500 0.40 1.03 2020.87 0.00 1.00 

Shape 2000 250 0.44 1.02 2044.24 23.37 0.00 

 2000 50 0.42 1.02 2046.02 25.15 0.00 

 2000 100 0.45 1.02 2047.44 26.57 0.00 

 1500 25 0.37 1.03 2054.64 33.77 0.00 

 2000 10 0.43 1.02 2062.02 41.15 0.00 

 2000 150 0.43 1.02 2066.08 45.21 0.00 

 1500 500 0.43 1.03 2075.23 54.36 0.00 

 1500 150 0.41 1.02 2079.46 58.59 0.00 

 1000 50 0.44 1.03 2079.89 59.02 0.00 

 1500 10 0.43 1.02 2084.54 63.67 0.00 

 2000 25 0.45 1.02 2084.87 64.00 0.00 

 1000 500 0.43 1.02 2085.71 64.84 0.00 

 1000 250 0.41 1.02 2091.47 70.60 0.00 

 1500 100 0.31 1.03 2096.33 75.46 0.00 

 1000 25 0.43 1.02 2096.46 75.59 0.00 

 1500 50 0.37 1.02 2108.23 87.36 0.00 
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 1000 150 0.41 1.02 2128.74 107.87 0.00 

 1000 100 0.41 1.02 2136.63 115.76 0.00 

 1500 250 0.49 1.02 2174.09 153.22 0.00 

 1000 10 0.46 1.01 2202.90 182.03 0.00 

 NA NA 0.39 1.03 2219.60 198.73 0.00 
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Table S3: Ecological threshold values for seven high conservation value species relative 

to LiDAR-derived measures of forest structure. Values represent the lower and upper 

bounds of the zone of transition, characterizing a state of rapid change in occurrence. 

 
Species Gap 

fraction 

Number of 

canopy layers 

Canopy 

height (m) 

Plant area 

index 

Structural 

diversity 

index 

Shape 

Banded civet 0.32-0.73 0.79-2.07 7.86-19.29 1.96-5.06 2.04-3.02 0.78-

0.92 

Binturong - - 8.57-22.14 - 1.73-2.71 - 

Bornean yellow muntjac - - 6.43-18.57 1.63-4.41 1.86-2.71 - 

Long-tailed porcupine 0.33-0.76 - 8.57-25.00 1.96-5.39 2.10-3.27 0.78-

0.93 

Marbled cat - - - 1.80-4.90 - - 

Sambar deer - 0.64-2.29 - - - 0.77-

0.93 

Sunda clouded leopard 0.31-0.73 - 8.57-21.43 1.96-4.90 1.73-2.78 - 

Tufted ground squirrel - - 8.57-24.29 - 2.04-3.08 - 
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Table S4: Area (ha) and proportion of total forest cover in parentheses of conservation and 

restoration areas delineated by the prioritization framework. We partition cover by forest 

class to provide an indication of designations relative to a degradation gradient.   

 

Forest Class Conservation Areas Restoration Areas 

Forest Cover 11,323.28 (27.37) 16,410.32 (39.67) 

Old Growth 1,684.28 (14.87) 1,664.84 (10.15) 

Managed 7,899.36 (69.76) 5,612.96 (34.20) 

Heavily-degraded 1,696.16 (14.98) 7,046.68 (42.94) 

Remnant 42.92 (0.38) 2,086.40 (12.71) 
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 Table S5: Area (ha) and proportion of total forest cover in parentheses of conservation and 

restoration areas delineated by the prioritization framework. We partition cover by forest 

class and the number of target species conserved within each forest class. 

 

Forest Class Number of target 

species 

Conservation areas Restoration areas 

Forest Cover 1 2033.64 (17.96) 5363.72 (32.69) 

 2 1268.48 (11.20) 3496.92 (21.31) 

 3 1329.16 (11.74) 1874.32 (11.42) 

 4 874.00 (7.72) 1041.80 (6.35) 

 5 1953.04 (17.25) 911.44 (5.55) 

 6 1673.96 (14.78) 663.32 (4.04) 

 7 2191.00 (19.35) 3058.80 (18.64) 

Old Growth 1 323.36 (19.20) 

 

320.52 (19.25) 

 2 162.76 (9.66) 326.00 (19.58) 

 3 163.00 (9.68) 114.48 (6.88) 

 4 117.00 (6.95) 122.68 (7.37) 

 5 317.68 (18.86) 133.80 (8.04) 

 6 157.20 (9.33) 194.96 (11.71) 

 7 443.28 (26.32) 452.40 (27.17) 
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Managed 1 729.08 (9.23) 2904.60 (51.75) 

 2 702.60 (8.89) 1456.28 (25.94) 

 3 1048.92 (13.28) 404.24 (7.20) 

 4 607.84 (7.69) 174.72 (3.11) 

 5 1557.92 (19.72) 140.48 (2.50) 

 6 1505.28 (19.06) 152.08 (2.71) 

 7 1747.72 (22.12) 380.56 (6.78) 

Heavily-

degraded 

1 946.92 (55.83) 941.84 (13.37) 

 2 394.20 (23.24) 1467.60 (20.83) 

 3 116.92 (6.89) 1209.32 (17.16) 

 4 149.16 (8.79) 665.36 (9.44) 

 5 77.48 (4.57) 484.20 (6.87) 

 6 11.48 (0.68) 290.24 (4.12) 

 7 0.00 (0.00) 1988.12 (28.21) 

Remnant 1 34.40 (80.15) 1196.88 (57.37) 

 2 8.20 (19.11) 247.12 (11.84) 

 3 0.32 (0.75) 146.48 (7.02) 

 4 0.00 (0.00) 79.16 (3.79) 

 5 0.00 (0.00) 153.00 (7.33) 

 6 0.00 (0.00) 26.04 (1.25) 

 7 0.00 (0.00) 237.72 (11.39) 
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