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Supplementary Information Text

Materials and Methods

Materials:

Healthy human RBCs were purchased from Innovative Research Inc (Novi, MI). The RBCs were ultracentrifuged and then

re-dispersed in isotonic solutions of NaCl (154 mM). To prepare RBCs in 17.3 wt% DSCG, 1 vol% of the RBCs in isotonic

NaCl solutions were pipetted into DSCG solutions. The resulting mixtures were gently vortexed. The membrane staining

dye 1, 1’ dioctadecyl-3, 3, 3’, 3’ tetramethylindodicarbocyanine, 4-chlorobenezenesulfonate salt (DiD) was purchased from

Avanti Polar Lipids, Inc. (Alabaster, AL) and used to stain RBCs for confocal scanning microscopy. DSCG was purchased

from Sigma-Aldrich (Milwaukee, WI). Fisher’s Finest Premium grade glass slides and cover glass were purchased from Fisher

Scientific (Pittsburgh, PA). Deionization of a distilled water source was performed with a Milli-Q system (Millipore, Bedford,

MA) to give water with a resistivity of 18.2 MΩ cm.

Preparation of Optical Cells:

Solutions of polyimide (PI2555, HD MicroSystems) were spin-coated onto glass microscope slides following the manufac-

turer’s instructions. The cured films were mechanically sheared by rubbing along a given direction with a velvet cloth to create

surfaces that induced planar alignment of nematic DSCG solutions. Two polyimide-coated glass substrates were paired (parallel

directions of rubbing) and spaced apart by 100 µm using double-sided tape to create a cavity into which a volume (∼2 µL) of

DSCG solution containing dispersed RBCs was drawn by capillarity. After filling, each optical cell was immediately sealed with

silicone grease to prevent evaporation of water. All measurements reported in this paper were performed with optical cells with

thicknesses of 100 µm, except for measurements performed with the Polscope. For Polscope measurements, we used optical

cells with thicknesses of 20 µm. The use of thin optical cells in Polscope measurements enabled us to map the LC orientation

close to the surface of the RBC (as it minimized the contribution of LC above and below the RBC, along the z-axis, to the optical

retardance map).

Optical Microscopy:

RBCs dispersed in 17.3 wt% DSCG and isotonic NaCl solutions were imaged using an Olympus BX60 upright microscope

equipped with 60× and 50× objectives, crossed polarizers, and a 100W mercury lamp. Images were captured using a digital

camera (Olympus C-2040 Zoom) mounted on the microscope and set to a f-stop of 2.8 and a shutter speed of 1/15 s.

Confocal Fluorescence Microscopy:

The 3-D rendering of the strained RBC shapes was obtained using a Carl Zeiss LSM 700 laser confocal scanning microscope.

The RBCs were dispersed in isotonic NaCl solutions and stained with a membrane staining dye (DiD) at concentrations of

15 µM for a period of 3 hrs at a temperature of 30◦C. Stained cells were then ultra-centrifuged and washed in isotonic NaCl

solutions twice before dispersing them in DSCG solutions. 63X water immersion objectives were used to obtain the z-stack

images of strained RBCs. Zen Blue software was in imaging the strained RBCs and 3-D viewer plugin of Fiji software was

employed for constructing the 3-D render of the RBCs. Values of ry obtained from optical micrographs of RBCs were used as

a reference for determining the threshold values of the 3-D viewer plugin in Fiji. The values of rz were then obtained from the
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cross-section of the 3-D shape rendered by the 3D viewer plugin.

Vapor pressure Osmometry:

A VAPRO 5520 vapor pressure osmometer (Logan, UT) was used to measure the osmotic pressures of aqueous DSCG at differ-

ent concentrations. The measurements were compared with a 154 mM NaCl solution (as a reference) measured using the same

instrument. The averages presented in Figure 2 of the main text were obtained from four independent measurements.

Imaging RBCs dispersed in isotonic NaCl and 17.3% DSCG solutions:

Figure S1(A) shows an optical micrograph of healthy RBCs dispersed in an aqueous solution of 154 mmol NaCl that is isotonic

with the RBC interior. Under these conditions, we observed the RBCs to retain their biconcave shape for several hours. Figure

S1(B) shows a micrograph of RBCs dispersed in a nematic phase of 17.3% DSCG. This representative image shows about 60

cells, which were analyzed to quantify their aspect ratio, rx/ry (see main text).

Figure S1: Optical micrograph of RBCs. (a) RBCs in isotropic aqueous 154 mM NaCl. (B) RBCs in nematic 17.3% aqueous
DSCG at 25◦C.

Polscope measurement of LC orientation around a RBC:

Figure S2: Polscope map of LC director profile around a RBC dispersed in 17.3% aqueous DSCG.
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To quantify the orientation of the LC around an individual RBC, we used a Polscope. Polscope imaging was performed using

an Olympus BX41 microscope equipped with an Abrio LC-PolScope and monochromatic illumination at 640 nm. Figure S2

shows a RBC near a +1/2 defect and the Polscope mapping of the director profiles around the RBC. The +1/2 defect was used

to confirm the fidelity of the mapping of the director profile. The director profile of the LC around the RBC (shown as a white

ellipsoid) in Figure S2 is consistent with a preferred tangential orientation of the LC near the surface of the RBC, although the

distortion is weak and thus consistent with weak anchoring of the LC.

Z-stacks of strained RBCs obtained by confocal microscopy:

Figure S3: A) through C) Confocal fluorescence micrographs at three different z-planes of a strained RBC dispersed in aqueous
17.3% DSCG D) Plot of individual measurements of rx, ry and rz. All measurements were performed at 25◦C.

Movie M1 shows a 3-D reconstruction of a z-stack of images of RBCs obtained by using confocal microscopy. 3-D viewer

plugin in Fiji software (threshold = 15) was used to obtain the 3-D rendering of the strained RBC dispersed in a nematic phase

of DSCG. Figure S3 shows three of the z-stack images (12, in total), either at the mid-plane or 2 µm.

A number of observations establish that the large aspect ratios measured for strained RBCs are not the result of characterizing

unstrained biconcave RBCs viewed from the side: 1) 3-D reconstructions of the confocal micrographs confirm that all RBCs

strained in LCs have an elongated and folded shape with a non-circular cross-section (see Figure 4 of main text); 2) We cross-
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linked strained cells and redispersed them in water, as presented in Figure 5A. Images of the cross-linked cells confirmed that

the cells were elongated and folded in shape; 3) If RBCs with biconcave shapes were viewed side-on, the aspect ratio would be

∼ 4. However, as shown in Figure 3C, the aspect ratios measured in our experiments were typically around 2, with the largest

being 3.4.

Figure 4D shows ry/rz plotted as a function of rx/ry, revealing ry/rz varies little between cells (1.9 ± 0.2) while rx/ry varies

substantially. We provide the individual values of rx, ry and rz (µm) in Figure S3D.

RBCs cross-linked with glutaraldehyde:

Figure S4 shows RBCs that were cross-linked with glutaraldehyde and re-dispersed in 17.3% aqueous DSCG. Unlike healthy

RBCs, we do not observe cross-linked RBCs to undergo shape-changes induced by the elasticity of the LC.

Figure S4: RBCs cross-linked with glutraldehyde and re-dispsersed in nematic 17.3% aqueous DSCG
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Reversible shape transitions of RBCs:

Figure S5 shows reversible shape transformations of RBCs, from elongated shapes to biconcave shapes, as they move from

nematic regions of the aqueous DSCG into isotropic domains in the biphasic regime of the phase diagram.

Figure S5: A and B) Optical micrographs showing shapes of RBCs in the isotropic and nematic domains of the biphasic region
of 17.3% DSCG, respectively C)-E) Reversible shape changes of an RBC as it is exposed sequentially to nematic (C) isotropic

(D) and nematic (E) phases. Samples were heated at 1◦C/min.

Shriveling of RBCs in the isotropic phase:

Figure S6: (A) Optical micrograph showing biconcave shape of RBC immediately following dispersal into isotropic phase of
17.3 wt% DSCG at temperature of T = 39◦C. B) Shriveled shapes of RBCs after 1200 secs.

We note that changes in the temperature of DSCG solutions, which lead to RBC shape changes of the type shown in Figure

S5, are accompanied by changes in LC elasticity as well as osmotic pressure. The change in osmotic pressure with temperature

underlies the observation that RBCs dispersed in 17.3 wt% DSCG solution, when heated to 39◦C (an isotropic and hypertonic

phase), show evidence of shriveling after 20 minutes (Figure S6). The time-scale (>20 mins) associated with the shriveling of

RBCs, however, allowed us to eliminate the possibility that the reversible shape changes of RBCs upon cycling between the
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nematic and isotropic domains, as shown in Figure S5, are a result of osmotic stresses. Specifically, the RBC shape changes

(biconcave disks in isotropic; elongated shapes in nematic) can be observed within a few seconds of the phase transition between

the isotropic and LC phases, thus revealing that the timescales associated with the changes of RBC shape due to the LC elasticity

(∼ secs) and the shape changes due induced by osmotic pressure (∼ 20 mins) are decoupled in time. The experimentally observed

changes of aspect ratios as a function of temperature were obtained at a heating rate of 5◦C/min and equilibrating the sample at

a given temperature for 30s. We conclude that the RBC shape changes that we report as a function of temperature in this paper

are the result of changes in LC elasticity and not changes in osmotic pressure.

Mathematical model:

We describe the orientational order of the LC by a second-rank order tensor Q(x, t) (Landau-de Gennes model) with x ∈ R3

denoting the spatial position and t denoting time. In a uniaxial system, as assumed here, we write Q = S (nn − I/3), where S is

the Maier-Saupe scalar order parameter, n is the director field (with |n(x, t)| = 1), nn is a dyadic product, and I is the identity

operator [1, 2]. Following Refs. [3, 4], the total free energy F associated with Q is a combination of both short-range (FS ) and

elastic (FE) contributions over the fluid domain Ω,

F = FS + FE , (1)

FS =

∫
Ω

fS (Q) dv, FE =

∫
Ω

fE(Q,∇Q) dv, (2)

with dv an infinitessimal volume element. The short-range energy density is given by

fS (Q) =
A
2

(
1 −

U
3

)
tr

(
Q2

)
−

AU
3

tr
(
Q3

)
+

AU
4

tr
(
Q2

)2
, (3)

where A is an energy scale for the phase transition and U is a dimensionless nematic strength. The bulk scalar order parameter

describing the LC when undisturbed by the RBC’s presence is given by

S =
1
4

+
3
4

√
1 −

8
3U

, (4)

and the system is in the nematic phase when U > 2.8. The elastic energy density is given by

fE(Q,∇Q) =
L1

2
(∇Q)2 +

L2

2
(∇ ·Q)2 +

L3

2
Q : (∇Q : ∇Q) , (5)

where in terms of the Frank constants {K1,K2,K3}, we have L1 = (3K2 − K1 + K3)/(6S 2), L2 = (K1 − K2)/S 2, and L3 =

(K3 − K1)/(2S 2). We set L3 = 0, which specifies the bend and splay Frank elastic constants to be equal in magnitude (K1 = K3),

while K2 is an order of magnitude smaller.

The order tensor evolves due to stresses associated with the above energies as well as velocity gradients. Since we are seeking

equilibrium shapes, we consider an artificially small rotational viscosity (γ � 1), which provides a separation of time-scales

between director-field relaxation and fluid flow. In this limit, for a membrane shape at any moment in time the Q tensor first
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relaxes to equilibrium following

∂Q
∂t

= −
1
γ

H, (6)

until H = 0, where H is the symmetric and traceless part ([...]S T ) of the variational derivative of the free energy with respect to

Q,

H =

[
δF

δQ

]S T

= −L1∇
2Q − L2[∇(∇ ·Q)]S T + A

(
1 −

U
3

)
Q − AU

(
Q2 − tr

(
Q2

) (
Q +

1
3

I
))
. (7)

This relaxation must also incorporate the boundary conditions on the surface of the blood cell, denoted by ∂Ω, which are captured

by an additional surface energy,

FB =

∫
∂Ω

fB[Q(X(S))] dA, (8)

where the boundary ∂Ω is parameterized as X(S) (suppressing the time-dependence) with infinitesimal surface area element

dA. The surface energy is incorporated into the boundary conditions in the style of the Immersed Boundary method [5, 6].

The tensor Q(X(S)) is an interpolation from the bulk LC onto the boundary using a bulk-to-surface interpolation operator S∗,

defined (along with S, a surface-to-bulk spreading operator) as

S∗ [Q] (X(S)) =

∫
Ω

Q(x)δ(x −X(S))dv, (9)

S [Q] (x) =

∫
∂Ω

Q(X(S))δ(x −X(S))dA, (10)

where δ is the Dirac delta function with support confined to the surface of the RBC, x ∈ ∂Ω. Deviations from a tangential

orientation of the LC on the surface of the RBC are penalized with a Rapini-Papoular surface energy density of the form

fB(Q) =
J
2

tr
(
Q −Q0(X(S))

)2
, (11)

where Q0 is the projection of Q onto the local tangent plane (the plane orthogonal to the unit normal vector at X(S), denoted

by N ), Q0 = (I −NN ) · S∗[Q], and J is an anchoring strength. The inclusion of FB in the variational derivative of the energy

results in replacing the molecular field in Eq. (7) (still with F = FS + FE) by

H =

[
δF

δQ

]S T

+ JS
[
S∗ [Q] −Q0

]
, (12)

in order to advance Q everywhere in space with no special gridpoints or other adaptive numerical machinery. The reactive

component of the stress is divided into the Ericksen stress σE and the Landau-de Gennes stress denoted by the coupling H : λ,

where again using the symmetry of Q,

σE = −
∂ fe
∂∇Q

: ∇Q = −L1∇Q : ∇Q − L2∇Q · (∇ ·Q), (13)

H : λ = 2H ·Q +
1
3

I
∆I

H −
(
1 +

1
2

I
∆I

)
tr (H ·Q) Q. (14)



9

The molecular parameter I/∆I describes the shape of the underlying molecules, with I/∆I = 2 for an infinitely slender rodlike

molecule; for a prolate, rodlike liquid crystal such as 5CB, I/∆I ≈ 1 [3, 4], and for the remainder we fix I/∆I = 1.

The Rapini-Papoular formulation of the anchoring energy in Eq. (11) (second order in Q) is a less accurate description of degen-

erate planar anchoring than the Fournier-Galatola formulation (fourth order in Q) [7]. We did not adopt the Fournier-Galatola

formulation because the additional nonlinearities so introduced created challenges related to numerical convergence. Similar to

the findings in Ref. [8], the results generated by our numerical simulations agree closely with the experimental observations,

suggesting that our use of the Rapini-Papoular formulation of the anchoring energy is a reasonable approximation in this setting.

Surface forces and evolution:

The deformation energy of the red blood cell is described by the Skalak model [9, 10], as detailed by Zhao et al. [11] (see

also Refs. [12–15]). In the Skalak model, the RBC membrane is assumed to be an isotropic and hyperelastic surface, with

a strain energy potential which depends on its deformation away from an initial biconcave configuration. The strain energy

potential can be written in terms of the invariants of the surface strain tensor (the strain invariants), described below. Membrane

near-inextensibility enters into the model via a large area dilation modulus.

Given a reference surface configuration denoted by X0 and current configuration X(X0, t) at time t, we define the surface

deformation gradient tensor

F = (I −NN ) ·
∂X

∂X0
· (I −N0N0), (15)

whereN0 is the outward-pointing normal in the reference configuration andN is the same but in the current configuration; from

this deformation gradient tensor we define b = F · FT , the symmetric surface left Cauchy-Green strain tensor. The invariants of

this tensor (the strain invariants) are

I1 = λ2
1 + λ2

2 − 2, (16)

I2 = λ2
1λ

2
2 − 1. (17)

The Skalak strain energy of a surface area element dA is given by

W dA =

(ES

4

[
I2
1 + 2I1 − 2I2

]
+

ED

8
I2
2

)
dA, (18)

where ES and ED are the (constant) elastic shear and area dilation moduli, respectively, and have units of energy per area. The

in-plane Cauchy stress tensor is given by

τ =
2

λ1λ2

∂W
∂I1

+ 2λ1λ2
∂W
∂I2

(I −NN ) =
ES

2J
(I1 + 1)b +

J

2
(EDI2 − ES )(I −NN ), (19)

where J = λ1λ2 measures the local area dilatation. We take ES = 4.2 ∗ 10−6N/m and ED = 10−4N/m following Refs. [10–12].

The surface force density, f (X(X0, t)), is found by functional variation of the total surface energy with respect to the position

variable.



10

For a reference configuration we take the initial shape described in Ref. [12]. Parameterizing the surface with angles χ ∈

[−π/2, π/2) and φ ∈ [0, 2π), we write

X0(χ, φ) = a sin χ cos φ x̂ + a sin χ sin φ ŷ +
a
2

(
0.207 + 2.003 sin2 χ − 1.123 sin4 χ

)
cos χ ẑ, (20)

where a is the cell radius (a ≈ 4 µm). To provide an approximately uniform spatial coverage we use Distmesh [16] to generate

a triangulated mesh of the surface above, shown in Figure 5 of the main text. Numerically, we use the deformation of each

triangular element to extract the surface deformation gradient tensor and the principal stretches λ1 and λ2 on each triangle. Finite

difference approximation of the variation in energy with displacement of each grid-point is performed to identify the surface

force f.

Non-dimensionalization:

We scale lengths upon the RBC radius a, forces by L1, velocities by L1/(aµ), time by a2µ/L1, and energies by aL1. The

dimensionless molecular field is then given by

H = −∇2Q − L̄2[∇(∇ ·Q)]S T + β2
(
1 −

U
3

)
Q − β2U

(
Q2 − tr

(
Q2

) (
Q +

1
3

I
))

+ J̄S[S∗[Q] −Q0], (21)

where

β2 =
Aa2

L1
=

(
a
ξN

)2

, J̄ =
Ja
L1

=
a
ξS
, L̄2 =

L2

L1
· (22)

Here we have also defined the nematic coherence length ξN = (L1/A)1/2 and the extrapolation length ξS = L1/J. Typical values

for the bulk free energy parameters in DSCG are given by A ≈ 400 J m−3 (two orders of magnitude smaller than for 5CB, for

which A ≈ 105J/m3 [8]), L1 ≈ 10−12J m−1, and L2 ≈ 10L1 (see also Ref. [17]). Experimental values for J vary widely, from

10−6 to 10−4 J m−2 [18]. With a blood cell radius of approximately a = 4µm, we compute β ≈ 80, L̄2 = 10, and J̄ is in the range

4− 400 (as discussed below, we found J̄ = 100 to provide close agreement with experimental observations of RBC cell shapes).

The nematic coherence length is roughly ξN ≈ 50nm and the extrapolation length ξS ranges from 10nm to 1 µm. We take the

nematic strength to be U = 3.4 (and by Eq. (4), S = 0.6), placing the director field well into the nematic phase. The separation

of length scales indicated by the dimensionless value β = 80 is not easily accessed by our numerical approach. We fix β = 50

for the remainder of the paper, and note that no significant differences were found when varying β from 10 to 50.

The time-scale selected is that in which the viscous stresses balance the bulk elastic stresses (i.e. the Ericksen number is unity

Er = 1). This choice is not particularly important given that we seek a relaxation towards an equilibrium configuration. The

scaling also results in a dimensionless shear modulus of E∗S = (a/L1)ES = 1.6, and E∗D = (a/L1)ED = 40. The dimensionless

bending stiffness is given by B∗ = B/(aL1) = 0.0045. The cost to bend is far smaller than the cost to deform the material in-plane,

and henceforth we neglect the bending energy. (Upon its inclusion into the simulations, we found no noticeable differences in

the physics but a sizable increase in the computational time required). Our finding that E∗S is approximately unity indicates that

the bulk LC elasticity and membrane elasticity are comparable, so that a substantial relaxation of the RBC is expected upon its

introduction into the LC.
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Figure S7: Computed shape metrics of strained RBCs as a function of the dimensionless anchoring energy at the RBC-LC
interface.

Though a departure from the physical problem, for tractability, the model described above assumes that the LC is both inside

and outside of the cell. Past studies [19, 20] estimate the deformation energy of a LC confined to a spindle-like shape to be

∼ 6K1ry(rx/ry)2. Assuming that the strained shape of an RBC is spindle-like, for values of rx/ry encountered in our work, we

predict that our computation overestimates the LC elastic energy by a factor of ∼2. We compensate for the presence of LC

inside the RBC in our computations by using values of anchoring energy (J) of the LC at the RBC interface corresponding to

weak anchoring, with J ∼ 2.5 ∗ 10−5 J/m2 (J̄ ∼ 100). Shapes of strained RBCs captured by our computations for the values

of J ∼ 2.5 ∗ 10−5 J/m2 (Figure S7) are validated by comparison to shapes of RBCs reconstructed through confocal microscopy

measurements, as shown in Figure 4. Additionally, from Figure S7, we note that for J ∼ 2.5 ∗ 10−5 J/m2, the computed values of

aspect ratios (rx/ry ∼ 2.5) are consistent with experimental observations presented in Figure 3. In contrast, the computed shapes

of strained RBCs for values of J ∼ 2.5 ∗ 10−7 J/m2 (J̄ ∼ 1) are qualitatively different from experimentally observed strained

shapes of RBCs. Computations performed with values of J ∼ 2.5 ∗ 10−6 J/m2 (J̄ ∼ 10) result in aspect ratios (rx/ry ∼ 1.4)

of RBCs that were lower than values obtained in experiments (Figure 3C). We also clarify that the key result of our study is

the identification of a high level of cell- to-cell variation in elastic properties; this heterogeneity will not be introduced by the

approximations that we have made in describing the coupling of the LC strain to the RBC.

Other equilibrium shapes, found using the simulations using non-physical RBC shear moduli, include that show in Figure S8,

where two substantial lobes develop and are separated by a thin, flat region, as described in the main text.

Spatial and temporal discretization:

At every body configuration we relax the director field until it has reached a steady state. Discretizing Eq. (6) with step-size ∆t,

we advance by

Qn+1 −Qn

∆t
= −

(
H(1)(Qn+1) + H(2)(Q̃)

)
, (23)
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Figure S8: Shapes of strained RBCs computed using a value of the shear modulus of ES = 4 ∗ 10−5 N/m. A) Top view of the
strained shape of RBC showing the prominent lobes and neck region. B) Profile view of the strained shape of the RBC shown

in A).

where

H(1)(Q) = −∇2Q − L̄2 [∇(∇ ·Q)]S T + β2
(
1 −

U
3

)
Q + J̄Sn

hS
n,∗
h Q, (24)

H(2)(Q) = −β2U
(
Q2 − tr

(
Q2

) (
Q +

1
3

I
))
− J̄Sn

hQ0. (25)

The operations Sn and Sn,∗ are discretized spreading and interpolation operators, respectively; they are developed using the

original functional form of the discrete delta functions from Ref. [5] which have compact support over a radius of two grid-cells.

In the time-stepping shown above we split the molecular field into linear and nonlinear parts, extrapolating for the nonlinear

terms using Q̃ = 2Qn − Qn−1. The evolution of Q is carried out using adaptive time-stepping until maxx∈Ω ‖H‖∞ ≤ 10−3. The

system is solved on a three-dimensional periodic domain with dimensions (2π)3 on a regular grid with 963 spatial grid-points,

using a Fourier spectral decomposition for spatial derivatives. A cross-section of the RBC and the relaxed state of the director

field at t = 0 are shown in Figure S9, which includes defects appearing at the fore/aft points on the surface. We note that defects

can form using the simplified uniaxial Q tensor model which we employ; the eigenvectors and eigenvalues of the Q tensor

dynamically evolve and the associated scalar order parameter is not fixed but instead is calculated from them.

To relax the shape of the RBC, we solved for the flow field generated by the surface tractions (which includes both the internal

elastic forces and the bulk-elastic forces which enter via the Ericksen stress). As we are interested in the equilibrium membrane

geometry we neglect anisotropic viscosity. The effects of “back-flow,” with elastic bulk energy funneling back into fluid flow, are

also negligible for small rotational viscosity, which we’ve chosen artificially to encourage faster convergence to the equilibrium

shape. After computing the quasi-static equilibrium Q, using the same Immersed Boundary technique and spreading operators

discussed above (see Ref. [5] for details), we solve the incompressible Stokes equations describing the evolution of the fluid
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Figure S9: Cross-section of the RBC and the relaxed state of the director field at t = 0. Two defects appear at the fore/aft points
on the surface; the S = 0.4 (scalar order parameter) level set is shown. The RBC relaxes in the direction of the defects to reduce

the LC elastic energy, at the cost of RBC elastic energy, until the two are in balance.

velocity field u (and pressure p),

−∇p + ∇2u + ∇ ·
[
σE + H : λ

]
+ S [f ] = 0, (26)

∇ · u = 0, (27)

from which we advance the body shape viaXt = S∗[u] using a simple forward-Euler marching scheme. After the boundary has

been advanced, we continue again with a relaxation of Q as described above.
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Movie S1: Video showing a 3-D reconstruction of the z-stack images obtained through confocal microscopy.

Movie S2: Video showing simulated cross-section of equilibrium RBC shape and LC configuration.
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Movie S3: Video showing simulated RBC shapes for ES = 4 ∗ 10−5 N/m.

Movie S4: Video (7 fps) showing motion of the nematic-isotropic interface (and the RBC), resulting in the transfer of a RBC

from an isotropic region to nematic region of 17.3% DSCG.
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