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Supplementary Information Text 
 

Derivation of Channel Capacity and Assumptions: 

 

We can determine the conditional probability of the output given that inputs are normal 

or infected cells. For normal cells, we have , where  is the 

downstream biochemical output,  is a two state variable that indicates whether the 

target cell is normal or infected,  is the concentration of self ligands, and  is the 

P(O | Lf = 0,Ls ,τ s ) O

Lf

Ls τ s
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lifetime of bonds between receptor and self ligands. Let us assume that the probability 

distribution of  is given by a delta function peaked around a single value ( ): 

   (1) 

Since , , and  are independent, we can marginalize out : 

   (2) 

Of course, sampling  from a distribution would be more realistic, but fixing  

simplifies the numerical procedure discussed in the main text. Furthermore, the value of 

 only increases or decreases the number of steps needed for the output distributions to 

separate. 

Assuming that  is given by a log-normal distribution (1), we can 

marginalize out , which is also assumed to be independent of . 

   (3) 

For infected cells, the conditional probability distribution is . 

Since , we ignore the dependency on . Doing so also assumes that  is 

single valued. As before, we marginalize out  and  giving . Because 

it is difficult to determine , we make the simplifying assumption that  

also takes on a single value  in infected cells. Using , 

τ s τ s = 0.5s

P(τ s ) = δ (τ s − 0.5).

τ s Lf Ls τ s

P(O | Lf = 0,Ls ) = P∫ (O | Lf = 0,Ls ,τ s )×δ (τ s − 0.5) dτ s.

τ s τ s

τ s

P(Ls )

Ls Lf

P(O | Lf = 0) = P∫ (O | Lf = 0,Ls )P(Ls ) dLs

P(O | Lf > 0,Ls ,τ s ,Lf ,τ f )

τ f = 10τ s τ f τ f

τ s Ls P(O | Lf > 0,Lf )

P(Lf | Lf > 0) Lf

Lf ,0 << Ls P(O | Lf = 0)
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 and , we arrive at the expression for capacity 

shown in the main text. 

 The procedure to calculate the channel capacity is straightforward. We fixed 

ligand binding lifetimes: for self ligands, the half-life  s, and for agonist ligands, 

the half-life  s. Next, we sampled the values of the self ligand densities, , from 

a log-normal distribution, as suggested by experiments (1). Spatial heterogeneities in the 

distribution of signaling molecules are not considered in our analyses. For each value of 

, the concentration of downstream product was determined by numerically solving the 

system of ordinary differential equations describing the network (Fig. 1B). The 

concentration of downstream biochemical output was then binned into a histogram to 

give . The numerical procedure was carried out for two cases:  where 

equations corresponding to the biochemical reactions were solved in the absence of 

agonist ligands and  where a small amount of agonists is present in a sea of 

much higher numbers of self ligands. The ODEs describing the reaction networks were 

solved numerically via the PySB software package (2). The “Real-valued Variable-

coefficient Ordinary Differential Equation solver” (VODE) with fixed-leading-coefficient 

implementation was used to integrate the equations (3). We used a stiff solver based on 

backward differentiation formulas (BDF) with an internally generated full Jacobian. The 

number of internally defined steps allowed during one call to the solver is set to the 

maximum possible value.  

 

P(O | Lf > 0) p(Lf = 0) = p(Lf > 0) = 1/ 2

τ s = 0.5

τ f = 5.0 Ls

Ls

P(O | Lf ) Lf = 0

Lf = Lf ,0
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Numerical Calculation of Channel Capacity: 

 

The channel capacity as defined in the main text is given by: 

   (4) 

where . Substituting  into Eq (4) gives 

   (5) 

If the conditional distributions completely overlap,  and 

we immediately see that . If the distributions are completely separate,  

 when  and  when 

 so that Eq (5) reduces to 

   (6) 

C = max p(Lf ) I(Lf ;O)

= 1
2
P∫ (O | Lf = 0)log

P(O | Lf = 0)
P(O)

⎛

⎝
⎜

⎞

⎠
⎟ + P(O | Lf = Lf ,0 ) log

P(O | Lf = Lf ,0 )
P(O)

⎛

⎝
⎜

⎞

⎠
⎟ dO

P(O) = 1
2
P(O | Lf = 0)+ P(O | Lf = Lf ,0 )( ) P(O)

C = max p(Lf ) I(Lf ;O)

= 1
2
P∫ (O | Lf = 0)log

P(O | Lf = 0)
1
2
P(O | Lf = 0)+ P(O | Lf = Lf ,0 )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

+P(O | Lf = Lf ,0 ) log
P(O | Lf = Lf ,0 )

1
2
P(O | Lf = 0)+ P(O | Lf = Lf ,0 )( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
dO

P(O | Lf = 0) = P(O | Lf = Lf ,0 )

C = 0

P(O | Lf = 0) = 0 P(O | Lf = Lf ,0 ) > 0 P(O | Lf = 0) > 0

P(O | Lf = Lf ,0 ) = 0

C = 1
2
P∫ (O | Lf = 0)+ P(O | Lf = Lf ,0 ) dO

= P∫ (O) dO = 1
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The last condition is useful for numerical evaluation of Eq (4). Of course, capacity will 

be sensitive to the bin size used in the numerical integral. We use Eq (6) as a measure for 

the appropriate bin size. If , then  is sufficiently small and Eq (4) is 

computed via the same bin size. We also use Eq (6) to determine when the distributions 

become completely separate. If , then . 

 

Rate Constants for Simulations: 

 

Tables 1 and 2 show the initial concentrations and rate constants used for the network 

drawn in Fig. 1B and the calculations presented in Figs. 1-2. Fig. S1 provides 

nomenclature for all species used in Fig. 1. For simplicity, 

, which varies in many calculations; 

 is the phosphorylation rate of signaling kinases, , , and  are rates at 

which Lck, ZAP-70, and LAT bind to the TCR-pMHC complex, and , , and 

 are initial concentrations of the signaling proteins;  is the off-rate of 

self ligands,  is the off-rate of agonist ligands,  is the off-rate of 

reactions on the main path,   is the on-rate for both ligands. 

Reaction rates of the side paths were fixed so that disassembly of the complex happens 

quickly after ligand unbinding. Total concentrations of different species are provided by 

(1). 

P∫ (O) dO > 0.99 dO

C = P∫ (O) dO C = 1

kon = kp = klck ,on[Lck]0 = kzap,on[Zap]0 = klat ,on[LAT ]0

kp klck ,on kzap,on klat ,on

[Lck]0 [Zap]0

[LAT ]0 ks = 2.0s
−1

k f = 0.2s
−1 koff = 0.005s

−1

kL,on = 0.0022(mol ⋅s)
−1



 

 

6 

 

Table 1: Initial Concentrations 

Species Total Concentration (number 
of molecules) 

 30000 

 30000 

 1200000 

 150000 

 

 mol and  is sampled from a log-normal distribution: 

   (7) 

where  and . mol. 

Table 2: Rate constants for T cell networks presented in Figs. 1B and S3A 

Main Path Reactions   

   or 
 

   
   

   
   

   
   
  or 

 
 

   

 

Side Path Reactions   

[R]0
[Lck]0
[Zap]0
[LAT ]0

[Lf ]0 = 30 [Ls]0

P([Ls]0 ) =
1

[Ls]0σ 2π
exp −

(ln([Ls]0 )− µ)2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥

µ = 6.0 σ = 1.0 〈Ls 〉 = exp[µ +σ 2 / 2] ~ 665

k forward kreverse
R + L! RL kL,on ks

k f
RL+ Lck! RL_ Lck kon / [Lck]0 koff
RL_ Lck! RPL_ Lck kon koff

RPL_ Lck + Zap! RPL_ Lck _ Zap kon / [Zap]0 koff
RPL_ Lck _ Zap! RPL_ Lck _ Zap_ P kon koff

RPL_ Lck _ Zap_ P + LAT! RPL_ Lck _ Zap_ P_ LAT kon / [LAT ]0 koff
RPL_ Lck _ Zap_ P_ LAT! RPL_ Lck _ Zap_ P_ LATP kon koff
RPL_ Lck _ Zap_ P_ LATP→ RPL_ Lck _ Zap_ P + LATPP kon

kon / 10
LATPP→ LAT koff

k forward kreverse



 

 

7 

 

  or 
 

 

 20   
 

  or 
 

 

 20   
 

 20    
  or 

 
 

 20   
 

 20   
 

  or 
 

 

 20   
 

 20    
  or 

 
 

 20   
 

 20    
 20   

 
  or 

 
 

 20   
 

 20    

RL_ Lck! R_ Lck + L ks
k f

kL,on

R_ Lck! R + Lck s−1 10−5

(mol ⋅s)−1

RPL_ Lck! RP_ Lck + L ks
k f

kL,on

RP_ Lck! RP + Lck s−1 10−5

(mol ⋅s)−1

RP! R s−1 10−5 s−1

RPL_ Lck _ Zap! RP_ Lck _ Zap + L ks
k f

kL,on

RP_ Lck _ Zap! RP_ Zap + Lck s−1 10−5

(mol ⋅s)−1

RP_ Zap→ RP + Zap s−1 10−5

(mol ⋅s)−1

RPL_ Lck _ Zap_ P! RP_ Lck _ Zap_ P + L ks
k f

kL,on

RP_ Lck _ Zap_ P! RP_ Zap_ P + Lck s−1 10−5

(mol ⋅s)−1

RP_ Zap_ P! RP_ Zap s−1 10−5 s−1

RPL_ Lck _ Zap_ P_ LAT! RP_ Lck _ Zap_ P_ LAT + L ks
k f

kL,on

RP_ Lck _ Zap_ P_ LAT! RP_ Zap_ P_ LAT + Lck s−1 10−5

(mol ⋅s)−1

RP_ Zap_ P_ LAT! RP_ Zap_ LAT s−1 10−5 s−1

RP_ Zap_ LAT! RP_ Zap + LAT s−1 10−5

(mol ⋅s)−1

RPL_ Lck _ Zap_ P_ LATP! RP_ Lck _ Zap_ P_ LATP + L ks
k f

kL,on

RP_ Lck _ Zap_ P_ LATP! RP_ Zap_ P_ LATP + Lck s−1 10−5

(mol ⋅s)−1

RP_ Zap_ P_ LATP! RP_ Zap_ LATP s−1 10−5 s−1
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 20    
 

 

Figure S1: The legend defines the nomenclature of all species used in Fig. 1B and Fig. 

S3A. Step 7(a) corresponds to the network topology shown in Fig. S3A and cycle 7(b) 

corresponds to the topology in Fig. 1B. 

 

 

 

RP_ Zap_ LATP! RP_ Zap_ LAT s−1 10−5 s−1

Legend:

RL: Receptor-Ligand

RL_Lck: Receptor/Co-receptor-Ligand

R_Lck: Receptor/Co-receptor

Cycle 1

Cycle 2
RPL_Lck: Receptor/Co-receptor-Ligand with 
phosphorylated ITAMs

RP_Lck: Receptor/Co-receptor with 
phosphorylated ITAMs

RP: Receptor with phosphorylated ITAMs

Cycle 3
RPL_Lck_Zap: Receptor/Co-receptor-Ligand with 
Zap70 bound to ITAMs

RP_Lck_Zap: Receptor/Co-receptor with Zap70 
bound to ITAMs

RP_Zap: Receptor with Zap70 bound to ITAMs

Cycle 4
RPL_Lck_Zap_P: Receptor/Co-receptor-Ligand 
with phosphorylated Zap70 bound to ITAMs

RP_Lck_Zap_P: Receptor/Co-receptor with 
phosphorylated Zap70 bound to ITAMs

RP_Zap_P: Receptor with phosphorylated Zap70 
bound to ITAMs

Cycle 5
RPL_Lck_Zap_P_LAT: Receptor/Co-receptor-
Ligand-Zap70P bound to LAT

RP_Lck_Zap_P_LAT: Receptor/Co-receptor-
Zap70P bound to LAT

RP_Zap_P_LAT: Receptor-Zap70P bound to LAT

RP_Zap_LAT: Receptor-Zap70 bound to LAT

Cycle 6
RPL_Lck_Zap_P_LATP: Receptor/Co-receptor-
Ligand-Zap70P bound to phosphorylated LAT

RP_Lck_Zap_P_LATP: Receptor/Co-receptor-
Zap70P bound to phosphorylated LAT

RP_Zap_P_LATP: Receptor-Zap70P bound to 
phosphorylated LAT

RP_Zap_LATP: Receptor-Zap70 bound to 
phosphorylated LAT

Step 7 (a)
LATPP: Fully phosphorylated LAT complex

Cycle 7 (b)
RPL_Lck_Zap_P_LATPP: Receptor/Co-receptor-
Ligand-Zap70P bound to fully phosphorylated LAT 
complex

RP_Lck_Zap_P_LATPP: Receptor/Co-receptor-
Zap70P bound to fully phosphorylated LAT complex

RP_Zap_P_LATPP: Receptor-Zap70P bound to 
fully phosphorylated LAT complex

RP_Zap_LATPP: Receptor-Zap70 bound to fully 
phosphorylated LAT complex
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A 

 

B 

Figure S2: (A) Symmetry in discriminatory improvement: a slow phosphorylation step 

early in signaling (grey line) eventually leads to the same capacity as a slow step that 

happens later (red line). (B) Parameter search for the network described in Fig. 1B of the 

main text. For all cases, slowing the final phosphorylation step improves discrimination, 

suggesting that the slow step is the final opportunity for capacity to increase so that 

discrimination becomes perfect before downstream signaling ensues. 
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A 

 

B 

R + L RL RL_Lck RPL_Lck RPL_Lck_Zap_PRPL_Lck_Zap

Lck Zap

RPL_Lck_Zap_P_LAT

LAT

LATPPLAT

R_Lck L RP_Lck L

LckRP 

LRP_Lck_Zap

LckRP_Zap

Zap

L
RP_Lck_Zap_P

LckRP_Zap_P

L
RP_Lck_Zap_P_LAT

LckRP_Zap_P_LAT

RP_Zap_LAT

LAT

L

RPL_Lck_Zap_P

RPL_Lck_Zap_P_LATP

L
RP_Lck_Zap_P_LATP

Lck
RP_Zap_P_LATP

RP_Zap_LATP

1 2 3 4 5 6

7
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C 

Figure S3: (A) Realistic biochemical network describing the early events of TCR 

signaling (see Fig. S1 for species nomenclature) that considers LATPP dissociating from 

the receptor-ligand complex after Y132 phosphorylation. (B) Discriminatory capacity vs. 

number of signaling steps. (C) Histograms of signaling output generated after Y132 

phosphorylation for the network: a drop in capacity (left panel) occurs when the Y132 

step proceeds at the same rate ( ) as the other LAT Y phosphorylation steps; 

the effect is due to increased output from APCs that present high densities of only self 

ligands, causing the two distributions to overlap (see red insets). The drop is averted 

(right panel) when the final step is slowed down ( ) with respect to the 

previous step. 

Table 3 shows the rate constants used to explore the consequences of slowing the 

final LAT phosphorylation step in the network shown in Fig. 1B of the main text, where 

LATPP remains bound to the TCR complex. If C < 1 before Tyr 132 phosphorylation 

happens, Fig. S2A shows that slowing the step down (𝑘!"#$$ 	= 	 𝑘!"#$/10, red line) 

increases channel capacity and enhances APC discrimination. Interestingly, slowing 

klatpp = 1.0s
−1

klatpp = 0.1s
−1
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down an earlier step (Fig. S2A, grey line) results in the same increase of capacity. Fig. 

S2B shows for a range of possible , as  increases, i.e. the second 

phosphorylation step is made slow with respect to the first, discrimination improves. 

Therefore, if LAT remains bound to the TCR-pMHC complex, the slow step proofreads 

and is likely necessary to increase capacity. 

Fig. S3A shows the topology of the signaling network when fully phosphorylated 

LATPP dissociates from the TCR complex in a Markovian step. As a consequence of the 

data processing inequality, the capacity can either remain constant or decrease during this 

step. If the rate of phosphorylation is too fast, output from self only APCs is amplified, 

leading to a drop in capacity (Fig. S3B). The effect is more pronounced as k!" is 

increased in the model (Fig. S3B, gray and purple). Upon observing the histograms in 

Fig. S3C, we clearly observe the source of the capacity drop. APCs that present high 

concentrations of self ligands produce enough signaling output by step 6 to catalyze the 

formation of LATPP. The resulting product increases the overlap in the conditional 

output distributions (Fig. S3C, left panel, red box). Slowing the Y132 phosphorylation 

step mitigates the preceding effect and prevents a drop in capacity (Fig. S3C, right panel, 

red box). 

Table 3: Rate constants for T cell network presented in Fig. 1B 

Main Path Reactions   

All main reactions in Table 2    
 Varies  

 

kon kp,1 / kp,2

k forward kreverse

RPL_ Lck _ Zap_ P_ LATP! RPL_ Lck _ Zap_ P_ LATPP koff
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Side Path Reactions 
 

 

All side reactions in Table 2   
 

 
 or 
 

 

  20 
 

 
 

  20 
 

  

  20 
 

  

 

Toy Model: 

 

We attempt to derive  for the toy model shown in Fig. S4. For a fixed  total 

steps, there are  steps that ligand remains bound eventually leading to formation of 

non ligand-specific product .  then acts as an enzyme and phosphorylates  

leading to SP. The error rate can be defined as follows: 

   (8) 

In the following derivations, we assume  i.e. the receptor concentration is in 

excess. 

 

k forward

kreverse

RPL_ Lck _ Zap_ P_ LATPP! RP_ Lck _ Zap_ P_ LATPP + L
ks
k f

kL,on

RP_ Lck _ Zap_ P_ LATPP! RP_ Zap_ P_ LATPP + Lck
s−1

10−5

(mol ⋅s)−1

RP_ Zap_ P_ LATPP! RP_ Zap_ LATPP
s−1

10−5 s−1

RP_ Zap_ LATPP! RP_ Zap_ LATP
s−1

10−5 s−1

NL,min M

NL

RPNL RPNL S

η =
[SP | Lf = 0]
[SP | Lf > 0]

[R]≈ RT



 

 

15 

 

 

Figure S4: Toy model used to determine . For a fixed total  steps leading to 

formation of SP, there are  steps where the ligand remains bound.  ranges from  

to . The network shows the case where . 

 

Solving the equations describing the toy model in Fig. S4 at steady-state gives: 

   (9) 

where 

   (10) 

kon

ks

kon

kf

kf kf

ks ks

RPNL

koff���! RSP
koff���! S

RPNL + S *) RPNLS
kp�! SP +RPNL

kon,S

koff,S

R+ Ls *) RLs
kp�! RLsP1

kp�! RLsP2
kp�! ...

kp�! RPNL + Ls

R+ Lf *) RLf
kp�! RLfP1

kp�! RLfP2
kp�! ...

kp�! RPNL + Lf

NL,min M

NL NL
1

M − 3 NL = M − 3

[SP]=
kp
koff

kon,s
kp + koff ,s

⎛

⎝
⎜

⎞

⎠
⎟ [RPNL ][S]

[S]=
ST

1+
kon,s

kp + koff ,s
[RPNL ] 1+

kp
koff

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟
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We define: 

   (11) 

We can further express: 

   (12) 

Substituting, we are left with: 

   (13) 

We can also solve for  from  

   (14) 

We follow the same approach when a small concentration of agonist ligands is present: 

α =
kp

kp + ks

β =
kp

kp + k f

γ =
kp

kp + koff

[RPNL ]=
kp
koff
[RPNL−1]=

kp
koff

kon
kp

γ (M−3−NL )α NL [R][Ls]

[SP | Lf = 0]=

kp
koff

kon,S
kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL )α NL [R][Ls]ST

1+
kon,S

kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL )α NL [R][Ls] 1+
kp
koff

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

[Ls] [Ls
T ]

[Ls]=
Ls
T

1+ [R]
kon
kp

⎛

⎝
⎜

⎞

⎠
⎟α

1−α NL

1−α
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟
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 (15) 

and 

   (16) 

Then, we can solve for the error rate: 

   (17) 

where  

   (18) 

 

Since ,  and  reduces to 

[SP | Lf > 0]=

kp
koff

kon,S
kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL ) (α NL [R][Ls]+ β
NL [R][Lf ])ST

1+
kon,S

kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL ) (α NL [R][Ls]+ β
NL [R][Lf ]) 1+

kp
koff

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

[Lf ]=
Lf
T

1+ [R]
kon
kp

⎛

⎝
⎜

⎞

⎠
⎟ β

1− β NL

1− β
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

η = f × 1

1+ β
α

⎛
⎝⎜

⎞
⎠⎟

NL [Lf ]
[Ls]

⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

f =

1+
kon,S

kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL ) (α NL [R][Ls]+ β
NL [R][Lf ]) 1+

kp
koff

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

1+
kon,S

kp + koff ,S

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ

(M−3−NL )α NL [R][Ls] 1+
kp
koff

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

[Lf ]<< [Ls] f ~1 η
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   (19) 

 

As , the error rate only decreases if . From Eq (19), it is clear 

that  derived from  is not sensitive to  or . Fig. S5 shows that  will start 

at 1 and decrease as a function of . Table 4 shows parameters used in the numerical 

calculations of  for the toy model presented in Fig. S4. 

Instead of using  as our discriminatory measure, we can derive an analytical 

expression for capacity via the toy model presented in Fig. S4. If  can be 

derived, evaluation of Eq (4) is possible.  

 

 

 

η ≈ 1

1+ β
α

⎛
⎝⎜

⎞
⎠⎟

NL [Lf ]
[Ls]

⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Lf << Ls β /α ~ τ f / τ s >1

NL,min η M ST η

NL

NL,min

η

P(O | Lf )
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Figure S5: Numerical calculation of  vs. . 

 

Table 4: Rate constants and initial concentrations for toy model presented in Fig. S4 

Species Total Concentration (number of 
molecules) 

 30000 

 10 

 Varies 

 10000 
 

Rate Constant Value 
  

 0.2  
 Varies 

 0.1  
 0.05  

η NL

[R]T
[Lf ]T
[Ls]T
[S]T

kon kL,on
k f s−1

ks
kp s−1

koff s−1
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 0.1  

 0.05  
 15 

 can be related to  using the following transformation: 

   (20) 

Substituting the variables 

   (21) 

and  into Eq (13) gives: 

   (22) 

Rearranging gives 

   (23) 

If we define 

   (24) 

we arrive at the following expression for : 

kon,S (mol ⋅s)−1

koff ,S s−1

M
P(SP(Ls

T )) P(Ls
T (SP))

P(SP(Ls
T )) = P(Ls

T (SP))
dLs

T

dSP

a =
kon,s

kp + koff ,s

⎛

⎝
⎜
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⎠
⎟
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⎛

⎝
⎜

⎞

⎠
⎟ γ

M−3−NLα NL [R]

h =
kp
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SP =
ha[Ls]ST

(1+ a[Ls](1+ h))

Ls =
SP

(haST − aSP(1+ h))

ω = 1+ [R]
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kp

⎛

⎝
⎜

⎞

⎠
⎟α

1−α NL

1−α
⎛

⎝⎜
⎞

⎠⎟

Ls
T
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   (25) 

Differentiating with respect to SP gives: 

   (26) 

Using Eq (25) and (26) with Eq (20), we can evaluate 

   (27) 

 To determine , we follow the same procedure except instead use 

Eq (15). Defining 

   (28) 

we derive 

   (29) 

Differentiating gives: 

  

 

 (30) 

Ls
T (SP) =ω SP

(haST − aSP(1+ h))
⎛

⎝⎜
⎞

⎠⎟

dLs
T

dSP
=ω

(haST − aSP(1+ h))+ aSP(1+ h)
(haST − aSP(1+ h))

2

⎛

⎝⎜
⎞

⎠⎟

P(SP | Lf = 0) =
1
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T (SP)σ 2π
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(ln(Ls

T (SP))− µ)2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥
dLs

T

dSP

P(SP | Lf = Lf ,0 )
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kon,s

kp + koff ,s

⎛

⎝
⎜

⎞

⎠
⎟
kon
koff

⎛

⎝
⎜

⎞

⎠
⎟ γ
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Ls
T (SP;Lf ) =ω

SP + bSPβ NL [Lf ](1+ h)− hbβ
NL [Lf ]ST

(hbα NLST − bSPα
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⎛
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⎜

⎞

⎠
⎟

dLs
T (SP;Lf )
dSP

=ω ×

(1+ bβ NL [Lf ](1+ h))(hbα
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⎟
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Once again, using Eqs (29), (30) and (20) gives  

   (31) 

Substituting Eqs (27) and (31) into Eq (5) gives an analytical expression for capacity. 

Unlike Eq (19), it is difficult to see the dependence of capacity on . With the 

parameters listed in Table 4, we numerically evaluate the capacity using the preceding 

expressions. Fig. S6 shows that the capacity's dependence on  is opposite to that of 

the error rate (see Fig. S5).  for  and eventually increases to  after six steps. 

Since  measures discrimination over a distribution of , Fig. S6 shows the results for 

. It is worth noting that the magnitude of  and 

 affects the mean values of the output distributions, but does not affect the relative 

distance between them. As a consequence, capacity is insensitive to  and . 

Repeating the numerical procedure for a range of  and different values of 

, we compute , the minimum number of steps that the ligand must remain bound 

to the TCR complex to reach perfect discrimination. After  steps, ligand can 

dissociate from the complex and downstream signaling can proceed. As expected, Fig. S7 

shows that 𝑁#,%&'(𝐶 = 1) is a decreasing function of  and an increasing function 

of . The advantage of deriving  from capacity is that  clearly defines the 

point at which perfect discrimination is reached. 

P(SP | Lf = Lf ,0 ) =
1

Ls
T (SP;Lf )σ 2π

exp −
(ln(Ls

T (SP;Lf ))− µ)2

2σ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dLs
T (SP;Lf )
dSP

NL

NL

C ~ 0 NL = 1 1

C Ls
T

ln(Ls
T ) ~ N (µ = ln(100[Lf

T ]),σ = 1.0) ST

M

ST M

τ f / τ s

µ NL,min

NL,min

τ f / τ s

µ NL,min C = 1
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Figure S6: Numerical calculation of  vs. . C NL
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Figure S7: Numerical calculations of 𝑁#,%&'(𝐶 = 1). For a fixed set of rate constants (see 

Table 4),  is calculated by finding the smallest value of  that gives . The 

calculation is repeated for a range of  and three values of . 

Negative Feedback Loops: 

 

We investigated the effects of negatively regulating free active Lck in the system by 

adding the reactions shown in Fig. S8A to those depicted in Fig. S3A. Fig. S9A shows 

that for different concentrations of , discrimination improves over a range of feedback 

strengths. 

 

 

NL,min NL C = 1

τ f / τ s µ

Lf
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A 

 

 B 

Figure S8: Two examples of early negative feedback loops in the T cell network. (A) shows 

the active form of ZAP-70 inactivating the free pool of Lck in the system. These reactions 

are combined with those shown in Fig. S3A. (B) offers a more realistic version of the 

negative feedback loop. Active ZAP-70 inactivates proximal Lck, which remains bound to 

RPLs Lck Zap P + Lck
kneg,fb����! RPLs Lck Zap P + Lcki

Lf > 0 :

RPLf Lck Zap P + Lck
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the TCR complex. Lck is inactive for the remainder of signaling. Eventually, Lcki 

dissociates from the complex in the side paths. Feedback strength depends on the reversion 

rate of Lcki to Lck. 

 

We also investigated negative feedback of proximal, bound Lck due to activated 

ZAP-70. These reactions are shown in Fig. S8B. Active ZAP-70 converts the bound Lck 

to an inactive form, Lcki, by phosphorylating its negative regulatory residues. As a 

consequence, proximal Lck is inactivated and released in all sideways paths following 

cycle 3. The rate at which unbound Lcki is converted back to Lck determines the 

feedback loop strength. Fig. S9B measures the capacity for different main path on-rates (

) and feedback strengths ( ). Surprisingly, we observe some differences in the 

realistic representation. There appears to be a sharp thresholding behavior: if the 

conversion of inactive to active Lck happens at an optimal rate,  for  

or 30, discrimination suddenly becomes perfect. The latter behavior contrasts with Fig. 

S9A, which shows a gradual improvement in capacity as feedback strength increases. 

 

kon klcki

klcki ~ 0.001 Lf = 10
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B 

Figure S9: A full parameter search of the networks shown in Fig. S8 for three different 

 values. (A) corresponds to the network in Fig. S8A while (B) corresponds to Fig. 

S8B. Feedback strength is inversely related to . In (A), . (A) shows a 

gradual improvement of discrimination due to increasing feedback strength whereas (B) 

shows a sharp transition to perfect discrimination beyond a specific feedback strength. 

Surprisingly, the transition does not depend on . 

 In the final variation, we explore the effect of a mock late negative feedback loop.  

Lf

klcki klcki = 0.01s
−1

kon
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Suppose that RPL_Lck_Zap_P_LATP inactivates ZAP-70 thereby preventing its 

attachment to ITAMs and subsequent activation by Lck. Reactions associated with this 

scenario are shown in Fig. S10A. Fig. S10B compares the effect on capacity of early 

(Fig. S8A) and late (Fig. S10A) negative feedback. As expected, capacity is equivalent in 

both cases at . When  is increased, for the same  and , early 

negative feedback is more effective than late feedback at improving discrimination. The 

difference is even more pronounced for faster . 

 

A 

kneg , fb = 0 kneg , fb kon kneg , fb

kon

Lf > 0 :

Lf = 0 :

RPLs Lck Zap P LATP + Zap
kneg,fb����! RPLs Lck Zap P LATP + Zapi

RPLf Lck Zap P LATP + Zap
kneg,fb����! RPLf Lck Zap P LATP + Zapi

Zapi
kzapi���! Zap

RPLs Lck Zap P LATP + Zap
kneg,fb����! RPLs Lck Zap P LATP + Zapi

Zapi
kzapi���! Zap
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B 

Figure S10: The effects of late negative feedback. (A) shows an essentially identical 

network to the one presented in Fig. S8A except that feedback occurs further downstream. 

We consider the consequences of RPL_Lck_Zap_P_LATP inactivating the free pool of 

ZAP-70. (B) shows a direct comparison of early and late negative feedback. Clearly, late 

feedback is less effective at improving discrimination. 

For the calculations involving the negative feedback loops presented in Figs. S8A and 

S9A, rate constants are set to those detailed in Tables 2 and 5. For Fig. S9B, the rate of 

conversion from inactive to active Lck determines the strength of the negative feedback 

Early Late



 

 

31 

 

loop. Therefore, in the latter case,  is varied. In the early and late negative feedback 

comparison presented in Fig. S10,  mol. Then,

. 

 

Table 5: Rate constants used for negative feedback loops. 

Rate Constants Figs. S8A and S10A Value 
 Varies 

 0.01  
 0.01  

 

Positive Feedback Loops: 

 

We explore the effects of a late positive feedback loop by connecting the SOS feedback 

loop (see Fig. S11) to the kinetic proofreading network shown in Fig. S3A, while 

including the negative feedback loop in Fig. S8A. T cells make the decision to activate 

extremely quickly: after the initial binding event, it takes  minutes. Fig. S12A shows 

the dynamics of forming the LATPP-SOS complex for  and 

. Within the typical time-scale of activation and across a range of 

self ligand concentrations, we observe that LATPP-SOS output is significantly greater 

when agonist ligand is present. Fig. S12B shows the output distributions at . 

After 8 steps, discrimination becomes essentially perfect and little overlap remains 

between the output distributions. Assuming the bi-stability point is located at 

 as shown by the red dotted line in Fig. S12B we expect that output 

klcki

[Lck]0 = [Zap]0 = 30000

klck ,on = kzap,on = kon / [Lck]0 = kon / [Zap]0

kneg , fb
klcki s−1

kzapi s−1

1−5

kon = 1.5s
−1

kneg , fb = 0.05(mol ⋅s)
−1

t = 300s

[LATPP-SOS]crit ≈ 97
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from self in the presence of agonist ligands will be amplified, whereas self only output 

will be quenched. 

 

 

A 

 

B 
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Figure S11: Ras-SOS positive feedback loop. (A) shows the reactions that lead to bi-

stable dependence of Ras-GTP on SOS (4).  If parameters are chosen so that Ras_GTP-

bound SOS is more effective at phosphorylating Ras_GDP than Ras_GDP-bound SOS, 

there will be a bi-stability point such as the one shown in (B). 
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B 

Figure S12: Dynamics of LATPP-SOS formation for   and  

. (A) shows the production of LATPP-SOS after combining the first reaction in 

Fig. S11A with those illustrated in Fig. S3A. Production of LATPP-SOS is consistently 

greater when agonist ligands are present over a range of self concentrations. Line 

darkness is proportional to the number of self ligands in the simulation. (B) shows normal 

(orange) and infected (blue) cell output distributions at  when sampling over the 

full self ligand distribution. The bi-stability point in Fig. S11B is shown here as a red 

dotted line. 

 

8

kon = 1.5 s
−1 kneg , fb = 0.05

(mol ⋅s)−1

t = 300s
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Indeed, Fig. S13A shows that after , the SOS feedback loop causes rapid 

catalytic conversion of Ras_GDP to Ras_GTP. Signal amplification (blue) happens 

within the time-scale of decision-making whereas positive feedback of noise (orange) 

would occur too late. The histogram in Fig. S13B shows two sharply peaked distributions 

corresponding to inactivation (orange) and activation (blue). We conclude that the SOS 

positive feedback loop converts the distribution of product from the upstream kinetic 

proofreading network into digital output. 

 

 

A 

t ≈ 200s
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B 

Figure S13: Dynamics of Ras_GTP formation. (A) shows the production of Ras_GTP 

after combining all of the reactions in Fig. S11A with Fig. S3A. At , there is a 

sudden increase in production of Ras_GTP, showing that infected cell output has 

exceeded the bi-stability point. Any amplification due to interaction with a normal APC 

happens outside the time-scale of T cell activation. (B) shows the resulting output 

distributions of normal (orange) and infected (blue) cells at . The positive 

feedback loop converts output into two sharply peaked distributions corresponding to 

“Off” and “On”. 

In the positive feedback loop calculations presented in Figs. S12B-S13B,  , 

the second LAT phosphorylation step proceeds at  ,  

9

t ~ 200s

t ~ 400s

kon = 1.5 s
−1

kon = 0.15 s
−1 kneg , fb = 0.05
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, and  . Tables 6-7 show parameter values for the Ras-SOS 

reactions. 

 

Table 6: Initial Concentrations for Ras-SOS feedback loop 

Species Total Concentration (number of 
molecules) 

All initial concentrations in Table 1  
 1000 

 1000 

 10 
 

 

 

 

 

Table 7: Rate constants for Ras-SOS positive feedback loop. 

Reactions   

All reactions in Table 2 including negative feedback   
 0.001 

 
0.005 

 
 0.024 

 
30.0 

 

 0.014 
 

 10.0 
 

 0.03   

 0.022 
 

4.0  

 0.01 
 

1.0  

(mol ⋅s)−1 klcki = 0.01 s
−1

[SOS]0
[Ras_GDP]0
[Ras_GAP]0

k forward kreverse

LATPP + SOS! LATPP − SOS
(mol ⋅s)−1 s−1

LATPP − SOS + Ras_GDP! LATPP − SOS − Ras_GDP
(mol ⋅s)−1 s−1

LATPP − SOS − Ras_GDP + Ras_GDP!
LATPP − SOS − Ras_GDP − Ras_GDP (mol ⋅s)−1 s−1
LATPP − SOS − Ras_GDP − Ras_GDP→
LATPP − SOS − Ras_GDP + Ras_GTP

s−1

LATPP − SOS + Ras_GTP! LATPP − SOS − Ras_GTP
(mol ⋅s)−1

s−1

LATPP − SOS − Ras_GTP + Ras_GDP!
LATPP − SOS − Ras_GTP − Ras_GDP (mol ⋅s)−1

s−1
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 0.494   

 0.348 
 

2.0  

 1.0   
 

 Lastly, we explore the consequences of an early positive feedback loop in Figs. 

S14-S15. Early in the kinetic proofreading process, capacity is low (see Fig. S15A) as 

one would expect. If a positive feedback loop similar to the actual one initiated by LAT 

(see Fig. S11A) is engaged instead by RPL_Lck_Zap (see Fig. S14A), self output 

(orange in Fig. S15) that exceeds a threshold value (red dotted line in Fig. S15A) will be 

rapidly amplified. Clearly, from Fig. S15B a drop in discrimination occurs if a bi-stable 

regime happens before the distributions completely separate. 
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B 

Figure S14: Early positive feedback loop. (A) shows an alternative set of reactions that 

lead to (B) bi-stable dependence of Ras-GTP on RPL_Lck_Zap. 
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Figure S15: (A) shows histograms of RPL_Lck_Zap when the distributions have not 

completely separated ( ). Attempting positive feedback via a cubic dependence 

of Ras-GTP on RPL_Lck_Zap leads to amplification of self output and a discriminatory 

drop (B). 

 

“Catch-and-release” vs. “Bridge” model: 

 

We numerically investigate the “Catch-and-release” model suggested by Katz et al (5) 

using the network shown in Fig. S16A. After ZAP-70 binds to the ITAMs, Lck 

phosphorylates ZAP-70 and activated Zap_P dissociates from the receptor-ligand 

complex. Downstream biochemical steps proceed as before except discriminating 

between correct and incorrect product is not possible. Consequentially, after Zap_P 

dissociation, Fig. S16B shows the capacity drop and remain relatively constant as 

predicted by the data processing inequality. Early dissociation of active ZAP-70 from the 

receptor-ligand complex makes discriminatory improvement no longer possible. 
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A 

 

B 

Figure S16: (A) Reaction network showing early Zap dissociation from the receptor-ligand 

complex. (B) Numerical test of Zap dissociation after Lck activation. If unbound Zap_P 

proceeds with downstream signaling, the capacity can no longer increase (orange) resulting 

in a discriminatory drop with respect to the network (blue) in which Zap remains bound. 
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