Arginine-rich small proteins with a domain of unknown function DUF1127 play a role in phosphate and carbon metabolism of *Agrobacterium tumefaciens*

- Supplementary file -

Alexander Kraus¹, Mareen Weskamp¹, Jennifer Zierles¹, Miriam Balzer¹, Ramona Busch¹, Jessica Eisfeld¹, Jan Lambertz², Marc M. Nowaczyk² and Franz Narberhaus^{1,#}

¹Microbial Biology, Ruhr University Bochum, Bochum, Germany ²Plant Biochemistry, Ruhr University Bochum, Bochum, Germany [#]Address correspondence to <u>Franz.Narberhaus@ruhr-uni-bochum.de</u>

Table of contents

Abbreviations	3
Explanatory notes to RNA-seq results	3
References	3
FIG S1. Alignments of newly discovered DPs with annotated DPs	4
FIG S2. Transcriptomic data of SDP genes	5
FIG S3. Further insights into DP-sub-division	6
FIG S4. Deletion of SDP genes	7
FIG S5. Viability and cell morphology of $\Delta\Delta\Delta.$	9
FIG S6. Sucrose and osmolarity-dependent expression of SDP genes	10
FIG S7. Seedling-infection assay	11
FIG S6. Sucrose and osmolarity-dependent expression of SDP genes	10
Table S1. Strains used in this study	13
Table S2. Plasmids used in this study	14
Table S3. Plasmid construction	15
Table S4. Oligonucleotides used in this study	16

Abbreviations

DP (DUF1127-containing protein), SDP (Short DP), LDP (Large DP), OD (optical density), RNA-seq (RNA sequencing)

Explanatory notes to RNA-seq results

sRNAs gene names are composed of the corresponding replicon (C1: circular chromosome, C2: linear chromosome, pAt: At-plasmid, pTi: Ti-plasmid), the corresponding position of the transcriptional start site and the orientation of the gene (F: encoded on 'plus' strand, R: encoded on 'minus' strand). The sRNA gene *C2_1831446F* corresponds to the sRNA L5 (as annotated by Wilms *et al.* (1)).

References

- 1. Wilms I, Overlöper A, Nowrousian M, Sharma CM, Narberhaus F. 2012. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen *Agrobacterium tumefaciens*. RNA Biol 9:446–57.
- 2. Lance GN, Williams WT. 1967. A general theory of classificatory sorting strategies: 1. Hierarchical systems. Comput J 9:373–80.
- 3. Welch BL. 1947. The generalisation of student's problems when several different population variances are involved. Biometrika 34:28–35.
- 4. D. Requião R, Fernandes L, de Souza HJA, Rossetto S, Domitrovic T, Palhano FL. 2017. Protein charge distribution in proteomes and its impact on translation. PLoS Comput Biol 13:e1005549.
- 5. Rumble JR. 2018. Handbook of chemistry and physics 99th editionCRC press/Taylor & Francis, Boca Raton, FL.
- 6. Hanahan D. 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol 166:557–80.
- Hoffmann MC, Wagner E, Langklotz S, Pfänder Y, Hött S, Bandow JE, Masepohl B. 2016. Proteome profiling of the *Rhodobacter capsulatus* molybdenum response reveals a role of IscN in nitrogen fixation by Fe-nitrogenase. J Bacteriol 198:633–43.
- 8. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multipurpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: Selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. Gene 145:69–73.
- 9. Narasimhulu SB, Deng XB, Sarria R, Gelvin SB. 1996. Early transcription of *Agrobacterium* T-DNA genes in tobacco and maize. Plant Cell 8:873–86.
- 10. Pridmore RD. 1987. New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309–12.

A		L4	MNVTF	SFNNWR	KYR	OTINELG	RMSAR	ELHDLG	ID <mark>R</mark> SC	DITSVA	RAAVG	ĸ				
		A0A0F4FNO6	MNVT	SFNNWR	KYR	OTINELG	RMSAR	ELHDLG	IDRSC	DITSVA	RAAVG	K 100	.0%			
		A0A1G8Y768	MNVT	SFNNWR	KYR	_ QTINELG	RMSAR	ELHDLG	ID <mark>R</mark> SC	_ DITSVA	A <mark>R</mark> AAVG	K 100	.0%			
		A0A1S7QGG0	MNVT	SFNNWR	KYR	QTINELG	RMSTRI	ELHDLG	ID <mark>R</mark> SÇ		A <mark>R</mark> AAVG	K 97	.98			
		F5JAJ7	MNVT	RSFNNWR	KYR	QTINELG	RMST <mark>R</mark> I	ELHDLG	, ID <mark>R</mark> SÇ	QITSVA	A <mark>R</mark> AAVG	K 97	.98			
		A0A024IZE6	MNVA	SFNNWR	KYR	QTINELG	RMSTRI	ELHDLG	GID <mark>R</mark> SÇ	DITSVA	A <mark>R</mark> AAVG	K 95	.8%			
		A0A1S7QC19	MNVA <mark>F</mark>	SFNNWR	KY <mark>R</mark> (QTINELG	RMSSRI	ELHDLG	;id <mark>r</mark> sç	QITSVA	a <mark>r</mark> aavg	K 95	.8%			
		A0A1S7RCR0	MNVA <mark>F</mark>	RSFNNW <mark>R</mark>	ΚΥ <mark>R</mark> ζ	QTINELG	RMSS <mark>R</mark> I	ELHDLG	;id <mark>r</mark> sç	QITSVA	a <mark>r</mark> aavg	K 95	.8%			
		A0A1S7RQW2	MNVA <mark>F</mark>	RSFNNWR	κγ <mark>r</mark> ς	QTINELG	RMST <mark>R</mark> I	ELHDLG	;id <mark>r</mark> sç	QITSVA	A <mark>r</mark> aavg	K 95	.8%			
		A0A1S7S6T7	MNVA <mark>F</mark>	RSFNNWR	KY <mark>R</mark> Ç	QTINELG	RMST <mark>R</mark> I	ELHDLG	;id <mark>r</mark> sç	QITSVA	A <mark>r</mark> aavg	K 95	.8%			
		A0A1S7U662	MNVA <mark>F</mark>	RSFNNWR	KY <mark>R</mark> Ç	QTINELG	rmst <mark>r</mark> i	ELHDLG	;id <mark>r</mark> sç	QITSVA	A <mark>r</mark> aavg	K 95	.88			
			:*	**	***	* * * * * * *	***:*	* * * * * *	****	*****	*****	*				
_																
В					_	_			_				_	_		
Atu1	L766	MTMIHYLPATN	I <mark>R</mark> SSL <mark>R</mark>	PSPSGW	LD <mark>R</mark> L	'SSHESA <mark>F</mark>	YAEWR	RERMLI	RALEA	LPPET	LKDIG	PTTDT	T <mark>R</mark> IH/	AV <mark>R</mark> K		
A0A1	LB9SY55	MTMIHYLPVTN	I <mark>R</mark> STH <mark>R</mark>	PSPIGWI	LH <mark>R</mark> L	SDQVSA <mark>F</mark>	YAEW <mark>R</mark>	RARMLI	<mark>R</mark> ALEA	LPPET	LKDIGW	VPTTDT	T <mark>R</mark> IH1	ГІ <mark>R</mark> К	84.	7 %
A0A1	L78HA42	MTMIHYLPAAN	I <mark>R</mark> STH <mark>R</mark>	PSSGGWI	LH <mark>R</mark> L	SSHVSAA	YASWR	RARML	RALEA	LPPET	LKDIGV	VPTTDN	NRIST	VI <mark>R</mark> K	79.2	28
A0A2	2V5CI05	MTMIHYLPAAN	I <mark>R</mark> STH <mark>R</mark>	PSSGGWI	LH <mark>R</mark> L	SSHVSAA	YASWR	RARMLI	<mark>R</mark> ALEA	LPPET	LKDIG	VPTTDN	NRISI	LI <mark>R</mark> K	79.2	28
A0A1	LS7P179	MTMIHYLPAAN	I <mark>R</mark> SPH <mark>R</mark>	PSSGGWI	LH <mark>R</mark> L	SGHVSAI	Y <mark>R</mark> SWR	RARMLI	RALEA	LPPET	LKDIG	VPTTDN	Y <mark>R</mark> TN#	AI <mark>R</mark> K	76.4	48
AOAC)Q8FUT7	MTMIHYLPAAN	IRSPHR	PSSGGWI	LHRL	SGHVSAL	Y <mark>R</mark> SWR	RARMLI	RALEA	LPPET	LKDIG	VPTTDN	YRTNA	AI <mark>R</mark> K	76.4	18
AUAU	JL6K5N0	MTMIHYLPAAN	RSPHR	PSSGGW1	LHRL	SGHVSAL	Y <mark>R</mark> SWR	RARMLI	RALEA	LPPET	LKDIG	VPTTDN	YRTNA	AIRK	76.4	18
AOAC	D8KCQ5	MTMIHYLPAAS	RSSHR	PSFGGW1	LHRL	SAQVSAL	YAA <mark>R</mark> Ç	RARMLI	RALEA	LPPET	LKDIGV	VPTTDS	SRIR	VIRK	73.1	08
U4Q4	452	MTMIHYLPAAN	RSPHR	PSSAGW.	LQRL	SGNIASH	IYASW <mark>B</mark>	RARMLI	RALEA	LPPET	LKDIGV	VP'I'I'DN	YGRS	VIRK	70.8	38
K5D1	188	MTMIHYLPAAN	RSPHR	PSSAGW1	LQRL	SGNIASH	IYASW <mark>R</mark>	RARMLI	RALEA	LPPET	LKDIGV	VPTTDN	YG <mark>R</mark> S\	VI <mark>R</mark> K	70.1	38
AOAI	LS9EMK1	MTMIHYLPAAN	I <mark>R</mark> SPH <mark>R</mark>	PSSAGW.	LQ <mark>R</mark> L	SGNIASH	IYASW <mark>R</mark>	RARMLI	RALEA	LPPET	LKDIGV	VPTTDN	YC <mark>R</mark> SV	VI <mark>R</mark> K	70.8	38
		*******	** *	** **:	* • * *	* :.::	* :	* ***	* * * * *	*****	*****	• • • •		***		
•																
L.	1001												DWOU	-		
ACU1865	MQN	DOLLANATOD	AVDRLE	VTEGVW	IKT LI		MVPRA	PPTDLA				QVKRRI		P-WA	PRF.	00 00
FULGI4	MQK AVA MOV	NQPLVAIALPD	AVDRLE	VTFGVW			MVPRP.	PPTDLS			GLEPS	DRKMRI	KEWAP	PIWA	PRF	80.86
AUAZOJI	GEA MOR	NOPLVAIALPD	AVDRLE	VIEGVW			MUDDD:	PPTDLS			CLEPS	DEVMO	EWAP	PIWA	PRF	00.00
AUAIB9V	6F4 MQK	NQPLVAIALPD	AVDRLE	VTFGVW			MVPRP.	PPTDLS		וממדד	CLEPS	DRKMRI	KEWAP	PIWA	PRF	00.00
HUHBL4	MOR	MVAIALPD	AVDRLE	VIFGVW			MUDDD:	PPIDLS			GLEPS	DRAK	CEWAP	PIWA	DDD	79.00
WOFGC/	MQK EM7 MOV	NOPLVAIALPD	AVDRLE	VIFGVW			MUDDD:	PPIDLS			CLEPS	DRAMRI	CEWAP	PIWA	PRF	79.00
AUALVZA	VOS MOV	NODIVAIALPD	AVDRLE	VIEGVW	יד דישיחיו ניד דישיחיו			PPTDLS		נממדדנ	CIEDO	DRAMRI		PIWA	DDF	70 50
AUALS/S	V95 MOR	NODIVAIALPD	AVDRLE	VIEGVW	יד דיתייתו ז דיתייתו	CAVLVAA 277777777		DDMDI 0 LLINT9		נסמדדנ	CIEPS	DEKME		FIWA	DDF	70 50
AUAIS/M AOA197M	TES MOR	MODI VAVAT DD.		VIEGVW	יד דידית דידידיתיו	KAVLVAA KAVI VAA		ם נעתםם בינוחדס		וממדדנ	CLEPS	DRAMPI	DEWAP	E I WA		79.00
AUAIS/M	ULZ MQN	• * * * * * * * *	******	: v I E G V W	· * * · ·	***•***		******	۲ * * * • •	۲, ** 177777	.GLEFS **• **	• * * *	* • * •	* **	т <mark>г</mark> г * * *	19.00
		•			•	•		•	•		•	•	• •			

A

FIG S1. Alignments of newly discovered DPs with annotated DPs. The proteins most similar to L4 (SDP3), Atu1766 (LDP2) and Atu1865 (LDP4) are shown. The UniProtKB accession number is given on the left, the protein identity compared to the newly discovered DP is given on the right side. Identical aa are marked with an asterisk (*), highly similar ones with a colon (:) and those with minor similarity with a period (.). Arginine residues are highlighted in yellow.

FIG S2. Transcriptomic data of SDP genes. In the upper panel relative positions of coding sequences (CDS) are shown. Start codons are marked with ATG. In the lower panel the relative expression (rel. exp.) is shown. Transcriptomic data were taken from Wilms *et al.* (1). SDP genes are marked in yellow and sRNAs in blue. **(A)** *SDP3* and *L5* lie in direct genomic neighborhood but have independent transcription-start sites. **(B)** The previous annotation of the *SDP1* ORF had been incorrect. The previously annotated ORF (*atu1667*, dashed lines) and the corrected ORF (*ATU_RS08170*, continuous line) are shown as well as the positions of the annotated start codon (ATG*) and the correct start codon (ATG). The annotated ORF starts at position 1,653,073 on the circular chromosome. The transcription start lies downstream of this annotation at position 1,653,160.

FIG S3. Further insights into DP-sub-division. **(A)** Sub-division of DPs that have been subject to previous studies. The proteins were clustered according to the sequence identity to each other via nearest-neighborclustering algorithm (2). **(B)** Statistical analyses of DP-sub-class properties concerning protein length, relative arginine content, protein net charge per aa and proteins per species. For each sub-class, means were plotted. Upper and lower border of a 95 % confidence interval are marked as horizontal lines. The corresponding p values were calculated by Welch's t-test (3) and are indicated by asterisks (****: $p \le 0.0001$, **: $p \le 0.01$, ns (not significant): p > 0.05). Protein net charge was calculated using the Henderson-Hasselbalch equation for each N or C terminus and all side chains as described by Requião *et al.* (4). The aa pKa values were taken from "CRC handbook of chemistry and physics" (99th edition) (5).

FIG S4. Deletion of SDP genes. **(A)** Construction of marker-less deletion mutants. Approximately 300 bp upstream and downstream of the target gene were amplified via PCR and cloned into pK19*mobsacB*. Via single-crossover-homologous recombination with the upstream (left arrow) or the downstream fragment (right arrow) the plasmid was integrated into the genome. Successful integration resulted in resistance against kanamycin (*KanR*). In the second step, cells were exposed to medium containing sucrose, which is

(FIG S4. Legend continued) metabolized into toxic levels of levan by SacB. This forces the cells to excise the plasmid via homologous recombination again. Since recombination between upstream fragments or downstream fragments are similarly likely, this can either result in restoration of the WT or in successful marker-less gene deletion. (B) Northern-blot analysis verified successful construction of all seven deletion strains. All single, double and triple-deletion mutants ($\Delta\Delta\Delta$) were created by the scheme presented in (A). A truncated transcript of the *SDP1* mRNA (*SDP1**) was detected, because only the protein-coding sequences of *SDP1* and *SDP2* were deleted, but not the UTRs. EtBr-stained 16S rRNA served as loading control.

FIG S5. Viability and cell morphology of $\Delta\Delta\Delta$. **(A)** To investigate whether the declining OD_{600 nm} of $\Delta\Delta\Delta$ correlates with the cell number several assays were performed at two points of time: after approximately 12 h of growth and after approximately 24 h. Viable cells were determined by plate counting. To determine the relative amount of dead cells a *LIVE/DEAD BacLight*TM bacterial viability assay was quantified by counting cells under the microscope. The cell length was measured under the microscope using the ImageJ software. **(B-D)** OD_{600 nm} and cell number correlate with each other. The OD_{600 nm} and the viable cell count of the WT

(FIG S5. Legend continued) increased over night, whereas $OD_{600 \text{ nm}}$ and cell number of $\Delta\Delta\Delta$ decreased. An increased $OD_{600 \text{ nm}}$ went along with an increased number of cells. (E) $\Delta\Delta\Delta$ and WT showed a similar amount of damaged cells. Via *LIVE/DEAD BacLight*TM assay, intact cells were stained with a green-fluorescent dye (SYTO® 9) and damaged cells were stained with a red-fluorescent dye (propidium iodide). Cells were counted via fluorescence microscopy. (F) Cell length of $\Delta\Delta\Delta$ decreased to a minor extent on day two compared to the WT. The corresponding p values were calculated by Welch's *t*-test and are indicated by asterisks (****: p≤0.0001, **: p≤0.01).

		YE	В	w/	/EE o S	3 uc	YEE	3+N	laC		LB		LB	8+S	uc	LE w/	3+S o N	uc acl
	Ι.	II.	III.	Ι.	II.	III.	Ι.	11.	III.	Τ.	II.	III.	Ι.	II.	III.	Ι.	II.	III.
SDP1		-	1940					-								1		
16S	-	-	-		u	-		-	•									-
SDP2	-																-	-
16S	U				•			-	-						U		•	-
SDP3				Ĩœ										-	•	-	10	
16S	1								•			E						-

FIG S6. Sucrose and osmolarity-dependent expression of SDP genes. Samples for Northern blot analyses were taken at the indicated time points (see Fig. 8). EtBr-stained 16S rRNA served as loading control

Arabidopsis thaliana efr-1

FIG S7. Seedling-infection assay. **(A)** *A. tumefaciens* is transformed with pBISN1 which contains a GUS gene under control of a so-called super-promoter between the two T-DNA borders. A single strand of the GUS gene is cleaved and transported into the plant host. It is translocated into the nucleus and integrated into the genome at a random position. GUS converts X-Gluc into a blue stain, which indicates a successful infection by *A. tumefaciens*. **(B)** $\Delta\Delta\Delta$ is able to infect the *A. thaliana* efr-1 mutant. Blue stained spots indicate infection by *A. tumefaciens* transformed with pBISN1.

FIG S8. Differentially expressed genes in $\Delta\Delta\Delta$. The transcriptome of $\Delta\Delta\Delta$ was compared with the WT via RNA-seq at OD_{600 nm} 0.5, at 1.5 and after 24 h of growth. The 30 genes that were differentially expressed at all three points of time are listed on the right. The color code represents the binary logarithm of the fold change in $\Delta\Delta\Delta$ compared to the WT.

Table S1. Strains used in this stu	dy.
------------------------------------	-----

Strain	Description	Source
A. tumefaciens C58	WT strain	C. Baron,
	(alias Agrobacterium fabrum C58).	Montréal, Canada
A. tumefaciens C58 Δ L4	Marker-less deletion of <i>L4</i> with pDel_ <i>L4</i> in	This study
A. tumefaciens C58 Δatu1667	Marker-less deletion of <i>atu1667</i> with pDel_ <i>atu1667</i> in <i>A_tumefaciens</i> C58	This study
A. tumefaciens C58 ∆atu8161	Marker-less deletion of <i>atu8161</i> with pDel_ atu8161 in A. tumefaciens C58.	This study
A. tumefaciens C58 ΔL4 Δatu1667	Marker-less deletion of <i>atu1667</i> with pDel_ <i>atu1667</i> in <i>A. tumefaciens</i> $\Delta L4$.	This study
A. tumefaciens C58 ΔL4 Δatu8161	Marker-less deletion of $L4$ with pDel_L4 in A. tumefaciens $\Delta atu8161$.	This study
A. tumefaciens C58 Δatu1667 Δatu8161	Marker-less deletion of <i>atu8161</i> with pDel_ <i>atu8161</i> in <i>A. tumefaciens</i> Δatu1667.	This study
A. tumefaciens C58 Δ L4 Δ atu1667 Δ atu8161 (Δ Δ Δ)	Marker-less deletion of <i>atu1667</i> with pDel_ <i>atu1667</i> in <i>A. tumefaciens</i> $\Delta L4$ $\Delta atu8161$.	This study
A. tumefaciens C58 ∆lsrB	Knock-out of <i>atu2186</i> (<i>IsrB</i>) in <i>A. tumefaciens</i> C58 with pKO_ <i>IsrB</i> . Gentamycin resistant.	This study
A. tumefaciens C58 + EV	<i>A. tumefaciens</i> C58 with chromosomal integration of pInt_EV. Kanamycin resistant.	This study
A. tumefaciens C58 ΔΔΔ + EV	A. tumefaciens $\Delta\Delta\Delta$ with chromosomal integration of pInt_EV. Kanamycin resistant.	This study
A. tumefaciens C58 $\Delta\Delta\Delta$ + L4	A. tumefaciens $\Delta\Delta\Delta$ with chromosomal integration of plnt_L4. Kanamycin resistant.	This study
<i>A. tumefaciens</i> C58 + L4 ^{3xFLAG}	Chromosomal integration of <i>L4</i> ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>L4</i> ^{3xFLAG} . Kanamycin resistant.	This study
A. tumefaciens C58 + atu1667 ^{3xFLAG}	Chromosomal integration of <i>atu1667^{3xFLAG}</i> under control of native promoter. Cloned via recombination with pInt_ <i>atu1667^{3xFLAG}</i> . Kanamycin resistant.	This study
A. tumefaciens C58 + atu8161 ^{3xFLAG}	Chromosomal integration of <i>atu</i> 8161 ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>atu</i> 8161 ^{3xFLAG} . Kanamycin resistant.	This study
A. tumefaciens C58 + atu1766 ^{3xFLAG}	Chromosomal integration of <i>atu1766</i> ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>atu1766</i> ^{3xFLAG} . Kanamycin resistant.	This study
A. tumefaciens C58 + atu1865 ^{3xFLAG}	Chromosomal integration of <i>atu1865</i> ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>atu1865</i> ^{3xFLAG} . Kanamycin resistant.	This study
A. tumefaciens C58 + atu1847 ^{3xFLAG}	Chromosomal integration of <i>atu1847</i> ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>atu1847</i> ^{3xFLAG} . Kanamycin resistant.	This study
A. tumefaciens C58 + atu8135 ^{3xFLAG}	Chromosomal integration of <i>atu8135</i> ^{3xFLAG} under control of native promoter. Cloned via recombination with pInt_ <i>atu8135</i> ^{3xFLAG} . Kanamycin resistant.	This study

Table S1. (Continued)

Strain	Description	Source
E. coli JM83	Cloning strain. <i>rpsL</i> , ara, Δ(<i>lac-proAB</i>), Φ80, d <i>lacZ</i> Δ <i>M15</i> .	(6)

 Table S2.
 Plasmids used in this study. A detailed description on how plasmids were constructed is given in Tab. S3.

Plasmid	Description	Source
pK19 <i>mobsacB</i>	Cloning vector.	(8)
pDel_ <i>L4</i>	For marker-less deletion of L4. Constructed from	This study
	pk19 <i>mobsacB.</i>	
pDel_ <i>atu1667</i>	For marker-less deletion of atu1667. Constructed	This study
	from pk19 <i>mobsacB.</i>	
pDel_ <i>atu8161</i>	For marker-less deletion of atu8161. Constructed	This study
	from pk19 <i>mobsacB.</i>	
pYP240I	Cloning vector.	Masepohl, unpublished
pYP4II	Cloning vector.	Masepohl, unpublished
pKO_ <i>lsrB</i>	For knock-out of atu2186 (IsrB).	This study
pK18	Cloning vector.	(10)
pInt_EV	Empty vector control for integration via single-	This study
	crossover. Contains L4-UTRs. Constructed from	
	pK18.	
pInt_ <i>L4</i>	For reintegration of $L4$ in $\Delta\Delta\Delta$ via single-crossover.	This study
	Constructed from pK18.	
pYP247	Cloning vector.	(7)
pInt_ <i>L4^{3xFLAG}</i>	For chromosomal <i>L4^{3xFLAG}</i> via single-crossover.	This study
	Constructed from pK18.	
pInt_ <i>atu1667^{3xFLAG}</i>	For chromosomal atu1667 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pInt_ <i>atu8161^{3xFLAG}</i>	For chromosomal atu8161 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pInt_ <i>atu1766^{3xFLAG}</i>	For chromosomal atu1766 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pInt_ <i>atu1865^{3xFLAG}</i>	For chromosomal atu1865 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pInt_ <i>atu1847^{3xFLAG}</i>	For chromosomal atu1847 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pInt_ <i>atu8135^{3xFLAG}</i>	For chromosomal atu8135 ^{3xFLAG} via single-	This study
	crossover. Constructed from pK18.	
pBISN1	For seedling infection assays.	(9)

Table S3. Plasmid construction. The plasmids that were constructed in this study are listed with a detailed cloning scheme. For each PCR the primer numbers are given (see Tab. S4). The template is given in parentheses whenever it was not *A. tumefaciens* DNA. The nucleases in parentheses indicate that a DNA fragment was digested prior to ligation.

Plasmid	Cloning scheme
pDel_ <i>L4</i>	- PCR ₁ : 1 + 2
	- PCR ₂ : 3 + 4
	- Ligation ₁ : PCR ₁ (BamHI) + PCR ₂ (BamHI)
	- Ligation ₂ : pK19 <i>mobsacB</i> (PstI, HindIII) + Ligation ₁ (PstI, HindIII)
pDel_ <i>atu1667</i>	- PCR ₁ : 5 + 6
	- PCR ₂ : 7 + 8
	- Ligation ₁ : PCR ₁ (Bsal) + PCR ₂ (Bsal)
	- Ligation ₂ : pK19 <i>mobsacB</i> (PstI) + Ligation ₁ (PstI)
pDel_ <i>atu</i> 8161	- PCR ₁ : 9 + 10
	- PCR ₂ : 11 + 12
	- Ligation 1: PCR1 (Bsal) + PCR2 (Bsal)
	$-Ligation_2$: pK19 <i>mobsacB</i> (Psti) + Ligation ₁ (Psti)
pkO_ <i>isrB</i>	- PUK1: 13 + 14 Lizetian : nVP240L(KnnL Call) : DCP (KnnL Call)
	- Ligation ₁ : pYP2401 (Kpni, Sail) + PCR ₁ (Kpni, Sail)
	- Restriction (EcoRI, PStI) \rightarrow Gm ⁴ cassette
	- Ligation ₂ : Ligation ₁ (ECORI, PSti) + Restriction ₁
pint_Ev	- PUK1: 15 + 16
	$- FCR_2$. 17 + 10 Ligation: PCR_2 (Yhal) + PCR_2 (Yhal)
	$-Ligation_{1}$, FCR1 (Abdi) + FCR2 (Abdi)
plpt 14	$- PCR \cdot 19 \pm 20$
pint_L4	- Ligation: pK18 (PstL Smal) + PCR (PstL Smal)
plnt 1 4 ^{3xFLAG}	- PCR1: 21 + 22
p	- PCR ₂ : 35 + 36 (pYP247)
	- Ligation 1: PCR_1 (Sall) + PCR_2 (Sall)
	- Ligation ₂ : pK18 (Acc65I, PstI) + Ligation ₁ (Acc65I, PstI)
pInt_atu1667 ^{3xFLAG}	- PCR1: 23 + 24
· _	- PCR ₂ : 35 + 36 (pYP247)
	- Ligation1: PCR1 (Sall) + PCR2 (Sall)
	- Ligation ₂ : pK18 (Acc65I, PstI) + Ligation ₁ (Acc65I, PstI)
pInt_ atu8161 ^{3xFLAG}	- PCR ₁ : 25 + 26
	- PCR ₂ : 35 + 36 (pYP247)
	- Ligation ₁ : PCR ₁ (Sall) + PCR ₂ (Sall)
	- Ligation ₂ : pK18 (Acc65I, PstI) + Ligation ₁ (Acc65I, PstI)
pInt_ <i>atu1766^{3xFLAG}</i>	- PCR: 27 + 28
	- Ligation: pInt_L4 ^{3xFLAG} (EcoRI, PstI) + PCR (EcoRI, PstI)
pInt_atu1865 ^{3xFLAG}	- PCR: 29 + 30
	- Ligation: pInt_L4 ^{3xPLAG} (EcoRI, PstI) + PCR (EcoRI, PstI)
pInt_atu18473xFLAG	- PCR1: 31 + 32
	$-PUR_2: 35 + 36 (PYP247)$
	- Liation: PCR1 (Sall) + PCR2 (Sall)
plat atu 91253xFLAG	- Ligation2. pr to (Accobi, PSti) + Ligation1 (Accobi, PSti)
	$ = P \cap R_1$. 33 + 34 = $P \cap R_2$: 35 + 36 (nVP2/17)
	$= 1 \text{ (ation (: PCR_4 (Sall) + PCR_2 (Sall))}$
	-1 ination ₂ : nK18 (Acc65) Pstl) + 1 ination ₄ (Acc65) Pstl)
	$1 - Ligation_2$. pr to (Accost, PSt) + Ligation (Accost, PSt)

Table S4. Oligonucleotides used in this study.

No	Drimer neme	Servence	Designated
NO.	Primer name	Sequence	use
1	DelUp L4 fwd	TTTTCTGCAGGTTCGGCAAGGGTTTTAC	Construction of
2	DelUp L4 rev	TTTTGGATCCGTGCAATGGTTCCAATTTACC	pDel L4
3	DelDown_L4_fwd	TTTTGGATCCAACAATTGGCGCAAATATCG	1' -
4	DelDown_L4_rev	TTTTAAGCTTGGAAGATAGCATTTTTCTGCG	
5	DelUp_atu1667_fwd	TTTTCTGCAGCCCGCTGTCAAACCCCGC	Construction of
6	DelUp_atu1667_rev	TTTTGGTCTCATTTCATCTTCCTCTTCGTGCTGTTC	pDel_atu1667
7	DelDown_atu1667_fwd	TTTTGGTCTCAGAAATAATAAAACGCGCCGCCGC	
8	DelDown_atu1667_rev	TTTTCTGCAGATGCATTTGTGCACTATGTCGGC	
9	DelUp_atu8161_fwd	TTTTCTGCAGCAAAACGCATGCGTCAAAGCAGC	Construction of
10	DelUp_atu8161_rev	TTTTGGTCTCAGATCGTTTCCTCAATCTTTCTTTGATTTC	pDel_ <i>atu816</i> .
11	DelDown_atu8161_fwd	TTTTGGTCTCAGATCGGCGTAAAAGATCGTCCCGC	-
12	DelDown_atu8161_rev		
13	KO_lsrB_fwd		Construction of
14	KO_IsrB_rev		pKO_ISIB
15	IntUp_EV_twd		Construction of
16	IntUp_EV_rev		pini_⊑v
17	IntDown_EV_fwd		
10	IntDown EV rov		
10	Int LA fud		Construction of
20	Int_L4_rov		nInt 14
20	Int_L4_Iev		Construction of
21	Int_L4 _IWU		nInt 1 4 ^{3xFLAG}
22	Int_L4Iev		Construction of
23	Int_atu16673xFLAG_rov		plpt atu1667 ^{3xFLA}
24	Int_atu 1007***_Iev		G
25	Int atu8161 ^{3xFLAG} fwd	TTTTGGTACCTCAACAGCCGAGAGC	Construction of
26	Int atu8161 ^{3xFLAG} rev	TTTTGTCGACGCGGAACGAACGGGAAG	plnt atu8161 ^{3xFLA}
20			G –
27	Int_atu1766 ^{3xFLAG} _fwd	TTTTGAATTCGGTACCATGATACATTATCTGCCGGCGAC	Construction of
28	Int_atu1766 ^{3xFLAG} _rev	TTTTGTCGACTTTGCGGACGGCGTGTATGCGG	pInt_atu1766 ^{3xFLA}
			G
29	Int_atu1865 ^{3xFLAG} _fwd	TTTTGAATTCGGTACCATTGGTAGCATATGCGCTGC	Construction of
30	Int_atu1865 ^{3xFLAG} _rev	TTTTGTCGACAAACCGCGGCGCCCACGGTAC	pInt_atu1865 ^{3XFLA}
21	Int atu19173xFLAG fund		Construction of
31	Int_alu1647 ^{3xELAG} _IWU		nint atu18/7 ^{3xFLA}
32	Int_atu 1847 a Tev		G
33	Int atu8135 ^{3xFLAG} fwd	TTTTGGTACCATGCGCACGGCAGAACGGAG	Construction of
34	Int atu8135 ^{3xFLAG} rev	TTTTGTCGACAAGCGTCTTGAAACGCGTGAC	plnt atu8135 ^{3xFLA}
0.			G –
35	3xFLAG_fwd	TTTTGTCGACTACAAAGACCATGACG	C-terminal
36	3xFLAG_rev	TTTTCTGCAGGGATCTTATCATTTATCGTC	3xFLAG-tag
			fusions
37	TestDel_L4_fwd	CACGCCGTCCATGTGGCTG	Check deletion of
38	TestDel_L4_rev	GTGCAGTTCACGGGCGCTC	L4
39	TestDel_atu1667_fwd	GGTCAATTTACCGGCTTGCCTTGC	Check deletion of
40	TestDel_atu1667_rev	GCCAGAGACGGGAGCCTCAGG	atu1667
41	TestDel_atu8161_fwd	CCGCAAATTTAGCCGACATAGTGCAC	Check deletion of
42	TestDel_atu8161_rev	CGCTTTTCCAAAGGCTGGTTTCTCC	atu8161
43	TestKO_lsrB_fwd	TCCTGCAGGAACGGCTGTTT	Check knock-out
44	TestKO_ <i>lsrB</i> _rev	GTCACGTCTCTGTGAGCATC	of IsrB
45	TestInt_L4_fwd	GCGCGACGAACGCTAACGTTTTCGGC	Check
46	TestInt_L4_rev	GGTTTAGGTGACGTCAGCAACGTTTTCGTTC	A. tumefaciens
47	TestInt_L4_rev2	GTCACGACGTTGTAAAACGACGGCCAGTG	$\Delta\Delta\Delta + L4$
48	TestInt_L4 ^{3xFLAG} _fwd	GGCATGATAAAGCGCATATAGAGGG	
49	TestInt_ <i>atu1667</i> ^{3xFLAG} _fwd	GCGTTTCGTGCATAGGTGACATC	Check integration
50	TestInt_atu8161 ^{3xFLAG} _fwd	CACTGCACAACATGGCCTAATGTC	of 3xFLAG
51	TestInt_atu1766 ^{3xFLAG} _fwd	GGATCGTGGTTCACGAAAGGATC	
52	TestInt_atu1865 ^{3xFLAG} _fwd	GGGATGGATTTCCCATGCAAAATGATC	
53	TestInt_atu1847 ^{3xFLAG} _fwd	GCATTGAATGACATCAAAACACACGG	
54	TestInt_ <i>atu</i> 8135 ^{3xFLAG} _fwd	CCAAGCAAATCAGTATCAACCTGG	
55	Test_3xFLAG_rev	CACCGTCATGGTCTTTGTAGTCG	
56	Probe_L4_fwd	ATCAAAGGACGCCGGAACG	PCR for RNA
57	Probe_L4_rev	GAAATTAATACGACTCACTATAGGGCATGACATGACCCTTTCTG	probe against L4
1	1		

Table S4. (Continued)

No	Primer name	ame Sequence			
NO.	T Timer Hame	Jequence	use		
58	Probe_atu1667_fwd	ATACAGAGATCAGTTCAGCCC	PCR for RNA		
59	Probe_atu1667_rev	GAAATTAATACGACTCACTATAGGGCATTTTCATCTTCCTCTTCG	probe against <i>atu1667</i>		
60	Probe_atu8161_fwd	CCTCAACAGCCGAGAGCACAG	PCR for RNA		
61	Probe_atu8161_rev	GAAATTAATACGACTCACTATAGGGTTCATGATCGTTTCCTC	probe against <i>atu8161</i>		
62	Probe_atu1766_fwd	GGATCAAAGACATGACCATGATACATTATC	PCR for RNA		
63	Probe_atu1766_rev	GAAATTAATACGACTCACTATAGGGTCGGCCATCATTTGCGGAC	probe against atu1766		
64	Probe_atu1865_fwd	GGATTTCCCATGCAAAATGATCAACCATTG	PCR for RNA		
65	Probe_atu1865_rev	GAAATTAATACGACTCACTATAGGGCCGCCACTGCTCAAAACCG	probe against <i>atu1865</i>		
66	Probe_atu1847_fwd	GCGCAAGATGGATCAATACCTTTCGACAG	PCR for RNA		
67	Probe_atu1847_rev	GAAATTAATACGACTCACTATAGGGCCAGGAGAAAAGCTGAGATTTC G	probe against <i>atu184</i> 7		
68	Probe_atu8135_fwd	CGGAAGGATAAGTATCATGCGCACGG	PCR for RNA		
69	Probe_atu8135_rev	GAAATTAATACGACTCACTATAGGGACGTCGGATCTTCCAACAGG	probe against <i>atu813</i> 5		
70	Probe_pstS_fwd	CGGCTGCGTCCACAAACAAGCCCACG	PCR for RNA		
71	Probe_pstS_rev	GAAATTAATACGACTCACTATAGGGCGATGTCGATGGTGCCTTCGCC	probe against pstS (atu0420)		
72	Probe_adh_fwd	CGACGTCGTCATCGATATCAAATATGCCGG	PCR for RNA		
73	Probe_ <i>adh</i> _rev	GAAATTAATACGACTCACTATAGGGTGGCGCAGCCAACGCAGGAATC	probe against adh (atu2022)		