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Supplementary Figures 

 
Supplementary Figure 1. The method for fabrication of the tactile TENG (T-TENG) sensor.  

 
Supplementary Figure 2. The simplified diagram of the contact process for electrostatic analysis. 
This figure is used to express the working mechanism to detect the contact position between the adjacent 
electrodes of T-TENG sensor. The detailed discussion can be found in Supplementary Note 1. 

 

 
Supplementary Figure 3. Schematics of stretching and recovery machine of L-TENG sensor. 
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Supplementary Figure 4. The simple tests for L-TENG sensor. (a) The recovery output of the L-TENG 
sensor in stretching tests. (b) The measured output with three different bending angles (30°, 60°, 90°) 
when the sensor is mounted on the index finger. (c) Schematic diagram showing the circuit connection 
from the sensors to the robotic hand. 
 
 
 
 

 
Supplementary Figure 5. The mechanics characterization of L-TENG sensor. (a) The displacement-
force relationship. (b) The testing device. (c) The original diameter of L-TENG sensor. 
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Supplementary Figure 6. The main structure of the soft gripper. (a) The parameter of singular actuator. 
(b) The layout of the soft gripper. 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 7. The fabrication method of the soft actuator. (a) The parameter of the 
material. (b) The setting of the 3D printer. (c) The fabrication of the soft actuator. (d) The soft actuator’s 
sample. 
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Supplementary Figure 8. The characterization of the soft actuator integrated with the L-TENG 
sensor. (a) The test system to control the soft actuator. (b)-(f) The sensor signals with different input air 
pressures. 
 
 

 
Supplementary Figure 9. The open-circuit signals of L-TENG sensor in bending tests. 
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Supplementary Figure 10. Bending test of the soft actuators. 

 
Supplementary Figure 11. Bending test of the soft actuators integrated with L-TENG sensor. 
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Supplementary Figure 12. Signals in gripping verification of the soft gripper integrated with T-
TENG sensor. (a)-(c) contact-separation signals (9 times) when gripping and releasing the object in 
different contact positions. (d) The ratio of difference electrodes’ output voltage (E1-E4) when gripping 
an apple with various contact positions. (e) The contact-separation signals in the shadow area of (b). 
 
 
 
 
 

 
Supplementary Figure 13. The method for integrating soft actuators with T-TENG sensor. 
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Supplementary Figure 14. The input voltage signals of 15 channels for 16 different grasped objects. 
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Supplementary Figure 15. Peak voltage maps of the T-TENG sensors for 16 different objects.  
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Supplementary Figure 16. The confusion maps for machine learning outcomes after trained by 
using different numbers of channel. (a) The confusion map after trained by using 15 channels (i.e., five 
channels for each soft actuator). (b) The confusion map after trained by using 6 channels (i.e., one T-
TENG sensor (five channels) and one L-TENG sensor). 
 
 

 
Supplementary Figure 17. The confusion maps for machine learning outcomes after trained by 
gripping 16 types of objects. (a) The confusion map for only using L-TENG sensors (i.e., 3 channels 
connected to L-TENG sensors mounted on different soft actuators). (b) The confusion map for only using 
T-TENG sensors (i.e., four channels for each soft actuator). 
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Supplementary Tables 

Supplementary Table 1. Comparison of the tactile sensor based on various methods 

Method Position Sliding Contact 

Surface 

Force Electrode 

Number 

Application 

Triboelectric 

Simple 

(Contact or 

separation) 

No No  No One Soft gripper1–3 

Triboelectric 
5×5 sensory 

array 
Yes  No  No Four Robot control4 

Triboelectric 
8×8 sensory 

array  
Yes Yes No Sixteen Wearable device5 

Triboelectric 

Simple 

(Contact or 

separation) 

No No No 
Two or 

three  
Wearable device 6,7 

Capacitive, 

Triboelectric 

4×4 sensory 

array  
Yes No Normal Eight  Humanoid Hand8 

Piezoresistive No No Yes No One Soft gripper9 

Piezoresistive Yes No No Yes One Soft gripper10 

Piezoresistive Yes No Yes  No 
Two or 

more 
Soft gripper11 

Piezoelectric No Yes No No Two     Textile detection12 

Piezoelectric No No No 
Contact 

or not 
One Wearable device13 

Capacitive Yes  No No No Four HMI14 

Capacitive No No No 3-axis Four Humanoid Hand15 

Capacitive Yes No No 
Contact 

or not 
Six Wearable device16 

Thermosensitive No No No Normal One Humanoid Hand17 

Optical Yes No No Normal  Sensor Mechanism18 

 

 

 

 



12 
 

Supplementary Table 2. Parameter optimization of SVM and PCA 

Classification 

accuracy 

Penalty parameter C 

� × ���� � × ���� 1 10 

Linear kernel 

 

PCs = 100 96.25% 95.938% 95.938% 95.938% 

PCs = 120 96.563% 96.563% 96.563% 96.563% 

PCs = 150 97.5% 97.5% 97.5% 97.5% 

PCs = 200 98.125% 97.813% 97.813% 97.813% 

PCs = 250 97.5% 97.5% 97.5% 97.5% 

 

 

Supplementary Table 3. The real-time object recognition results under different temperatures 

Temperature Small box Orange Apple Long Can Short Can Accuracy 

298K 20/20 19/20 19/20 20/20 19/20 97/100 (97%) 

313K 20/20 17/20 18/20 19/20 20/20 95/100 (95%) 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 
 

 

Supplementary Table 4. The test results for verifying the stability of the smart system 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 

 

 Gripping Counts 

 100 300 500 700 1000 1300 1500 1800 2000 

Small Box 20/20 20/20 20/20 19/20 20/20 18/20 20/20 20/20 20/20 

Orange 19/20 18/20 19/20 18/20 17/20 18/20 17/20 19/20 19/20 

Apple 19/20 19/20 19/20 20/20 20/20 19/20 19/20 19/20 19/20 

Long Can 20/20 20/20 18/20 19/20 18/20 20/20 20/20 20/20 19/20 

Short Can 18/20 20/20 20/20 20/20 19/20 20/20 19/20 19/20 19/20 

Accuracy 
96/100 

(96%) 

97/100 

(97%) 

96/100 

(96%) 

96/100 

(96%) 

94/100 

(94%) 

95/100 

(95%) 

95/100 

(95%) 

97/100 

(97%) 

96/100 

(96%) 



13 
 

Supplementary Notes  

Supplementary Note 1. The method for sensing the contact position with improved accuracy. 

It is possible for our T-TENG with improved accuracy, besides detecting the position of the middle 

of two electrodes or above electrodes. Here, the Supplementary Fig. 2 is harnessed to explain the contact 

process. According to the electrostatic induction, we can define the electric potential as  

Q
U k

r
                                                                       (1) 

where Q is the amount of charge in the object, r is the distance to the point charge, and k is Coulomb’s 

constant.  

The distance between two nearby electrodes (Ei and Ei+1) is assumed to be l. So, if we assume that a 

charge of +Q moves to the silicone rubber surface with a distance of h, the output voltage of two nearby 

electrodes can be expressed as 

2 2

1 2 2

+

( ) +

i

i

Q Q
V k k

xx h

Q Q
V k k

l xl x h



 



  

 

                                                 (2) 

where x represents the distance between the touch point to Ei, l-x represents the distance between the touch 

point and Ei+1, and Vi  denotes the output voltages of the ith electrode.  

Thus, the ratio can be derived as  

2 2

1

2 2

1 1

( )

1 1
i

i

l xl x hV

V
xx h




 






                                                      (3) 

So, if h is large enough, we can obtain 

1i

i

V x

V l x
 


                                                                    (4) 
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Therefore, the ratio can be used to explain the method to get a more accuracy position under various 

speeds and strain speeds. Similarly, as the electrode number is increased to four, we can use 

4

1

Ratio /i i

i

V V


  to sense the position. 

 

Supplementary Note 2. The output signals for soft actuator with L-TENG sensor. 

The soft actuator with L-TENG sensor was tested by the testing system as shown in Supplementary 

Fig. 8a.  A reducing value connected with the air pressure sensor (ISE30A, SMC) was used to adjust the 

input air pressure, and then a two-position-three-way solenoid valve with a mechanical switch was applied 

to control the intake or exhaust of the soft actuator. Then, the solenoid valve was directly connected to the 

soft actuator or soft gripper. Here, the soft actuator integrated with L-TENG sensor was fixed on a frock 

and the triboelectric signal was recorded by both an ADC with concerned circuits and the electrometer 

(Model 6514, Keithley) connected to an oscilloscope (DSO-X3034A, Agilent). The air pressure starts 

from 50 kPa and increased by 10 kPa each step (50 kPa to 160 kPa) during the experiment. The result 

(Supplementary Fig. 8) shows some of the signals recorded by the ADC, and the whole relationship 

between input air pressure and the peak counting can be found in Fig. 4c. The open-circuit result in 

Supplementary Fig. 9 with the same peak number as the one in Supplementary Fig. 8 under the same input 

air pressure verifies the validity of the data. In addition, a movie (Supplementary Movie 4) shows the real-

time signal tested with 130 kPa air pressure.  

 

Supplementary Note 3. Analysis of the bending degree variations for soft actuator with L-TENG 

sensor or not. 

It is necessary to evaluate the bending degree variations for soft actuator with L-TENG sensor or not 

to confirm the working space or mechanical property change caused by the L-TENG sensor.  Hence, we 
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tested the bending capability of our 3D-printed soft pneumatic actuator to obtain the relationship between 

input air pressure and the corresponding bending degree of the soft actuator. The concerned control 

method is as same as the one in Supplementary Note 2. Note that the bending angle here is calculated by 

comparing to its original value (i.e., 0° for actuator without L-TENG sensor and -40° for the one with L-

TENG sensor). As depicted in Supplementary Fig. 10, with the incremental air pressure, the bending 

degree of the soft actuator without L-TENG sensor is increasing and the relationship shows good linearity. 

Then, we tested the soft actuator integrated with L-TENG sensor under the same condition. As shown in 

Fig. 4c and Supplementary Fig. 11, although the relationship remains linearity, there is about 10° less 

deformation as comparing to the actuator without L-TENG sensor under the same air pressure. The reason 

is that the output force of the soft actuator needs to compensate the pulling force from the strip of L-TENG 

sensor, which can be solved by providing higher air pressure.  

 

Supplementary Note 4.  The data collecting process and the finger contact location on objects. 

In terms of the primary demonstration of showing the feasibility for object recognition in warehouse 

or factory where the robotic gripper usually grasps products with the same position and angle, we try to 

maintain a relatively fixed position for 100 grasps for each object during the data collection process to 

achieve a better prediction result with less samples. The peak voltage maps of the T-TENG sensors for 

different objects shown in Supplementary Fig. 15 provide a reference for the finger contact location on 

the object. The peak voltages of the 12 T-TENG sensors for each sample are normalized between zero 

and one, and a darker color means larger contact area and contact force at this location during grasping. 

The grasping pressure differences among the 12 T-TENG sensors between objects are also clearly 

illustrated in this figure. Though the fabrication errors existing in our homemade sensors and pneumatic 

fingers may result in the asymmetrical distribution of the peak voltages in the T-TENG sensors for 
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symmetric objects, this will not affect the prediction ability of the system because both the training and 

testing process are done by one specific gripper and the error between different sensors is also the same 

for all objects. This problem can be solved in the future by using more stringent and unified fabrication 

standards. 

Additionally, for those grasps, some of them from different objects may look similar at a certain time 

frame (i.e., the time of taking photo, or the time of drawing the pressure maps). However, as we mentioned 

in main manuscript, we are using a period of output data (200 data points at time series) of 15 channels as 

a training sample, which means the data includes the information of the contact force, speed, sequences, 

contact positions, latency, and the contact durations etc. Those multi-dimensional features, rather than the 

individual grasping position, will then define the identity of the grasped object. As a result, as long as 

those objects have distinct shape differences, the object recognition can be achieved. 

 

Supplementary Note 5. Object recognition accuracy under changing temperature and long-term 

use. 

Similar to other reported devices, the proposed triboelectric sensors may be influenced by changing 

temperature and long-term use. However, the peak counting and readout of output ration in this paper are 

the data processing strategies which can eliminate the absolute amplitude variations of triboelectric output 

caused by environmental variations, and hence, to ensure the signal stability throughout the usage. Some 

concerned experiments have been applied to verify this property. 

Due to our application environment where the temperature seems to remain in a constant value (298K) 

and the fluctuation of temperature is quite small, we have compared the object recognition result under 

298K and 313K. As depicted in Supplementary Table 3, the results indicate that within normal ambient 

temperature, our TENG sensory system is not very sensitive to the temperature. In addition, we can also 



17 
 

improve the accuracy of the model by getting more data under different temperatures for training to 

enhance the versatility of the model when environment has large temperature variation. As for recognition 

accuracy for long-term use, in order to reduce the proportion of necessary training and testing times in the 

entire stability test and make the result for certain utilization cycles more accurate, we choose to use less 

data: 80 samples for training for each object (total 5 objects) and 20 samples for testing for each object 

after cycles of utilization. As shown in Supplementary Table 4, our results indicate that though the 

recognition accuracy has some inevitable fluctuation due to the environmental and man-made noise, the 

average accuracy remains high level and there isn’t an obvious decrease after gripping for 2000 times. 

Therefore, we believe that our design can keep a high accuracy even though after cycles of utilization and 

in the environment with some changing temperature.  
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