
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

Disclaimer: I am not an author of any papers I mention in the review. 

 

 

Paper Description 

 

This paper describes two novel low-cost sensors for robotic perception, based on triboelectric 

nanogenerators (TENGs). In the introduction, the authors describe the need for smarter, low cost and high-

information sensors for factories and industrial digital twins. They mention some disadvantages of modern 

sensors for robots with rigid fingers, and some of the sensors used in soft robotics. They then describe some 

methods of sensing in soft robotics (piezoelectricity, triboelectricity e.a.) and the existing use of TENGs in 

robotic sensing, combined with glove-based user-input devices. Their main thesis is that their developed 

sensors fill the gap in the sense that they are cheap to produce, convey large amounts of information, and 

contrary to exiting works they can detect contact, slippage, and contact type (point or area contact). They 

then describe their sensors: the length-TENG (L-TENG) sensor consists of a positive triboelectric component, 

which is a gear with four teeth. The negative component is an elastic strip of PTFE. As the strip is pulled, the 

gear’s teeth momentarily touch the strip and result in the generation of a brief triboelectric voltage spike. 

The distance between spikes and their number, carry information related to the gear spinning angle and 

direction. A spring then ensures the smooth transition of the strip to the initial state. The tactile-TENG (T-

TENG) sensor consists of five electrodes, one along the edge of a strip, and four across different points. 

Through triboelectric and electrostatic induction effects, the electrodes fire with different amplitudes when 

there is a contact. By comparing the electrode outputs, as well as the time difference between them, the 

sensor can detect contact and sliding motion along its length. The amplitude of the electrode along the edge 

provides info about the type of contact. The authors then demonstrate the usefulness of the sensors in a 

series of experiments. They control the bending angle and direction of a robotic finger with a glove that 

houses the two sensors. They then present a custom pneumatic soft robotic finger that can house the T-

TENG sensor, calibrate it with and test the finger-sensor integration and the sensor output profiles by 

grasping a number of objects (apple, orange egg and turnip). They also show how the sensor signals 

extracted from grasping various objects (cube, cylinders, spheres and ring) can be used in tactile object 

recognition through SVM learning, achieving high recognition accuracy. Finally, they employ the SVM 

algorithm in a digital twin factory scenario, where a real soft gripper equipped with the T-TENG sensor 

recognizes various objects, and the digital twin robot sorts the object in different objects. 

 

 

Paper strengths 

 

Overall, the paper is well written. The introduction is well formed, and the authors incrementally build their 

arguments towards the novelty of their sensors and potential uses, and explain the merits compared to the 

existing literature. I believe that both the L-TENG and T-TENG sensors show very innovative designs, and 

the authors do a remarkable job in explaining how the output voltage signals are generated, and how these 

voltage profiles can be used to express robotic joint outputs and to detect slippage and contact detection. 

The experiments presented are simple and “to the point”, clearly explaining their purpose and proving the 

arguments. The HMI control experiment provides a fundamental mapping of the L-TENG sensor output to a 

robotic joint position. I feel that the experiment would be more representative of robotic HMI control if the 

authors could show the continuous movement of the L-TENG on the HMI and the corresponding motion of 

the robotic joint, instead of 30-degree intervals, and I strongly encourage them to do so. The soft finger 

experiment helped showcase how the voltage profiles of the T-TENG sensor are used in object grasping. The 

object recognition experiment achieves very high accuracy, and I would like to see the results of it extended 

to new objects of varying curvatures (the YCB dataset would be a good test case [1]). 

 

 

Paper shortcomings 



 

The main criticism I have to offer is that the paper feels crammed. The authors try to present and solve a 

large range of problems related to joint position sensor design, tactile sensor design, robot teleoperation 

with HMIs, soft finger design, soft finger grasping, object recognition and learning, and digital twin 

applications. This is reflected to both the introduction section, where the authors list too many potential 

applications to solve, as well as the experimental methodology (i.e. lots of small-scale experiments to test a 

broad variety of issues). I believe that the digital twin experiment, albeit successful, was a bit unnecessary 

as it merely showed a grasping simulation executed with the SVM results as input. I would suggest that the 

paper could be broken into two papers: one sensor-oriented, that would describe analytically the sensors’ 

principle of operation, the voltage profile generation, and the HMI control with more elaborate control 

methods, and one application oriented, where the authors could pick up a potential application (learning, 

digital twin or other) and demonstrate the usefulness of the sensors through thorough experiments and 

comparison with existing solutions of their chosen problems (for example, how does their T-TENG sensor 

perform compared to tactile sensors and skins in an object recognition experiment?). 

 

 

Minor issues 

 

The authors should check the spelling of some words throughout the manuscript and title. 

 

 

Comments on the supplementary material 

 

The supplementary material and schematics were useful to understand the soft finger operation. The video 

of the digital twin execution is simple and indicative. The video of the HMI is also clear, however it left me 

confused over the use of the T-TENG sensor. The authors claim in the paper that the T-TENG sensor is used 

to change the bending direction, however in the video it looks as if the T-TENG sensor does not affect the 

motion direction (the bending direction just seems to copy the motion of the glove finger). The authors 

should clarify a bit more how the T-TENG sensor is used on the HMI control experiment, and show it with 

some schematics or images. 

 

 

References 

[1] Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., Abbeel, P. and Dollar, A.M., 2017. 

Yale-CMU-Berkeley dataset for robotic manipulation research. The International Journal of Robotics 

Research, 36(3), pp.261-268. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

The manuscript enabled “Development of Low-cost Human-Machin-Interface Using Triboelectric 

Nanogenerator Sensors for Future Digital Twin” reported a self-powered intelligent warehouse system 

integrated with triboelectric nanogenerator (TENG) technology. Due to the synergistic effect of a length 

TENG (L-TENG) and a tactile-TENG (T-TENG), this smart system trained by machine algorithm exhibited an 

impressive capability of object identification with decent accuracy. Generally, this work is well illustrated 

with clearly organized figures and strong logics. The only concern is that this manuscript is mainly a fancy 

engineering technology demonstration, where TENG technology was used as a sensing interface to achieve 

artificial intelligence/machine learning. This application itself is not quite new, and there is almost no new 

fundamental understanding, new mechanism illustration, materials innovation, or novel discovery. The 

scientific value of this work is not significant. Again, it is a nice piece of engineering demonstration. It will be 

very helpful if the authors could elaborate more about technology advancements achieved in this work. 

Other minor concerns listed below should also be addressed: 

1. Page 3, line 63-65, in the introduction section, the authors claimed that resistive sensors suffer from 

temperature instability that prevents their practicality. However, temperature also impacts TENG output 



according to others’ report (Advanced Engineering Materials 19.12 (2017): 1700275.). In order to show the 

superiority of TENG over other technologies, the authors are suggested show the accuracy of object 

identification under different temperature. 

2. Page 4, line 88-90, the statement that soft materials of TENG and PENG has the same Young’s modulus 

level as silicone and TPU is not correct. Piezoelectric soft polymer such as PVDF has Young’s modulus up to 1 

GPa, which is a few orders of magnitude higher than the modulus of soft silicone and TPU (1-10 MPa). 

3. The measurements shown in Fig 3 are qualitative, such as tapping in the middle area between two 

electrodes will trigger smaller signals compared to direct tapping above the electrodes, and more contact 

area, lager output. This is all empirical. The contact speed and strain speed will all affect the output. Is there 

any fitting equation/curve could bridge position and output to predict the precise output at different position 

under different contact and strain speed? This might help further improve the accuracy. 

4. How is the stability of the smart system? After cycles of utilization, is the accuracy still over 97%? 

5. The authors should check typos before submission. The typos such as “nanaocomposites” in page 4, line 

86 should be corrected. 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

The major claims of the paper include the design of a flexible sensor called a L-TENG sensor to capture 

continuous motion of a soft gripper coupled with a T-TENG sensor for tactile sensing. The reviewer has listed 

several comments that will enhance the quality of the submission. 

1. The work presented will be of interest to the audience of the journal and appears to be an extension of 

previous TENG advancements. The work described in the text along with the supplemental information 

indicate that the work can be reproduced by the authors. 

2. The authors state, ". Compared to the previous solutions, the developed sensing system with patterned-

electrode tactile TENG (T-TENG) sensor can detect sliding, contact position and gripping mode. " This 

statement would be better supported with quantitative comparison of the proposed new design with other 

solutions, optical etc. in a small table or figure. 

3. The authors state, "With a layer of silicone rubber, a kind of flexible and stretchable negative triboelectric 

material, coated on the surface of the patch, triboelectric signals can be generated by the stimuli on the T-

TENG sensor’s surface and collected in these five electrodes," and couple this with a methods section. The 

process could be described in a more detailed manner and paired with the appropriate figure. 

4. Since sensor and fabric application to the host influences detection and output signal, brief explanation of 

the method/type of adhesive used would be beneficial. 

5. Figure 1 is difficult to read. In particular, the fonts are too small to read. Also, the relationship between 

elements in the figure are not clearly illustrated or described in the caption/text. 

In summary, the work described is interesting and a meaningful advancement in TENG technology that can 

be applied to many applications. 
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Thank you for your letter and for the reviewers’ comments concerning our manuscript 
entitled “Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital 
Twin Applications”, which is modified from the original title of “Development of 
Low-cost Human-Machin-Interface Using Triboelectric Nanogenerator Sensors for 
Future Digital Twin”, in order to reflect our main idea from the context precisely. 
Your comments are all valuable and very helpful for revising and improving our paper, 
as well as the important guiding significance to our research. We have studied 
comments carefully and have made the correction which we hope meet with approval. 
Briefly speaking, we have done extra experiment to collect new data in response to 
reviewers’ comments. Thus, we have redesigned Fig. 1(a), 1(b) and 1(c), added Fig. 
1(d). We have labeled the original Fig. 3 as new Fig. 2 and have merged Fig. 2(a) and 
2(b) with Fig. 4(a), 4(c), 4(d) and 4(e) into new Fig. 3. The original Fig. 2(c), 2(d) and 
Fig. 4(b) have been moved into the Supplementary Materials and labeled as Fig. S4. 
We have labeled the original Fig. 5 as new Fig. 4, rearranged Fig. 4(d), 4(e), 4(f), and 
4(i), moved original Fig. 5(g) to Fig. S12(d), and moved original Fig. 6(b) and 6(c) to 
Fig. 4(h) and 4(i). We have added new Fig. 5 for machine learning experiments, and 
the corresponding description into the result and discussion. We have also revised Fig. 
6(a) and 6(b), and labeled the original Fig. 6(d) as Fig. 6(c). In Supplementary 
Materials, we have added new Fig. S1, S2 (with the description of Text S1), S14, and 
S15, added Table. S1, S2, S3, Text S2, S3, S4 and modified Fig. S13. The main 
corrections in the paper and the responses to the reviewer’s comments are as 
following: 
 
 
 
Reviewer 1 
 
Comments 1: I feel that the experiment would be more representative of robotic HMI 
control if the authors could show the continuous movement of the L-TENG on the 
HMI and the corresponding motion of the robotic joint, instead of 30-degree intervals, 
and I strongly encourage them to do so. 
Response: 
We thank a lot for reviewer's valuable comment and suggestion. In terms of 
continuous motion sensing, there are several researches have demonstrated the 
continuous finger bending sensor, such as the grating patterned TENG sensor (Nano 
Energy, 2018, 54, 453–460), and many resistive based sensors (ACS Sens. 2016, 1, 
817−825), etc. For out proposed L-TENG, the fundamental working principle is able 
to realize the continuous sensing. It has a resolution of 5mm. For the data glove 
presented in our paper, the length variation is limited by the finger deformation when 
the PTFE strip of L-TENG is pulled out by finger, and the number of contacts 
between the gear teeth and the strip is then limited for representing the displacement. 
Therefore, we realized the 30-degree interval. It is possible for higher accuracy as we 
mentioned in Page 11 (i.e., increasing transmission ratio or the number of the gear 
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tooth, etc.). The L-TNEG with corresponding structure for improving precision is 
planned in our future work. To make it feasible, we can apply fabrication process with 
high precision, such as metallurgy or laser machining, in order to create fine pattern of 
teeth to enhance the resolution.  
On the other hand, as our main novelty in this manuscript, we proposed tactile sensor 
(T-TENG) and length sensor (L-TENG) to form a perception system with machine 
learning technique for improving the intelligence of the soft gripper. The peak 
counting and readout of output ratio are the data processing strategies which can 
eliminate the absolute amplitude variations of triboelectric output caused by 
environmental variations, and hence, to ensure the signal stability throughout 
the usage. Moreover, by effectively utilizing the multi-dimensional data provided by 
two different sensors, the machine learning approach can provide equivalent precise 
measurement compared to continuous sensing regarding the object recognition, while 
avoiding the huge amount of data acquisition for continuous monitoring.  
 
Comments 2: I would like to see the results of it extended to new objects of varying 
curvatures (the YCB dataset would be a good test case [1]). 
Response: We appreciate the reviewer’s suggestion on extending objects of varying 
curvatures. We agree that it would be better if more objects can be applied. In our 
previous work, only one T-TENG and one L-TENG sensor were applied to collect the 
data of 6 objects and we tested 200 times for machine learning training. It is feasible 
for our system to further enhance the recognition capability by using more sensors 
(each finger has one T-TENG sensor and one L-TENG sensor). Therefore, in response 
to the reviewer’s advice, 16 types of objects with various shapes have been tested to 
construct the new data set, where we used 15 sensing channels (four channels of 
T-TENG and one channel of L-TENG on each of 3 soft actuators). Our result as 
depicted in Fig. 5 indicates that when the number of the objects was increased to 16, 
the recognition accuracy can still reach up to 98.1% for all the 16 types of objects 
with 15-channel signals. Besides, the model trained by data contracted from the 
previous data set showed that more applied samples can provide the better result 
(Page 19). Hence, we believe that our system can be used to recognize more objects 
of varying curvatures with the aid of introducing more sensor channels. 
In the meantime, it is also worth to mention, in the practical application, such as fruit 
sorting in a specific company, the number of training objects for each job task is 
usually remain at few tens level. Hence, it will not be necessary for maintaining such 
high adaptability to all of the unnecessary objects in a certain scenario (i.e., 
unnecessary “pen” recognition for fruit sorting). In another word, for a small task 
including 5~10 objects, the minimalistic design with only one finger equipped with 
sensor is enough. For more complex tasks, we can then add extra sensors on other 
fingers to enable the scalability. 
Actual change: The detailed content can be found in the Data Processing via 
Machine Learning Technology section from Page 16-20. Fig. 5, Fig. S14, Fig. S15, 
and Movie S5 were added to illustrate the concerned work. 
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Comments 3: The main criticism I have to offer is that the paper feels crammed. The 
authors try to present and solve a large range of problems related to joint position 
sensor design, tactile sensor design, robot teleoperation with HMIs, soft finger design, 
soft finger grasping, object recognition and learning, and digital twin applications. 
This is reflected to both the introduction section, where the authors list too many 
potential applications to solve, as well as the experimental methodology (i.e. lots of 
small-scale experiments to test a broad variety of issues). 
Response: We thank a lot for reviewer's valuable comment and suggestion. To clarify 
our main idea in this manuscript, we propose a triboelectric nanogenerator (TENG) based 

smart sensory system for soft robotics, which consists of length TENG (L-TENG) and tactile 

TENG (T-TENG) sensors. Both of two types of sensors based on TENG technology 
were designed to solve the sensory problems of the soft gripper for digital twin 
applications. In Fig. 2 and 3, the presented results offer the basic characterizations of 
two sensors for understanding the working mechanisms and verifying the 
functionality with the real-time signal processing via a simple demonstration of 
glove-based sensing. Afterwards, we focused on the integration of the sensors into the 
soft gripper for enhancing the intelligence with the aid of machine learning algorithm, 
in order to realize the object recognition for digital twin application. In Fig. 5e-g, in 
response to reviewer’s question about the necessity of combining several concepts, 
the results shown the importance of the fusion of two types of sensors by improving 
the recognition accuracy significantly, as each of two sensors offers the corresponding 
sensing dimension to increase the available features to be extracted for machine 
learning. In general, the digital twin is the potential application, and the soft finger is 
the main platform to perform digital twin. But it needs sensory system to achieve 
intelligent digital twin, which requires the joint position sensor (L-TENG) design and 
tactile sensor (T-TENG) design, while the robot teleoperation is just served as a 
preliminary verification of sensors’ functionalities. In addition, we have rewritten our 
introduction and rearranged the sections of the manuscript for easier understanding 
where some content about the HMI has been delete.  
Actual changes: The second and third paragraph of the introduction have been 
modified for expressing the necessity for developing soft robotic sensing and its 
background better. All the change has been highlighted from Page 3 to Page 5 in the 
manuscript and hope to dissipate reviewer’s concern.  
 
Comments 4: I believe that the digital twin experiment, albeit successful, was a bit 
unnecessary as it merely showed a grasping simulation executed with the SVM results 
as input. I would suggest that the paper could be broken into two papers: one 
sensor-oriented, that would describe analytically the sensors’ principle of operation, 
the voltage profile generation, and the HMI control with more elaborate control 
methods, and one application oriented, where the authors could pick up a potential 
application (learning, digital twin or other) and demonstrate the usefulness of the 
sensors through thorough experiments and comparison with existing solutions of their 
chosen problems (for example, how does their T-TENG sensor perform compared to 
tactile sensors and skins in an object recognition experiment?). 
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Response: Thank you for reviewer’s kind advice to our work. We apologize for the 
confusion of the main concept intended to present. As mentioned above, our main 
purpose is to develop a sensory system specifically for digital twin and capable of 
conducting object recognition with enough accuracy, which highly relies on the fusion 
of two types of sensors for soft robots to acquire enough sensible dimensions. All the 
sensor designs and technologies mentioned in the text are used for implementing an 
intelligent smart gripper system. In contrast, the presence of single type sensor will 
bring a severe decline of recognition accuracy and make the whole system unreliable 
(Fig. 5f and 5g). The glove-based demonstration is only served as a simple 
verification to show the feasibility of real-time signal processing for further 
researches on digital twin. Then, we tested the soft gripper integrated with designed 
sensors for robotic sensing. Finally, we showed the application of the soft gripper with 
the sensors for object recognition and concerned digital twin. This system has great 
potential for unmanned warehouse, farm or shop floor, while there is no light for 
camera sensing. Based on reviewer’s comments, we have obtained a new data set by 
testing 16 types of objects with 15 channels (four for T-TENG and one for L-TENG 
on each soft actuator) and then trained the machine learning model by activating the 
data of L-TENG channels (3 channels), T-TENG channels (12 channels), and all the 
15 channels respectively. The results indicate that the model trained by 15-channel 
data shows the best accuracy (98.1%) than the others. Meanwhile, the model trained 
by T-TENG channels’ data performs better than the L-TENG’s, especially for the 
object with similar curvature. Besides, we contracted the data of the previous data set 
and found that the model trained by 100 samples performs lower accuracy than the 
previous model. Therefore, we can conclude that the more sensory information, the 
more accurate the model will be and the sensory data from the T-TENG seems more 
important for object recognition. However, both the T-TENG sensor and L-TENG 
sensor contribute to the overall accuracy of the system. 

Based on reviewer’s comment, we also made some comparisons about the 
existing sensors for soft robotics by TENG technology. Prof. Wang’s group firstly 
presented a soft robot with the TENG tactile sensor for proximity and pressure 
detection (Adv. Mater., 2018, 30, 1801114). They discussed the contact position for 
robotic clawer by comparing the signals in different electrodes. In reference (Adv. 
Mater. Technol., 2019, 1900337, 1–7), the soft gripper was covered by the TENG 
tactile sensor with only one electrode. They presented the signals as the gripper 
gripped or released the objects. In addition, Chen, S. et al. presented a wire-driven 
soft gripper with three TENG tactile sensors (Adv. Mater. Technol., 2020, 1901075, 
1–10) to detect the contact and compared the signals after gripping different objects. 
These existing solutions mainly concentrate in the view of the contact process or 
status (i.e., proximity, contact, gripping, and release) by evaluating the signals of 
single or multiple sensors. These sensors work separately and thus it is hard to 
perceive the accurate position (only right above the electrodes) or contact surface.  
Actual Change: The detailed content can be found in the Data Processing via 
Machine Learning Technology section from Page 16-20. Fig. 5, Fig. S14, Fig. S15, 
and Movie S5 were added to illustrate the concerned work. 
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Comments 5: The authors should check the spelling of some words throughout the 
manuscript and title. 
Response: We apologize for these mistakes in our manuscript. We have checked the 
spelling again and marked the modification.  
Actual changes: The concerned content has already been highlighted throughout the 
manuscript.  
 
Comments 6: The supplementary material and schematics were useful to understand 
the soft finger operation. The video of the digital twin execution is simple and 
indicative. The video of the HMI is also clear, however it left me confused over the 
use of the T-TENG sensor. The authors claim in the paper that the T-TENG sensor is 
used to change the bending direction, however in the video it looks as if the T-TENG 
sensor does not affect the motion direction (the bending direction just seems to copy 
the motion of the glove finger). The authors should clarify a bit more how the 
T-TENG sensor is used on the HMI control experiment, and show it with some 
schematics or images. 
Response: We are sorry that the T-TENG in our manuscript is not well-explained. For 
verifying the real-time signal processing system, we use a slice of T-TENG with 
single electrode to switch the motion direction of the robotic hand and it is mounted 
on the thumb position of the glove, which has been mentioned in Page 12. We have 
modified the Fig. 3f(�) to express the location of the T-TENG better. As depicted in 
Fig. 3f(�), the motion direction of robotic finger will be changed after the trigger 
caused by the tapping of the thumb and index finger. Besides, the position of the both 
sensors has been marked in the supplementary movie (Movie S3). We hope these 
modifications may dissipate review’s confusion. 
Actual changes: The concerned content can be found in Page 12, which has been 
highlighted. And the modified movie can be found in supplementary material (Movie 
S3). 
 
 
Reviewer 2 
 
Comments 1: This application itself is not quite new, and there is almost no new 
fundamental understanding, new mechanism illustration, materials innovation, or 
novel discovery. The scientific value of this work is not significant.  
Response:  
We thank a lot for reviewer's valuable comment. In this paper, we proposed a tactile 
sensor (T-TENG), a length sensor (L-TENG), and a perception system with machine 
learning technique for improving the intelligence of the soft gripper. To indicate the 
scientific value, there are several points which can be clarified. 
1. We integrated the triboelectric sensor on pneumatic finger to realize self-powered 

sensing, which can reduce the power consumption for massive deployment, 
especially in wireless AIoT framework. There are only a few papers studied 
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triboelectric based sensing for pneumatic actuator or continuous motion sensing. 
But they do not possess the capability of multi-dimensional sensing for practical 
application, especially digital twin. 

2. We firstly proposed the gear-based length sensor (L-TENG) to measure the 
bending degree of the soft gripper, which has the specially designed disc spring 
for recovery after air off for the soft actuator. The special gear-based structure of 
the L-TENG sensor has not been proposed before and can be used for 
continuously sensing of the displacement which is difficult to be achieved by 
common triboelectric based sensors. The resolution can also be further improved 
as we mentioned Page 11 by adjusting the transmission ratio or gear tooth number, 
etc. 

3. T-TENG can not only detect the siding, contact position but also contact area with 
simple structure, which is useful to distinguish surface contact and point contact 
for soft gripper. 

4. Refer to Fig. 2, we proposed the special design of T-TENG electrodes with the 
readout method of output ratio. Together with peak counting readout of L-TENG 
shown in Fig 3, we can solve the problem of output amplitude fluctuation caused 
by environmental noises. 

5. We successfully utilized the constant curvature theory to explain the bending 
angle of pneumatic finger by the outputs from TENG sensor, and obtained the 
results shown in Fig. 4c. This approach verifies the feasibility of realizing primary 
recognition without advanced data processing. 

6. For more complex tasks in practical application, we investigated the object 
recognition assisted by the machine learning technique. To achieve this task, we 
effectively combined L-TENG and T-TENG to create the enough dimensions of 
sensing data for increasing the recognition accuracy, as shown in Fig 5. 

7. The proposed sensory system should have potential for unmanned warehouse, 
farm land and shop floor management, where there is no light or no camera, as 
shown in our integrated demonstration. 

8. The object recognition together with sensory system also helps to build up a 
comprehensive database by the continuous accumulation of sensing data during 
million times of grasping of diverse objects in practical application. These 
collected massive data become a valuable guideline and evaluation about the 
performance of grabbing object by robots, such as the contact mapping which 
reflects the most frequent touched areas or less touched areas, as well as the 
slippery area. This information is crucial for those robotic arm engineers to 
improve the designs accordingly. 

 
Comments 2：Page 3, line 63-65, in the introduction section, the authors claimed that 
resistive sensors suffer from temperature instability that prevents their practicality. 
However, temperature also impacts TENG output according to others’ report. In order 
to show the superiority of TENG over other technologies, the authors are suggested 
show the accuracy of object identification under different temperature. 
Response: Thank you for reviewer’s kind advice. We agree with the reviewer’s 
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opinion that the working temperature may affect the object identification. However, it 
usually happens at very high or low temperature. As mentioned in some literature data 
(Nano Energy, 2014, 4, 453–460; Appl. Phys. Lett., 2015, 106, 013224), the 
triboelectric output will experience the significant fluctuation after reach above 320K 
or below 200K. Hence, the triboelectric based sensor can provide stable functions 
under the practical scenarios, where the temperature seems to remain in a constant 
value (298K) and the fluctuation of temperature is quite small. As the fundamental 
principle of machine learning algorithm is to identify the signal patterns and extract 
the distinct features among various objects. Hence, for a specific object, the system 
can recognize it successfully for each cycle if the output of contacting can maintain 
the consistency of the signal patterns, which means the high accuracy. As reviewer’s 
kind advice, we have tested the signals for some of the objects in diverse temperatures 
(298K and 313K). As depicted in Table 1, our results indicate that within normal 
ambient temperature, our TENG sensory system is not very sensitive to the 
temperature. In addition, we can also improve the accuracy of the model by getting 
more data under different temperatures for training to enhance the versatility of the 
model when the environment has large temperature variation.  
Actual Change: Table 1 in reply can also be found in the Supplementary Materials 
(Table S2) 

Table 1 The real-time object recognition results under different temperatures 
Temperature Small box Orange Apple Long Can Short Can Accuracy 

298K 20/20 19/20 19/20 20/20 19/20 97/100 (97%) 

313K 20/20 17/20 18/20 19/20 20/20 95/100 (95%) 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 
 
Comments 3: Page 4, line 88-90, the statement that soft materials of TENG and 
PENG has the same Young’s modulus level as silicone and TPU is not correct. 
Piezoelectric soft polymer such as PVDF has Young’s modulus up to 1 GPa, which is 
a few orders of magnitude higher than the modulus of soft silicone and TPU (1-10 
MPa). 
Response: We apologize for the mistake in our manuscript. Sensors made of PVDF 
film can also show good flexibility if it is thin enough, although it seems hard to be 
stretched. Therefore, thin PVDF film can also be used in soft gripper if it has a 
stretching limitation layer to make the soft actuator bend. Thanks for reviewer’s 
advice and we have modified the corresponding expression.  
Actual Change: The concerned content can be seen in Page 3.  
 
Comments 4: The measurements shown in Fig 3 are qualitative, such as tapping in 
the middle area between two electrodes will trigger smaller signals compared to direct 
tapping above the electrodes, and more contact area, lager output. This is all empirical. 
The contact speed and strain speed will all affect the output. Is there any fitting 
equation/curve could bridge position and output to predict the precise output at 
different position under different contact and strain speed? This might help further 
improve the accuracy.  
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Response: We would like to express our most gratitude to the reviewer’s kind advice. 
For distinguishing the signal caused by different contact and strain speed, we used the 

formula
4

1

/i i
i

Ratio E E
=

=  as mentioned in Page 9, which presents the ratio of the 

output value of the single electrode to all of the four short electrodes.  

 
Fig. R1 The simplified diagram of the contact process for electrostatic analysis. 

 
The main working mechanism is listed as following. According to the electrostatic 
induction, we can define the electric potential as  

QU k
r

=                                 (1) 

where Q is the amount of charge, r is the distance to the point charge, and k is 
Coulomb’s constant as shown in Fig. R1 below. So, if we assume that a charge of +Q 
moves to the silicone rubber surface with a distance of h, the output voltage of two 
nearby electrodes can be expressed as 

i

i+1

2 2

2 2

+

( ) +

E

E

Q QV k k
xx h

Q QV k k
l xl x h

 = −


 = −

− −

                 (2) 

where x represents the distance between the touch point to Ei and l-x represents the 
distance between the touch point and Ei+1.Thus, the ratio can be derived as  

1

2 2

2 2

1 1

( )
1 1

i

i

E

E

l xV l x h
V

xx h

+

−
−− +

=
−

+

                      (3) 

So if h is large enough, we can obtain 

1i

i

E

E

V x
V l x

+ =
−

                           (4) 

Therefore, the ratio can be used to explain the method to get a more accurate position 
under virous speeds and strain speeds. Similarly, as the electrodes number are 

increased to four, we can use 
4

1

/i i
i

Ratio E E
=

=  to sense the position. As depicted in 

Fig.2d, we analyzed the data after contacting right above the electrode and the middle 
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position of two electrodes. The result shows the reliability of the T-TENG to sense the 
contact position.  
Actual Change: The concerned content can be seen in Page 9 and we have added the 
detailed explanation in Text S1 in Supplementary Materials.  
 
Comments 4: How is the stability of the smart system? After cycles of utilization, is 
the accuracy still over 97%? 
Response: We would like to express our most gratitude to reviewer’s effort and 
patience in reviewing our manuscript. According to the comment, we have used the 
soft gripper integrated with both L-TENG and T-TENG sensors (16 channels) to grip 
various objects with 2000 times to show the stability of our sensory system. In order 
to reduce the proportion of necessary training and testing times in the entire stability 
test and make the result for certain utilization cycles more accurate, we choose to use 
less data: 80 samples for training for each object (total 5 objects) and 20 samples for 
testing for each object after cycles of utilization. As shown in Table 2 below, our 
results indicate that though the recognition accuracy has some inevitable fluctuation 
due to the environmental and man-made noise, the average accuracy remains high 
level and there isn’t an obvious decrease after gripping for 2000 times. Therefore, we 
believe that our design can keep a high accuracy even though after cycles of 
utilization.  
Actual changes: Table 2 in reply can also be found in Supplementary Materials 
(Table S3) 

Table 2 The test results for verifying the stability of the smart system 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 
 
 
Comment 5: The authors should check typos before submission. The typos such as 
“nanaocomposites” in page 4, line 86 should be corrected. 
Response: We apologize for these mistakes in our manuscript. We have checked the 
spelling again and marked the modification.  
Actual changes: The concerned content has already been highlighted throughout the 
manuscript. 
 
 
Reviewer 3 

 Gripping Counts 
 100 300 500 700 1000 1300 1500 1800 2000 

Small Box 20/20 20/20 20/20 19/20 20/20 18/20 20/20 20/20 20/20 

Orange 19/20 18/20 19/20 18/20 17/20 18/20 17/20 19/20 19/20 

Apple 19/20 19/20 19/20 20/20 20/20 19/20 19/20 19/20 19/20 

Long Can 20/20 20/20 18/20 19/20 18/20 20/20 20/20 20/20 19/20 

Short Can 18/20 20/20 20/20 20/20 19/20 20/20 19/20 19/20 19/20 

Accuracy 
96/100 

(96%) 

97/100 

(97%) 

96/100

(96%) 

96/100

(96%) 

94/100

(94%) 

95/100

(95%) 

95/100

(95%) 

97/100 

(97%) 

96/100

(96%) 
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Comment 1: “Compared to the previous solutions, the developed sensing system with 
patterned-electrode tactile TENG (T-TENG) sensor can detect sliding, contact 
position and gripping mode.” This statement would be better supported with 
quantitative comparison of the proposed new design with other solutions, optical etc. 
in a small table or figure. 
Response: Thanks for reviewer’s kind advice to our work and sorry for our mistakes. 
In this paper, we want to introduce the sensing methods for soft gripper which 
requires special design for sensors. Actually, we want to express that compared to the 
previous solutions based on TENG technology for robots, our device can detect 
sliding, contact position and gripping mode. The concerned sentence has been 
modified (Page 4). Meanwhile, the T-TENG sensor featuring simple structure and low 
cost has its advantages compared to other methods. As reviewer’s kind comment, 
some comparisons about the tactile sensor based on TENG technology and other 
methods (e.g., piezoelectricity) have been listed in Tab.1 below.  
Actual changes: The comparison of the tactile sensors can be found in Table 3 below 
(also see Table S1 in Supplementary Materials). The concerned content has been 
modified in Page 4. 
Table 3 Comparison of the tactile sensor based on TENG technology and other 
methods 

Method Position Sliding Contact 

Surface 

Force Electrode 

Number 

Application 

Triboelectric 

Simple 

(Contact or 

separation) 

No No  No One Soft gripper1–3 

Triboelectric 
5×5 sensory 

array 
Yes  No  No Four Robot control4 

Triboelectric 
8×8 sensory 

array  
Yes Yes No Sixteen Wearable device5 

Triboelectric 

Simple 

(Contact or 

separation) 

No No No 
Two or 

three  
Wearable device 6,7 

Capacitive, 

Triboelectric 

4×4 sensory 

array  
Yes No Normal Eight  Humanoid Hand8 

Piezoresistive No No Yes No One Soft gripper9 

Piezoresistive Yes No No Yes One Soft gripper10 

Piezoresistive Yes No Yes  No 
Two or 

more 
Soft gripper11 

Piezoelectric No Yes No No Two     Textile detection12 

Piezoelectric No No No 
Contact 

or not 
One Wearable device13 

Capacitive Yes  No No No Four HMI14 

Capacitive No No No 3-axis Four Humanoid Hand15 

Capacitive Yes No No Contact Six Wearable device16 
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or not 

Thermosensitive No No No Normal One Humanoid Hand17 

Optical Yes No No Normal  Sensor Mechanism18 

 
Comments 2: The authors state, "With a layer of silicone rubber, a kind of flexible 
and stretchable negative triboelectric material, coated on the surface of the patch, 
triboelectric signals can be generated by the stimuli on the T-TENG sensor’s surface 
and collected in these five electrodes," and couple this with a methods section. The 
process could be described in a more detailed manner and paired with the appropriate 
figure. 
Response: Thanks for reviewer’s kind advice to our work. We have added a figure 
about the fabrication process in Supplementary Materials (Fig. S1), which may do 
some helps. Besides, the methods part has been added some detailed parameters about 
the fabrication of the T-TENG sensor. Hope to dissipate the reviewer’s concern 
Actual changes: These changes can be found in the Methods section (Page 22) and 
the latest supplementary materials (Fig. S1).  
 
Comment 3: Since sensor and fabric application to the host influences detection and 
output signal, brief explanation of the method/type of adhesive used would be 
beneficial. Response: We appreciate the reviewer’s suggestion on clarifying the 
method/type of adhesive used in our manuscript. At first, we used the PET film as the 
substrate to test the T-TENG’s working mechanism. The conductive textile tape was 
pasted on the PET film by its own adhesive, a kind of acrylic pressure sensitive 
adhesive. Then, the EcoFlex 00-30 was used to cover and seal the Ni-fabric layer by a 
mold (see Fig.S1 in Supplementary Materials). Similarly, the same method has been 
used in the integration of T-TENG and the soft actuator as illustrated in Fig. S13 
where the extra silicone rubber was used to reinforce the adhesion of the EcoFlex and 
TPU.  
Actual Changes: The methods for fabrication T-TENG have been modified based on 
reviewer’s advice Page 22. Besides, Fig. S1 has been added and the Fig. S13 has been 
modified for better explanation.  
 
Comments 4: Figure 1 is difficult to read. In particular, the fonts are too small to read. 
Also, the relationship between elements in the figure are not clearly illustrated or 
described in the caption/text. 
Response: We apologize for these mistakes in our manuscript. The concerned figure 
has been modified according to reviewer’s advice. Thank you for reviewer’s kind 
advice 
Actual changes: These changes can be found in Fig. 1 of the latest manuscript. 
 
Reference: 
1. Chen, J., Chen, B., Han, K., Tang, W. & Wang, Z. L. A Triboelectric Nanogenerator as a 

Self-Powered Sensor for a Soft–Rigid Hybrid Actuator. Adv. Mater. Technol. 1900337, 1–7 

(2019). 
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2. Lai, Y. et al. Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, 
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Mater. 1801114, 1–12 (2018). 
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REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I would like to thank the authors for addressing my comments and the comments of other reviewers, and 

extensively describing the changes they made. Their explanatory responses and manuscript additions in my 

concerns for the length of the paper and necessity of the digital twin experiment made the manuscript richer 

an more streamlined. 

 

 

The machine learning experiment added to section "Data Processing via Machine Learning Technology" offers 

additional insight over the sensor performance in gripping tasks. The results seem to validate the usefulness 

of the two TENG sensors in grasping tasks of simple objects, with confusion matrices that reflect good 

performance. The authors need to describe the data collection and training procedure of the SVM: a) The 

authors claim that they used the voltages of electrodes and applied PCA to extract features, however they 

should mention exactly what features they have used as input to SVM (such as voltage peaks, RMS value 

ea.), and technical details on the SVM (kernel used etc). b) The authors need also to describe exactly how 

the grasping motion is performed to gather data for the 100 grasps on each object, and the finger contact 

location on the object. If the grasping motion is performed the same way as shown in Movie S5, there is a 

good chance that the 100 grasps for each object are similar to one another. The 80:20 split over all objects 

is also a factor for the good performance, as the usage of all objects in the training process ensures that the 

SVM recognises data very similar to the ones that have been trained upon. I understand that the authors 

argue their system is suited for applications where the robot encounters the same object (such as fruit 

picking), and such a method of training is viable. I suggest the authors conduct an experiment where all 

data from 10-11 objects are used in training and all data from the rest 5-6 objects are used in testing. This 

will enable the research community understand the applicability of their sensors in more general object 

recognition, where generalisation to unknown objects is required. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the revised manuscript, the authors clearly addressed all the concerns I raised. It can be seen that the 

authors made a great effort to clarify all uncertainties and confusing points in the manuscript. It is an 

impressive engineering development of a TENG-based technology, while I still don't think the scientific 

impacts and novelty are very high. Nonetheless, the quality of work in this manuscript is high and can be 

recommended for publication on Nature Communications. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The reviewer has reviewed the submission as well as the rebuttal to the original reviewer comments. The 

reviewer finds that the authors have effectively addressed the comments of the reviewers. 

 

 



Dear Reviewers: 

Thank you for your letter and for the reviewers’ comments concerning our 
manuscript entitled “Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at 
Digital Twin Applications”. Your comments are all valuable and very helpful for 
revising and improving our paper, as well as the important guiding significance to our 
research. We have studied comments carefully and have made the correction which 
we hope meet with approval. Briefly speaking, we have done extra experiment to 
collect new data in response to reviewers’ comments. In Supplementary Materials, we 
have added new Fig. S14, S17 (with the description of Text S5), added Table. S4, 
labeled the original Fig. S14 as new Fig. S15 and labeled the original Fig. S15 as new 
Fig. S16. The main corrections in the paper and the responses to the reviewer’s 
comments are as following:  
 

Comment 1: The authors claim that they used the voltages of electrodes and applied PCA to 

extract features, however they should mention exactly what features they have used as input 

to SVM (such as voltage peaks, RMS value ea.), and technical details on the SVM (kernel 

used etc). 

Response:  

We thank a lot for reviewer’s valuable comment. For the input of the PCA1, we used the raw 

data of 15 channels of each grasp which is shown in Fig. R1 (Different columns show the 

time-domain signals of 15 channels of different objects during one grasping motion). The data 

length for each channel is 200, so there are 200 * 15 = 3000 features for each sample and each 

feature means one data point in the time domain during grasping. Then the PCA will extract 

features and reduce the dimensionality from 3000 to a few hundred, that means the final input 

to SVM2 will be hundreds of data points of each sample which can best distinguish these 

objects. For better understanding, the enlarged voltage waveforms of each channel for 

grasping the banana are shown in Fig. R2, where the outputs of channel 1-9, 11, 13, 15 are 

from T-TENG sensors, and the outputs of 10, 12, 14 are from L-TENG sensors. All the data 

points of these channels will be directly used as input to the ML process. Due to the larger 

contact area when grasping the banana, channel 2, 3, 11 and 13 shows greater voltage value 

than other channels among T-TENG sensors, which can be further visualized as peak voltage 

maps as the reference to distinguish different objects by the human eye shown in Fig. R3. But 

the machine distinguishes these objects based on the hundreds of data points extracted from 

the 3000 data points of 15 channels for each sample, not just the voltage peaks, peak values or 

RMS values. The technical details of the SVM can be found in Table 1. We used the linear 

kernel and optimized the accuracy of the SVM according to commonly used parameters, and 

found that the optimal recognition accuracy of 98.125% can be achieved when the penalty 

parameter C is 1 * 10 -2 and dimensionality of the data feature is reduced to 200 by PCA. 

Actual Change: The concerned content has already been added and highlighted in Page 18, 

line 11-25 and Page 19, line 12-19. Fig. R1 and Table 1 in reply are provided in the 

Supplementary Materials (Fig. S14, Table S4).  



 

Fig. R1. The input voltage signals of 15 channels for 16 different grasped objects. 

 

 
Fig. R2. The input voltage signals of 15 channels for grasping the banana. 

 

 

 

 



 

Table 1 Parameter optimization of SVM and PCA 

Classification 

accuracy 

Penalty parameter C 

૚ × ૚૙ି૛ ૚ × ૚૙ି૚ 1 10 

Linear kernel 

 

PCs = 100 96.25% 95.938% 95.938% 95.938% 

PCs = 120 96.563% 96.563% 96.563% 96.563% 

PCs = 150 97.5% 97.5% 97.5% 97.5% 

PCs = 200 98.125% 97.813% 97.813% 97.813% 

PCs = 250 97.5% 97.5% 97.5% 97.5% 

 
 

Comment 2: The authors need also to describe exactly how the grasping motion is performed 

to gather data for the 100 grasps on each object, and the finger contact location on the object. 

If the grasping motion is performed the same way as shown in Movie S5, there is a good 

chance that the 100 grasps for each object are similar to one another. 

Response:  
Thank you for reviewer’s kind advice. In terms of the primary demonstration of showing the 

feasibility for object recognition in warehouse or factory where the robotic gripper usually grasps 

products with the same position and angle, we try to maintain a relatively fixed position for 100 

grasps for each object during the data collection process to achieve a better prediction result with 

less samples. The peak voltage maps of the T-TENG sensors for different objects shown in Fig. R3 

provide a reference for the finger contact location on the object. The peak voltages of the 12 

T-TENG sensors for each sample are normalized between zero and one, and a darker color means 

larger contact area and contact force at this location during grasping. The grasping pressure 

differences among the 12 T-TENG sensors between objects are also clearly illustrated in this 

figure. Though the fabrication errors existing in our homemade sensors and pneumatic fingers 

may result in the asymmetrical distribution of the peak voltages in the T-TENG sensors for 

symmetric objects, this will not affect the prediction ability of the system because both the training 

and testing process are done by one specific gripper and the error between different sensors is also 

the same for all objects. This problem can be solved in the future by using more stringent and 

unified fabrication standards. 

Additionally, for those grasps, some of them from different objects may look similar at a certain 

time frame (i.e., the time of taking photo, or the time of drawing the pressure maps). However, as 

we mentioned in main manuscript and above, we are using a period of output data (200 data points 

at time series) of 15 channels as a training sample, which means the data includes the information 

of the contact force, speed, sequences, contact positions, latency, and the contact durations etc. 

Those multi-dimensional features, rather than the individual grasping position, will then define the 

identity of the grasped object. As a result, as long as those objects have distinct shape differences, 



the object recognition can be achieved. 

Actual Change: We have added the detailed explanation in Text S5 in Supplementary 

Materials. Fig. R3 has also been added in the Supplementary Materials as Fig. S17. 

 

 
Fig. R3. Peak voltage maps of the T-TENG sensors for 16 different objects. 

 

Comment 3: I suggest the authors conduct an experiment where all data from 10-11 objects 

are used in training and all data from the rest 5-6 objects are used in testing. This will enable 

the research community understand the applicability of their sensors in more general object 

recognition, where generalisation to unknown objects is required. 
Response:  
We appreciate the reviewer’s suggestion on the experiment of generalisation to unknown objects. 

Here we choose tennis ball, big box and short can to represent the three most common shapes of 

objects in daily life: sphere, cube and cylinder, as the unknown objects for testing. In the 

experiment, we still use the 100 grasp data of the rest 13 objects for training, therefore each raw 

data consists a period of output data in time series of 15 channels, 200 data points * 15 channels = 

3000 features in total for each sample as the input to the machine. Again, we understand that the 

machine learning algorithm identifies objects still based on a complete set of 15 channel sensor 



data in each grasp, i.e., hundreds of data points extracted from the 3000 data points of 15 channels 

by PCA for each sample data, not just the peak values. 

For human being, it could be relatively easy to tell the difference when we look at the peak voltage 

map. Therefore, we conduct the next three experiments to verify effectiveness of general object 

recognition, in particular, the generalisation to unknown objects, under our sensor design and 

present machine learning algorithm.  

(1) Tennis ball test 

The first experiment is to see the recognition outcome from the machine for the unknown object 

like a tennis ball based on the previous training data which does not have tennis grasp data at all. 

We collected 100 grasp data samples for the tennis ball, i.e., the unknown object data for the 

trained machine model. Then we see the recognition outcomes for these 100 grasp data samples 

for the tennis ball, 51 samples are recognized as the baseball, and 40 samples are predicted as the 

apple. From the 51 samples, one of the sample data is selected and only the peak voltage value is 

identified and provided as the peak voltage map of the T-TENG sensors of tennis ball in the Fig. 

R4a. Then, among the 40 samples, one of the sample data is selected and the peak voltage map of 

the T-TENG sensors of tennis ball is identified as shown in the Fig. R4b. One of the typical 

training data of the baseball and the apple are selected and the peak voltage maps are shown in Fig. 

R4c and Fig. R4d. We try to leverage the peak voltage map to help us to figure out any 

relevant information for the machine to do the unknown object recognition. 

The values and distribution of sensor outputs among channel 1-3, 7-9, 11 and 13 are quite similar 

among these three spherical objects. Furthermore, the output of channel 15 in Fig. R4a is close to 

the value in the Fig R4c, while the output of channel 15 in Fig. R4b is close to the value in the Fig 

R4d. This could be a factor observed by the machine and then suggest the sample data of R4a as 

the baseball, and the sample data of R4b as the apple. 

Back to the point indicated by reviewer “This will enable the research community understand the 

applicability of their sensors in more general object recognition, where generalisation to unknown 

objects is required.”, I think the above results show that our sensors and machine algorithm works 

effectively to recognize the spherical object.  



 

Fig. R4. Peak voltage maps of tennis ball samples predicted as a) the baseball and b) the apple 

respectively; peak voltage maps of c) the typical baseball sample and d) the typical apple sample. 

 

(2) Big box test 

The second unknown object recognition experiment is to test the big box grasp data for 100 times 

based on the trained model as same as the experiment 1. For the big box, most samples (total 70) 

are recognized as the orange, and only a few samples (21) are predicted as the baseball. From the 

70 samples, one of the sample data is selected and the peak voltage map of the T-TENG sensors of 

big box is provided in the Fig. R5a. Then, among the 21 samples, one of the sample data is 

selected and the peak voltage map of the T-TENG sensors of big box is identified as shown in the 

Fig. R5b. One of the typical training data of the orange and the baseball are selected and the peak 

voltage maps are shown in Fig. R5c and Fig. R5d.  

Although we have one cube shaped object, i.e, the small box, in the trained model, we do not get 

the recognition outcome of recognizing “big box” as the “small box”. The dimension of big box 

and small box are 10 cm * 4 cm * 14cm and 8 cm * 2 cm * 14cm, respectively, where the length 

of the big box is slightly longer than that of the small box, and the width of the big box is twice 

that of the small box. When we look at the 7 and 8 voltage maps in the Fig R3, the voltage value 

in channel 11 for the small box is obviously the highest among all channels, which is quite 

different from that of the big box where the voltage value in channel 11 is much smaller than that 

of the channel 9. The voltage distribution difference between the small box and the big box may 

finally make the machine recognize the big box as other existing objects in the training set with 

more similar voltage distribution. 

On the other hand, when we look at the peak voltage maps in Fig R5, the values and distribution 

of sensor outputs among channel 1-3 and channel 11 of the big box shown in the Fig. R5a are 

quite similar to that of the orange shown in Fig. R5c. This could be a factor that most big boxes 

with such voltage distribution are identified as the orange. But for a few big box samples which 

have higher voltage values in channel 2-3 and 11 shown in the Fig. R5b, the baseball that also has 



higher values in these channels (Fig. R5d) than that of the orange becomes the most possible 

prediction result of these samples. 

After all, with the general understanding of machine learning, insufficient trained data in the cubic 

objects may make the machine suggest the 2nd best-matched objects (the orange) existing in the 

training set and putting more cubic objects of different sizes and types into the training set may be 

helpful to enhance the machine’s ability to recognize the general cubic objects. 

 

 

Fig. R5. Peak voltage maps of big box samples predicted as a) the orange and b) the baseball 

respectively; peak voltage maps of c) the typical orange sample and d) the typical baseball sample. 

 

(3) Short can test 

The third experiment is to identify the unknown short can grasp data for 100 times based on the 

trained model. Among these samples, more than half (52) are predicted as the long can, and 23 and 

22 samples are recognized as the orange and the banana respectively. Among the 52, 23 and 22 

samples, one of the sample data is selected from each category and the corresponding three peak 

voltage maps of the T-TENG sensors of the short can are provided in the Fig. R6a, Fig. R6b and 

Fig.R6c respectively. One of the typical training data of the long can, orange and banana are 

selected and the peak voltage maps are shown in Fig. R6d, Fig. R6e and Fig. R6f.  

According to the peak voltage maps in Fig. R6a and Fig. R6d, it is clear that the short can and the 

long can have almost the same peak voltage distribution among the 12 T-TENG sensors, where 

peak voltage values in channel 1-3, channel 9, channel 11, channel 13 and channel 15 are usually 

larger than the remaining channels and the range is also relatively stable, which may make the 

recognition result of the long can dominates. For the few samples of short can that have relatively 

low values in channel 4-6 shown in the Fig. R6c, the typical banana sample which also has small 

peak voltages in these channels in the Fig. R6f shows a higher similarity to these samples and this 

may be the decisive factor that the sample data of Fig. R6c is recognized as the banana. However, 

for the sample data visualized in Fig. R6b and Fig. R6e, it’s difficult to directly tell the similarity 



just based on the peak voltage maps and the machine may make the prediction based on more 

features with higher dimensionality in the raw data, not just the peak voltage values. 

The above results show that our sensors and machine algorithm also work effectively to recognize 

the cylindrical object even though there are only a small number of cylindrical samples in the 

training set.  

 

Fig. R6. Peak voltage maps of short can samples predicted as a) the long can, b) the orange 

and c) the banana respectively; peak voltage maps of d) the typical long can sample, e) the typical 

orange sample and f) the typical banana sample. 

 

In summary, according to the prediction results of unknown objects given by the pre-trained SVM 

model based on the raw data (3000 data points) of samples, as well as the referential analysis of 

the voltage maps, the above results for three unknown objects indicate that our developed sensors 

have a certain recognition ability when encountering general spherical and cylindrical objects, 

which will be highly likely to be identified as objects with similar shapes in the training data set. 

While in the experimental 2, due to insufficient trained data in the cubic objects, we realized that 

machine may suggest the 2nd best-matched results because of the relative values and distribution 

observed in the outputs of the 12 T-TENG sensors. The prediction ability of our system for general 

cubic objects can be enhanced in the future if we put more cubic objects of different sizes and 

types into the training set and make the machine learn more unique features of cubic objects. 

It is worth to mention that, SVM technique as a supervised learning algorithm, all of the 

recognizable objects were labelled during the training process. Hence, if we introduce the 

unknown object for testing without training, then SVM will not be able to provide the true identity 

of itself (since it does not exist), but to categorized it into the trained labels which have the most 

similar features. In another word, for unknown objects, the function of SVM-based finger grasping 

becomes classification (based on the existed classes, i.e., the trained 10~11 objects), rather than 

the precise recognition (i.e., provide the true identity of itself), and the classification should be 

shape, position, and size-based recognition. Hence, that is the reason for above test results of the 

unknown objects recognition, i.e., the tennis ball is categorized into the baseball or the apple, and 

the short can is identified as the long can. Moreover, it is universally accepted that the 

performance of generalization also relies on the population (classes) of trained data set, and hence, 



for larger database, there will be more chance to find the similar object which matches the 

unknown object better. For the above example of big box test, if we can establish a data base with 

more trained objects which contains other boxes with different sizes or shapes, the recognition 

performance will then be effectively improved.  

 

Reference: 
1. Abdi, H. & Williams, L. J. Principal component analysis. WIREs Comp Stat 2, 433–459 

(2010). 

2. Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data 
Mining and Knowledge Discovery 2, 121–167 (1998). 

 

 

 

 

 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

I would like to thank again the authors for their detailed experiments, and for analytically addressing my 

comments. 

 

The PCA and SVM section is now more complete and helps the reader understand how the data were 

gathered, processed, and utilised. 

 

The new experiments are important because they demonstrate both the strengths and the limitations of the 

TENG sensor in object recognition. The TENG signals are similar for rounded surfaces, leading to good 

recognition of curved surfaces (sphere and cylinder recognition experiment), and additional research can 

improve the results in flat surface recognition. 

 

I suggest publication of the article, and I wish the authors further success in their future research. 
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Reviewers' comments (R1): 

Reviewer #1 (Remarks to the Author): 

Paper Description 

This paper describes two novel low-cost sensors for robotic perception, based on triboelectric 

nanogenerators (TENGs). In the introduction, the authors describe the need for smarter, low 

cost and high-information sensors for factories and industrial digital twins. They mention some 

disadvantages of modern sensors for robots with rigid fingers, and some of the sensors used 

in soft robotics. They then describe some methods of sensing in soft robotics (piezoelectricity, 

triboelectricity e.a.) and the existing use of TENGs in robotic sensing, combined with 

glove-based user-input devices. Their main thesis is that their developed sensors fill the gap in 

the sense that they are cheap to produce, convey large amounts of information, and contrary 

to exiting works they can detect contact, slippage, and contact type (point or area contact). 

They then describe their sensors: the length-TENG (L-TENG) sensor consists of a positive 

triboelectric component, which is a gear with four teeth. The negative component is an elastic 

strip of PTFE. As the strip is pulled, the gear’s teeth momentarily touch the strip and result in 

the generation of a brief triboelectric voltage spike. The distance between spikes and their 

number, carry information related to the gear spinning angle and direction. A spring then 

ensures the smooth transition of the strip to the initial state. The tactile-TENG (T-TENG) 

sensor consists of five electrodes, one along the edge of a strip, and four across different 

points. Through triboelectric and electrostatic induction effects, the electrodes fire with different 

amplitudes when there is a contact. By comparing the electrode outputs, as well as the time 

difference between them, the sensor can detect contact and sliding motion along its length. 

The amplitude of the electrode along the edge provides info about the type of contact. The 

authors then demonstrate the usefulness of the sensors in a series of experiments. They 

control the bending angle and direction of a robotic finger with a glove that houses the two 

sensors. They then present a custom pneumatic soft robotic finger that can house the T-TENG 

sensor, calibrate it with and test the finger-sensor integration and the sensor output profiles by 

grasping a number of objects (apple, orange egg and turnip). They also show how the sensor 

signals extracted from grasping various objects (cube, cylinders, spheres and ring) can be 

used in tactile object recognition through SVM learning, achieving high recognition accuracy. 

Finally, they employ the SVM algorithm in a digital twin factory scenario, where a real soft 

gripper equipped with the T-TENG sensor recognizes various objects, and the digital twin 

robot sorts the object in different objects. 

Paper strengths 

Overall, the paper is well written. The introduction is well formed, and the authors 

incrementally build their arguments towards the novelty of their sensors and potential uses, 

and explain the merits compared to the existing literature. I believe that both the L-TENG and 

T-TENG sensors show very innovative designs, and the authors do a remarkable job in 

explaining how the output voltage signals are generated, and how these voltage profiles can 

be used to express robotic joint outputs and to detect slippage and contact detection. The 

experiments presented are simple and “to the point”, clearly explaining their purpose and 

proving the arguments. The HMI control experiment provides a fundamental mapping of the 
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L-TENG sensor output to a robotic joint position. I feel that the experiment would be more 

representative of robotic HMI control if the authors could show the continuous movement of 

the L-TENG on the HMI and the corresponding motion of the robotic joint, instead of 30-degree 

intervals, and I strongly encourage them to do so. The soft finger experiment helped showcase 

how the voltage profiles of the T-TENG sensor are used in object grasping. The object 

recognition experiment achieves very high accuracy, and I would like to see the results of it 

extended to new objects of varying curvatures (the YCB dataset would be a good test case 

[1]). 

Paper shortcomings 

The main criticism I have to offer is that the paper feels crammed. The authors try to present 

and solve a large range of problems related to joint position sensor design, tactile sensor 

design, robot teleoperation with HMIs, soft finger design, soft finger grasping, object 

recognition and learning, and digital twin applications. This is reflected to both the introduction 

section, where the authors list too many potential applications to solve, as well as the 

experimental methodology (i.e. lots of small-scale experiments to test a broad variety of 

issues). I believe that the digital twin experiment, albeit successful, was a bit unnecessary as it 

merely showed a grasping simulation executed with the SVM results as input. I would suggest 

that the paper could be broken into two papers: one sensor-oriented, that would describe 

analytically the sensors’ principle of operation, the voltage profile generation, and the HMI 

control with more elaborate control methods, and one 

application oriented, where the authors could pick up a potential application (learning, digital 

twin or other) and demonstrate the usefulness of the sensors through thorough experiments 

and comparison with existing solutions of their chosen problems (for example, how does their 

T-TENG sensor perform compared to tactile sensors and skins in an object recognition 

experiment?). 

Minor issues 

The authors should check the spelling of some words throughout the manuscript and title. 

Comments on the supplementary material 

The supplementary material and schematics were useful to understand the soft finger 

operation. The video of the digital twin execution is simple and indicative. The video of the HMI 

is also clear, however it left me confused over the use of the T-TENG sensor. The authors 

claim in the paper that the T-TENG sensor is used to change the bending direction, however in 

the video it looks as if the T-TENG sensor does not affect the motion direction (the bending 

direction just seems to copy the motion of the glove finger). The authors should clarify a bit 

more how the T-TENG sensor is used on the HMI control experiment, and show it with some 

schematics or images. 

References 

[1] Calli, B., Singh, A., Bruce, J., Walsman, A., Konolige, K., Srinivasa, S., Abbeel, P. and 

Dollar, A.M. Yale-CMU-Berkeley dataset for robotic manipulation research. The International 

Journal of Robotics Research, 36(3), pp. 261-268 (2017). 

 

 

Reviewer #2 (Remarks to the Author): 
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The manuscript enabled “Development of Low-cost Human-Machin-Interface Using 

Triboelectric Nanogenerator Sensors for Future Digital Twin” reported a self-powered 

intelligent warehouse system integrated with triboelectric nanogenerator (TENG) technology. 

Due to the synergistic effect of a length TENG (L-TENG) and a tactile-TENG (T-TENG), this 

smart system trained by machine algorithm exhibited an impressive capability of object 

identification with decent accuracy. Generally, this work is well illustrated with clearly organized 

figures and strong logics. The only concern is that this manuscript is mainly a fancy 

engineering technology demonstration, where TENG technology was used as a sensing 

interface to achieve artificial intelligence/machine learning. This application itself is not quite 

new, and there is almost no new fundamental understanding, new mechanism illustration, 

materials innovation, or novel discovery. The scientific value of this work is not significant. 

Again, it is a nice piece of engineering demonstration. It will be very helpful if the authors could 

elaborate more about technology advancements achieved in this work. Other minor concerns 

listed below should also be addressed: 

1. Page 3, line 63-65, in the introduction section, the authors claimed that resistive sensors 

suffer from temperature instability that prevents their practicality. However, temperature also 

impacts TENG output according to others’ report (Advanced Engineering Materials 19.12 

(2017): 1700275.). In order to show the superiority of TENG over other technologies, the 

authors are suggested show the accuracy of object identification under different temperature. 

2. Page 4, line 88-90, the statement that soft materials of TENG and PENG has the same 

Young’s modulus level as silicone and TPU is not correct. Piezoelectric soft polymer such as 

PVDF has Young’s modulus up to 1 GPa, which is a few orders of magnitude higher than the 

modulus of soft silicone and TPU (1-10 MPa). 

3. The measurements shown in Fig 3 are qualitative, such as tapping in the middle area 

between two electrodes will trigger smaller signals compared to direct tapping above the 

electrodes, and more contact area, lager output. This is all empirical. The contact speed and 

strain speed will all affect the output. Is there any fitting equation/curve could bridge position 

and output to predict the precise output at different position under different contact and strain 

speed? This might help further improve the accuracy. 

4. How is the stability of the smart system? After cycles of utilization, is the accuracy still over 

97%? 

5. The authors should check typos before submission. The typos such as “nanaocomposites” 

in page 4, line 86 should be corrected 

 

 

Reviewer #3 (Remarks to the Author): 

The major claims of the paper include the design of a flexible sensor called a L-TENG sensor 

to capture continuous motion of a soft gripper coupled with a T-TENG sensor for tactile 

sensing. The reviewer has listed several comments that will enhance the quality of the 

submission. 

1. The work presented will be of interest to the audience of the journal and appears to be an 

extension of previous TENG advancements. The work described in the text along with the 

supplemental information indicate that the work can be reproduced by the authors. 
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2. The authors state, ". Compared to the previous solutions, the developed sensing system 

with patterned-electrode tactile TENG (T-TENG) sensor can detect sliding, contact position 

and gripping mode. " This statement would be better supported with quantitative comparison of 

the proposed new design with other solutions, optical etc. in a small table or figure. 

3. The authors state, "With a layer of silicone rubber, a kind of flexible and stretchable negative 

triboelectric material, coated on the surface of the patch, triboelectric signals can be generated 

by the stimuli on the T-TENG sensor’s surface and collected in these five electrodes," and 

couple this with a methods section. The process could be described in a more detailed manner 

and paired with the appropriate figure. 

4. Since sensor and fabric application to the host influences detection and output signal, brief 

explanation of the method/type of adhesive used would be beneficial. 

5. Figure 1 is difficult to read. In particular, the fonts are too small to read. Also, the relationship 

between elements in the figure are not clearly illustrated or described in the caption/text. 

In summary, the work described is interesting and a meaningful advancement in TENG 

technology that can be applied to many applications.                              
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Manuscript number: NCOMMS-20-04528A 

Title: Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital Twin Applications 

Authors: Tao Jin, Zhongda Sun, Long Li, Quan Zhang, Minglu Zhu, Zixuan Zhang, Guangjie Yuan, 

Tao Chen, Yingzhong Tian, Xuyan Hou and Chengkuo Lee 

 

Responses to the reviewers: 

Reviewer #1 

Comments 1: I feel that the experiment would be more representative of robotic HMI control if the 

authors could show the continuous movement of the L-TENG on the HMI and the corresponding 

motion of the robotic joint, instead of 30-degree intervals, and I strongly encourage them to do so. 

Response: 

We thank a lot for reviewer's valuable comment and suggestion. In terms of continuous motion sensing, 

there are several researches have demonstrated the continuous finger bending sensor, such as the 

grating patterned TENG sensor (Nano Energy, 2018, 54, 453–460), and many resistive based sensors 

(ACS Sens. 2016, 1, 817−825), etc. For out proposed L-TENG, the fundamental working principle is 

able to realize the continuous sensing. It has a resolution of 5mm. For the data glove presented in our 

paper, the length variation is limited by the finger deformation when the PTFE strip of L-TENG is 

pulled out by finger, and the number of contacts between the gear teeth and the strip is then limited for 

representing the displacement. Therefore, we realized the 30-degree interval. It is possible for higher 

accuracy as we mentioned in Page 11 (i.e., increasing transmission ratio or the number of the gear tooth, 

etc.). The L-TNEG with corresponding structure for improving precision is planned in our future work. 

To make it feasible, we can apply fabrication process with high precision, such as metallurgy or laser 

machining, in order to create fine pattern of teeth to enhance the resolution.  

On the other hand, as our main novelty in this manuscript, we proposed tactile sensor (T-TENG) and 

length sensor (L-TENG) to form a perception system with machine learning technique for improving 

the intelligence of the soft gripper. The peak counting and readout of output ratio are the data 

processing strategies which can eliminate the absolute amplitude variations of triboelectric 

output caused by environmental variations, and hence, to ensure the signal stability throughout 

the usage. Moreover, by effectively utilizing the multi-dimensional data provided by two different 

sensors, the machine learning approach can provide equivalent precise measurement compared to 

continuous sensing regarding the object recognition, while avoiding the huge amount of data 

acquisition for continuous monitoring.  

 

Comments 2: I would like to see the results of it extended to new objects of varying curvatures (the 

YCB dataset would be a good test case [1]). 

Response: We appreciate the reviewer’s suggestion on extending objects of varying curvatures. We 
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agree that it would be better if more objects can be applied. In our previous work, only one T-TENG 

and one L-TENG sensor were applied to collect the data of 6 objects and we tested 200 times for 

machine learning training. It is feasible for our system to further enhance the recognition capability by 

using more sensors (each finger has one T-TENG sensor and one L-TENG sensor). Therefore, in 

response to the reviewer’s advice, 16 types of objects with various shapes have been tested to construct 

the new data set, where we used 15 sensing channels (four channels of T-TENG and one channel of 

L-TENG on each of 3 soft actuators). Our result as depicted in Fig. 5 indicates that when the number of 

the objects was increased to 16, the recognition accuracy can still reach up to 98.1% for all the 16 types 

of objects with 15-channel signals. Besides, the model trained by data contracted from the previous 

data set showed that more applied samples can provide the better result (Page 19). Hence, we believe 

that our system can be used to recognize more objects of varying curvatures with the aid of introducing 

more sensor channels. 

In the meantime, it is also worth to mention, in the practical application, such as fruit sorting in a 

specific company, the number of training objects for each job task is usually remain at few tens level. 

Hence, it will not be necessary for maintaining such high adaptability to all of the unnecessary objects 

in a certain scenario (i.e., unnecessary “pen” recognition for fruit sorting). In another word, for a small 

task including 5~10 objects, the minimalistic design with only one finger equipped with sensor is 

enough. For more complex tasks, we can then add extra sensors on other fingers to enable the 

scalability. 

Actual change: The detailed content can be found in the Data Processing via Machine Learning 

Technology section from Page 16-20. Fig. 5, Fig. S14, Fig. S15, and Movie S5 were added to illustrate 

the concerned work. 

   

Comments 3: The main criticism I have to offer is that the paper feels crammed. The authors try to 

present and solve a large range of problems related to joint position sensor design, tactile sensor design, 

robot teleoperation with HMIs, soft finger design, soft finger grasping, object recognition and learning, 

and digital twin applications. This is reflected to both the introduction section, where the authors list 

too many potential applications to solve, as well as the experimental methodology (i.e. lots of 

small-scale experiments to test a broad variety of issues). 

Response: We thank a lot for reviewer's valuable comment and suggestion. To clarify our main idea in 

this manuscript, we propose a triboelectric nanogenerator (TENG) based smart sensory system for soft 

robotics, which consists of length TENG (L-TENG) and tactile TENG (T-TENG) sensors. Both of two 

types of sensors based on TENG technology were designed to solve the sensory problems of the soft 

gripper for digital twin applications. In Fig. 2 and 3, the presented results offer the basic 

characterizations of two sensors for understanding the working mechanisms and verifying the 

functionality with the real-time signal processing via a simple demonstration of glove-based sensing. 

Afterwards, we focused on the integration of the sensors into the soft gripper for enhancing the 

intelligence with the aid of machine learning algorithm, in order to realize the object recognition for 

digital twin application. In Fig. 5e-g, in response to reviewer’s question about the necessity of 

combining several concepts, the results shown the importance of the fusion of two types of sensors by 

improving the recognition accuracy significantly, as each of two sensors offers the corresponding 

sensing dimension to increase the available features to be extracted for machine learning. In general, 

the digital twin is the potential application, and the soft finger is the main platform to perform digital 

twin. But it needs sensory system to achieve intelligent digital twin, which requires the joint position 
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sensor (L-TENG) design and tactile sensor (T-TENG) design, while the robot teleoperation is just 

served as a preliminary verification of sensors’ functionalities. In addition, we have rewritten our 

introduction and rearranged the sections of the manuscript for easier understanding where some content 

about the HMI has been delete.  

Actual changes: The second and third paragraph of the introduction have been modified for expressing 

the necessity for developing soft robotic sensing and its background better. All the change has been 

highlighted from Page 3 to Page 5 in the manuscript and hope to dissipate reviewer’s concern.  

 

Comments 4: I believe that the digital twin experiment, albeit successful, was a bit unnecessary as it 

merely showed a grasping simulation executed with the SVM results as input. I would suggest that the 

paper could be broken into two papers: one sensor-oriented, that would describe analytically the 

sensors’ principle of operation, the voltage profile generation, and the HMI control with more elaborate 

control methods, and one application oriented, where the authors could pick up a potential application 

(learning, digital twin or other) and demonstrate the usefulness of the sensors through thorough 

experiments and comparison with existing solutions of their chosen problems (for example, how does 

their T-TENG sensor perform compared to tactile sensors and skins in an object recognition 

experiment?). 

Response: Thank you for reviewer’s kind advice to our work. We apologize for the confusion of the 

main concept intended to present. As mentioned above, our main purpose is to develop a sensory 

system specifically for digital twin and capable of conducting object recognition with enough accuracy, 

which highly relies on the fusion of two types of sensors for soft robots to acquire enough sensible 

dimensions. All the sensor designs and technologies mentioned in the text are used for implementing an 

intelligent smart gripper system. In contrast, the presence of single type sensor will bring a severe 

decline of recognition accuracy and make the whole system unreliable (Fig. 5f and 5g). The 

glove-based demonstration is only served as a simple verification to show the feasibility of real-time 

signal processing for further researches on digital twin. Then, we tested the soft gripper integrated with 

designed sensors for robotic sensing. Finally, we showed the application of the soft gripper with the 

sensors for object recognition and concerned digital twin. This system has great potential for unmanned 

warehouse, farm or shop floor, while there is no light for camera sensing. Based on reviewer’s 

comments, we have obtained a new data set by testing 16 types of objects with 15 channels (four for 

T-TENG and one for L-TENG on each soft actuator) and then trained the machine learning model by 

activating the data of L-TENG channels (3 channels), T-TENG channels (12 channels), and all the 15 

channels respectively. The results indicate that the model trained by 15-channel data shows the best 

accuracy (98.1%) than the others. Meanwhile, the model trained by T-TENG channels’ data performs 

better than the L-TENG’s, especially for the object with similar curvature. Besides, we contracted the 

data of the previous data set and found that the model trained by 100 samples performs lower accuracy 

than the previous model. Therefore, we can conclude that the more sensory information, the more 

accurate the model will be and the sensory data from the T-TENG seems more important for object 

recognition. However, both the T-TENG sensor and L-TENG sensor contribute to the overall accuracy 

of the system. 

Based on reviewer’s comment, we also made some comparisons about the existing sensors for soft 

robotics by TENG technology. Prof. Wang’s group firstly presented a soft robot with the TENG tactile 

sensor for proximity and pressure detection (Adv. Mater., 2018, 30, 1801114). They discussed the 

contact position for robotic clawer by comparing the signals in different electrodes. In reference (Adv. 
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Mater. Technol., 2019, 1900337, 1–7), the soft gripper was covered by the TENG tactile sensor with 

only one electrode. They presented the signals as the gripper gripped or released the objects. In addition, 

Chen, S. et al. presented a wire-driven soft gripper with three TENG tactile sensors (Adv. Mater. 

Technol., 2020, 1901075, 1–10) to detect the contact and compared the signals after gripping different 

objects. These existing solutions mainly concentrate in the view of the contact process or status (i.e., 

proximity, contact, gripping, and release) by evaluating the signals of single or multiple sensors. These 

sensors work separately and thus it is hard to perceive the accurate position (only right above the 

electrodes) or contact surface.  

Actual Change: The detailed content can be found in the Data Processing via Machine Learning 

Technology section from Page 16-20. Fig. 5, Fig. S14, Fig. S15, and Movie S5 were added to illustrate 

the concerned work. 

 

Comments 5: The authors should check the spelling of some words throughout the manuscript and 

title. 

Response: We apologize for these mistakes in our manuscript. We have checked the spelling again and 

marked the modification.  

Actual changes: The concerned content has already been highlighted throughout the manuscript.  

 

Comments 6: The supplementary material and schematics were useful to understand the soft finger 

operation. The video of the digital twin execution is simple and indicative. The video of the HMI is 

also clear, however it left me confused over the use of the T-TENG sensor. The authors claim in the 

paper that the T-TENG sensor is used to change the bending direction, however in the video it looks as 

if the T-TENG sensor does not affect the motion direction (the bending direction just seems to copy the 

motion of the glove finger). The authors should clarify a bit more how the T-TENG sensor is used on 

the HMI control experiment, and show it with some schematics or images. 

Response: We are sorry that the T-TENG in our manuscript is not well-explained. For verifying the 

real-time signal processing system, we use a slice of T-TENG with single electrode to switch the 

motion direction of the robotic hand and it is mounted on the thumb position of the glove, which has 

been mentioned in Page 12. We have modified the Fig. 3f(i) to express the location of the T-TENG 

better. As depicted in Fig. 3f(vi), the motion direction of robotic finger will be changed after the trigger 

caused by the tapping of the thumb and index finger. Besides, the position of the both sensors has been 

marked in the supplementary movie (Movie S3). We hope these modifications may dissipate review’s 

confusion. 

Actual changes: The concerned content can be found in Page 12, which has been highlighted. And the 

modified movie can be found in supplementary material (Movie S3). 

 

Reviewer #2 

Comments 1: This application itself is not quite new, and there is almost no new fundamental 

understanding, new mechanism illustration, materials innovation, or novel discovery. The scientific 

value of this work is not significant.  

Response:  

We thank a lot for reviewer's valuable comment. In this paper, we proposed a tactile sensor (T-TENG), 

a length sensor (L-TENG), and a perception system with machine learning technique for improving the 

intelligence of the soft gripper. To indicate the scientific value, there are several points which can be 
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clarified. 

1. We integrated the triboelectric sensor on pneumatic finger to realize self-powered sensing, which 

can reduce the power consumption for massive deployment, especially in wireless AIoT 

framework. There are only a few papers studied triboelectric based sensing for pneumatic actuator 

or continuous motion sensing. But they do not possess the capability of multi-dimensional sensing 

for practical application, especially digital twin. 

2. We firstly proposed the gear-based length sensor (L-TENG) to measure the bending degree of the 

soft gripper, which has the specially designed disc spring for recovery after air off for the soft 

actuator. The special gear-based structure of the L-TENG sensor has not been proposed before and 

can be used for continuously sensing of the displacement which is difficult to be achieved by 

common triboelectric based sensors. The resolution can also be further improved as we mentioned 

Page 11 by adjusting the transmission ratio or gear tooth number, etc. 

3. T-TENG can not only detect the siding, contact position but also contact area with simple structure, 

which is useful to distinguish surface contact and point contact for soft gripper. 

4. Refer to Fig. 2, we proposed the special design of T-TENG electrodes with the readout method of 

output ratio. Together with peak counting readout of L-TENG shown in Fig 3, we can solve the 

problem of output amplitude fluctuation caused by environmental noises. 

5. We successfully utilized the constant curvature theory to explain the bending angle of pneumatic 

finger by the outputs from TENG sensor, and obtained the results shown in Fig. 4c. This approach 

verifies the feasibility of realizing primary recognition without advanced data processing. 

6. For more complex tasks in practical application, we investigated the object recognition assisted by 

the machine learning technique. To achieve this task, we effectively combined L-TENG and 

T-TENG to create the enough dimensions of sensing data for increasing the recognition accuracy, 

as shown in Fig 5. 

7. The proposed sensory system should have potential for unmanned warehouse, farm land and shop 

floor management, where there is no light or no camera, as shown in our integrated demonstration. 

8. The object recognition together with sensory system also helps to build up a comprehensive 

database by the continuous accumulation of sensing data during million times of grasping of 

diverse objects in practical application. These collected massive data become a valuable guideline 

and evaluation about the performance of grabbing object by robots, such as the contact mapping 

which reflects the most frequent touched areas or less touched areas, as well as the slippery area. 

This information is crucial for those robotic arm engineers to improve the designs accordingly. 

 

Comments 2：Page 3, line 63-65, in the introduction section, the authors claimed that resistive sensors 

suffer from temperature instability that prevents their practicality. However, temperature also impacts 

TENG output according to others’ report. In order to show the superiority of TENG over other 

technologies, the authors are suggested show the accuracy of object identification under different 

temperature. 

Response: Thank you for reviewer’s kind advice. We agree with the reviewer’s opinion that the 

working temperature may affect the object identification. However, it usually happens at very high or 

low temperature. As mentioned in some literature data (Nano Energy, 2014, 4, 453–460; Appl. Phys. 

Lett., 2015, 106, 013224), the triboelectric output will experience the significant fluctuation after reach 

above 320K or below 200K. Hence, the triboelectric based sensor can provide stable functions under 

the practical scenarios, where the temperature seems to remain in a constant value (298K) and the 
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fluctuation of temperature is quite small. As the fundamental principle of machine learning algorithm is 

to identify the signal patterns and extract the distinct features among various objects. Hence, for a 

specific object, the system can recognize it successfully for each cycle if the output of contacting can 

maintain the consistency of the signal patterns, which means the high accuracy. As reviewer’s kind 

advice, we have tested the signals for some of the objects in diverse temperatures (298K and 313K). As 

depicted in Table 1, our results indicate that within normal ambient temperature, our TENG sensory 

system is not very sensitive to the temperature. In addition, we can also improve the accuracy of the 

model by getting more data under different temperatures for training to enhance the versatility of the 

model when the environment has large temperature variation.  

Actual Change: Table 1 in reply can also be found in the Supplementary Materials (Table S2) 

Table 1 The real-time object recognition results under different temperatures 

Temperature Small box Orange Apple Long Can Short Can Accuracy 

298K 20/20 19/20 19/20 20/20 19/20 97/100 (97%) 

313K 20/20 17/20 18/20 19/20 20/20 95/100 (95%) 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 

 

Comments 3: Page 4, line 88-90, the statement that soft materials of TENG and PENG has the same 

Young’s modulus level as silicone and TPU is not correct. Piezoelectric soft polymer such as PVDF has 

Young’s modulus up to 1 GPa, which is a few orders of magnitude higher than the modulus of soft 

silicone and TPU (1-10 MPa). 

Response: We apologize for the mistake in our manuscript. Sensors made of PVDF film can also show 

good flexibility if it is thin enough, although it seems hard to be stretched. Therefore, thin PVDF film 

can also be used in soft gripper if it has a stretching limitation layer to make the soft actuator bend. 

Thanks for reviewer’s advice and we have modified the corresponding expression.  

Actual Change: The concerned content can be seen in Page 3.  

 

Comments 4: The measurements shown in Fig 3 are qualitative, such as tapping in the middle area 

between two electrodes will trigger smaller signals compared to direct tapping above the electrodes, 

and more contact area, lager output. This is all empirical. The contact speed and strain speed will all 

affect the output. Is there any fitting equation/curve could bridge position and output to predict the 

precise output at different position under different contact and strain speed? This might help further 

improve the accuracy.  

Response: We would like to express our most gratitude to the reviewer’s kind advice. For 

distinguishing the signal caused by different contact and strain speed, we used the formula
4

1

/i i
i

Ratio E E
=

=  as mentioned in Page 9, which presents the ratio of the output value of the single 

electrode to all of the four short electrodes.  
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Fig. R1 The simplified diagram of the contact process for electrostatic analysis. 

 

The main working mechanism is listed as following. According to the electrostatic induction, we can 

define the electric potential as  

QU k
r

=                                    (1) 

where Q is the amount of charge, r is the distance to the point charge, and k is Coulomb’s constant as 

shown in Fig. R1 below. So, if we assume that a charge of +Q moves to the silicone rubber surface with 

a distance of h, the output voltage of two nearby electrodes can be expressed as 

i

i+1

2 2

2 2

+

( ) +

E

E

Q QV k k
xx h

Q QV k k
l xl x h

 = −


 = −
 −−

                       (2) 

where x represents the distance between the touch point to Ei and l-x represents the distance between 

the touch point and Ei+1.Thus, the ratio can be derived as  

1

2 2

2 2

1 1

( )
1 1

i

i

E

E

l xV l x h
V

xx h

+

−
−− +

=
−

+

                        (3) 

So if h is large enough, we can obtain 

1i

i

E

E

V x
V l x

+ =
−

                              (4) 

Therefore, the ratio can be used to explain the method to get a more accurate position under virous 

speeds and strain speeds. Similarly, as the electrodes number are increased to four, we can use 
4

1

Ratio /i i
i

E E
=

=  to sense the position. As depicted in Fig.2d, we analyzed the data after contacting 

right above the electrode and the middle position of two electrodes. The result shows the reliability of 

the T-TENG to sense the contact position.  

Actual Change: The concerned content can be seen in Page 9 and we have added the detailed 

explanation in Text S1 in Supplementary Materials.  

 

Comments 4: How is the stability of the smart system? After cycles of utilization, is the accuracy still 

over 97%? 

Response: We would like to express our most gratitude to reviewer’s effort and patience in reviewing 
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our manuscript. According to the comment, we have used the soft gripper integrated with both 

L-TENG and T-TENG sensors (16 channels) to grip various objects with 2000 times to show the 

stability of our sensory system. In order to reduce the proportion of necessary training and testing times 

in the entire stability test and make the result for certain utilization cycles more accurate, we choose to 

use less data: 80 samples for training for each object (total 5 objects) and 20 samples for testing for 

each object after cycles of utilization. As shown in Table 2 below, our results indicate that though the 

recognition accuracy has some inevitable fluctuation due to the environmental and man-made noise, 

the average accuracy remains high level and there isn’t an obvious decrease after gripping for 2000 

times. Therefore, we believe that our design can keep a high accuracy even though after cycles of 

utilization.  

Actual changes: Table 2 in reply can also be found in Supplementary Materials (Table S3) 

Table 2 The test results for verifying the stability of the smart system 

Note: “19/20” means that 19 times correct recognition in 20 times gripping tests. 

 

Comment 5: The authors should check typos before submission. The typos such as “nanaocomposites” 

in page 4, line 86 should be corrected. 

Response: We apologize for these mistakes in our manuscript. We have checked the spelling again and 

marked the modification.  

Actual changes: The concerned content has already been highlighted throughout the manuscript. 

 

Reviewer #3 

Comment 1: “Compared to the previous solutions, the developed sensing system with 

patterned-electrode tactile TENG (T-TENG) sensor can detect sliding, contact position and gripping 

mode.” This statement would be better supported with quantitative comparison of the proposed new 

design with other solutions, optical etc. in a small table or figure. 

Response: Thanks for reviewer’s kind advice to our work and sorry for our mistakes. In this paper, we 

want to introduce the sensing methods for soft gripper which requires special design for sensors. 

Actually, we want to express that compared to the previous solutions based on TENG technology for 

robots, our device can detect sliding, contact position and gripping mode. The concerned sentence has 

been modified (Page 4). Meanwhile, the T-TENG sensor featuring simple structure and low cost has its 

advantages compared to other methods. As reviewer’s kind comment, some comparisons about the 

tactile sensor based on TENG technology and other methods (e.g., piezoelectricity) have been listed in 

Tab.1 below.  

Actual changes: The comparison of the tactile sensors can be found in Table 3 below (also see Table 

 Gripping Counts 

 100 300 500 700 1000 1300 1500 1800 2000 

Small Box 20/20 20/20 20/20 19/20 20/20 18/20 20/20 20/20 20/20 

Orange 19/20 18/20 19/20 18/20 17/20 18/20 17/20 19/20 19/20 

Apple 19/20 19/20 19/20 20/20 20/20 19/20 19/20 19/20 19/20 

Long Can 20/20 20/20 18/20 19/20 18/20 20/20 20/20 20/20 19/20 

Short Can 18/20 20/20 20/20 20/20 19/20 20/20 19/20 19/20 19/20 

Accuracy 
96/100 

(96%) 

97/100 

(97%) 

96/100 

(96%) 

96/100 

(96%) 

94/100 

(94%) 

95/100 

(95%) 

95/100 

(95%) 

97/100 

(97%) 

96/100 

(96%) 
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S1 in Supplementary Materials). The concerned content has been modified in Page 4. 

Table 3 Comparison of the tactile sensor based on TENG technology and other methods 

Method Position Sliding Contact 

Surface 

Force Electrode 

Number 

Application 

Triboelectric 

Simple 

(Contact or 

separation) 

No No  No One Soft gripper1–3 

Triboelectric 
5×5 sensory 

array 
Yes  No  No Four Robot control4 

Triboelectric 
8×8 sensory 

array  
Yes Yes No Sixteen Wearable device5 

Triboelectric 

Simple 

(Contact or 

separation) 

No No No 
Two or 

three  
Wearable device 6,7 

Capacitive, 

Triboelectric 

4×4 sensory 

array  
Yes No Normal Eight  Humanoid Hand8 

Piezoresistive No No Yes No One Soft gripper9 

Piezoresistive Yes No No Yes One Soft gripper10 

Piezoresistive Yes No Yes  No 
Two or 

more 
Soft gripper11 

Piezoelectric No Yes No No Two     Textile detection12 

Piezoelectric No No No 
Contact 

or not 
One Wearable device13 

Capacitive Yes  No No No Four HMI14 

Capacitive No No No 3-axis Four Humanoid Hand15 

Capacitive Yes No No 
Contact 

or not 
Six Wearable device16 

Thermosensitive No No No Normal One Humanoid Hand17 

Optical Yes No No Normal  Sensor Mechanism18 

 

Comments 2: The authors state, "With a layer of silicone rubber, a kind of flexible and stretchable 

negative triboelectric material, coated on the surface of the patch, triboelectric signals can be generated 

by the stimuli on the T-TENG sensor’s surface and collected in these five electrodes," and couple this 

with a methods section. The process could be described in a more detailed manner and paired with the 

appropriate figure. 

Response: Thanks for reviewer’s kind advice to our work. We have added a figure about the 

fabrication process in Supplementary Materials (Fig. S1), which may do some helps. Besides, the 

methods part has been added some detailed parameters about the fabrication of the T-TENG sensor. 

Hope to dissipate the reviewer’s concern 

Actual changes: These changes can be found in the Methods section (Page 22) and the latest 

supplementary materials (Fig. S1).  

 

Comment 3: Since sensor and fabric application to the host influences detection and output signal, 

brief explanation of the method/type of adhesive used would be beneficial. Response: We appreciate 
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the reviewer’s suggestion on clarifying the method/type of adhesive used in our manuscript. At first, we 

used the PET film as the substrate to test the T-TENG’s working mechanism. The conductive textile 

tape was pasted on the PET film by its own adhesive, a kind of acrylic pressure sensitive adhesive. 

Then, the EcoFlex 00-30 was used to cover and seal the Ni-fabric layer by a mold (see Fig.S1 in 

Supplementary Materials). Similarly, the same method has been used in the integration of T-TENG and 

the soft actuator as illustrated in Fig. S13 where the extra silicone rubber was used to reinforce the 

adhesion of the EcoFlex and TPU.  

Actual Changes: The methods for fabrication T-TENG have been modified based on reviewer’s advice 

Page 22. Besides, Fig. S1 has been added and the Fig. S13 has been modified for better explanation.  

 

Comments 4: Figure 1 is difficult to read. In particular, the fonts are too small to read. Also, the 

relationship between elements in the figure are not clearly illustrated or described in the caption/text. 

Response: We apologize for these mistakes in our manuscript. The concerned figure has been modified 

according to reviewer’s advice. Thank you for reviewer’s kind advice 

Actual changes: These changes can be found in Fig. 1 of the latest manuscript. 

 

Reference: 
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Reviewers' comments (R2): 

Reviewer #1 (Remarks to the Author): 

I would like to thank the authors for addressing my comments and the comments of other 

reviewers, and extensively describing the changes they made. Their explanatory responses 

and manuscript additions in my concerns for the length of the paper and necessity of the digital 

twin experiment made the manuscript richer an more streamlined. 

The machine learning experiment added to section "Data Processing via Machine Learning 

Technology" offers additional insight over the sensor performance in gripping tasks. The 

results seem to validate the usefulness of the two TENG sensors in grasping tasks of simple 

objects, with confusion matrices that reflect good performance. The authors need to describe 

the data collection and training procedure of the SVM: a) The authors claim that they used the 

voltages of electrodes and applied PCA to extract features, however they should mention 

exactly what features they have used as input to SVM (such as voltage peaks, RMS value ea.), 

and technical details on the SVM (kernel used etc). b) The authors need also to describe 

exactly how the grasping motion is performed to gather data for the 100 grasps on each object, 

and the finger contact location on the object. If the grasping motion is performed the same way 

as shown in Movie S5, there is a good chance that the 100 grasps for each object are similar 

to one another. The 80:20 split over all objects is also a factor for the good performance, as the 

usage of all objects in the training process ensures that the SVM recognises data very similar 

to the ones that have been trained upon. I understand that the authors argue their system is 

suited for applications where the robot encounters the same object (such as fruit picking), and 
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such a method of training is viable. I suggest the authors conduct an experiment where all data 

from 10-11 objects are used in training and all data from the rest 5-6 objects are used in testing. 

This will enable the research community understand the applicability of their sensors in more 

general object recognition, where generalisation to unknown objects is required. 

 

 

Reviewer #2 (Remarks to the Author): 

In the revised manuscript, the authors clearly addressed all the concerns I raised. It can be 

seen that the authors made a great effort to clarify all uncertainties and confusing points in the 

manuscript. It is an impressive engineering development of a TENG-based technology, while I 

still don't think the scientific impacts and novelty are very high. Nonetheless, the quality of work 

in this manuscript is high and can be recommended for publication on Nature 

Communications. 

 

 

Reviewer #3 (Remarks to the Author): 

The reviewer has reviewed the submission as well as the rebuttal to the original reviewer 

comments. The reviewer finds that the authors have effectively addressed the comments of 

the reviewers. 

 

 

Manuscript number: NCOMMS-20-04528B 

Title: Triboelectric Nanogenerator Sensors for Soft Robotics Aiming at Digital Twin Applications 

Authors: Tao Jin, Zhongda Sun, Long Li, Quan Zhang, Minglu Zhu, Zixuan Zhang, Guangjie Yuan, 

Tao Chen, Yingzhong Tian, Xuyan Hou and Chengkuo Lee 

 

Responses to the reviewers: 

Reviewer #1 

Comment 1: The authors claim that they used the voltages of electrodes and applied PCA to 

extract features, however they should mention exactly what features they have used as input 

to SVM (such as voltage peaks, RMS value ea.), and technical details on the SVM (kernel 

used etc). 

Response:  

We thank a lot for reviewer’s valuable comment. For the input of the PCA1, we used the raw 

data of 15 channels of each grasp which is shown in Fig. R1 (Different columns show the 

time-domain signals of 15 channels of different objects during one grasping motion). The data 
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length for each channel is 200, so there are 200 * 15 = 3000 features for each sample and each 

feature means one data point in the time domain during grasping. Then the PCA will extract 

features and reduce the dimensionality from 3000 to a few hundred, that means the final input 

to SVM2 will be hundreds of data points of each sample which can best distinguish these 

objects. For better understanding, the enlarged voltage waveforms of each channel for 

grasping the banana are shown in Fig. R2, where the outputs of channel 1-9, 11, 13, 15 are 

from T-TENG sensors, and the outputs of 10, 12, 14 are from L-TENG sensors. All the data 

points of these channels will be directly used as input to the ML process. Due to the larger 

contact area when grasping the banana, channel 2, 3, 11 and 13 shows greater voltage value 

than other channels among T-TENG sensors, which can be further visualized as peak voltage 

maps as the reference to distinguish different objects by the human eye shown in Fig. R3. But 

the machine distinguishes these objects based on the hundreds of data points extracted from 

the 3000 data points of 15 channels for each sample, not just the voltage peaks, peak values or 

RMS values. The technical details of the SVM can be found in Table 1. We used the linear 

kernel and optimized the accuracy of the SVM according to commonly used parameters, and 

found that the optimal recognition accuracy of 98.125% can be achieved when the penalty 

parameter C is 1 * 10 -2 and dimensionality of the data feature is reduced to 200 by PCA. 

Actual Change: The concerned content has already been added and highlighted in Page 18, 

line 11-25 and Page 19, line 12-19. Fig. R1 and Table 1 in reply are provided in the 

Supplementary Materials (Fig. S14, Table S4).  

 

Fig. R1. The input voltage signals of 15 channels for 16 different grasped objects. 
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Fig. R2. The input voltage signals of 15 channels for grasping the banana. 

 

 

 

 

Table 1 Parameter optimization of SVM and PCA 

Classification 

accuracy 

Penalty parameter C 

૚ ൈ ૚૙ି૛ ૚ ൈ ૚૙ି૚ 1 10 

Linear kernel 

 

PCs = 100 96.25% 95.938% 95.938% 95.938% 

PCs = 120 96.563% 96.563% 96.563% 96.563% 

PCs = 150 97.5% 97.5% 97.5% 97.5% 

PCs = 200 98.125% 97.813% 97.813% 97.813% 

PCs = 250 97.5% 97.5% 97.5% 97.5% 

 

Comment 2: The authors need also to describe exactly how the grasping motion is performed 

to gather data for the 100 grasps on each object, and the finger contact location on the object. 

If the grasping motion is performed the same way as shown in Movie S5, there is a good 

chance that the 100 grasps for each object are similar to one another. 
Response:  
Thank you for reviewer’s kind advice. In terms of the primary demonstration of showing the 

feasibility for object recognition in warehouse or factory where the robotic gripper usually grasps 

products with the same position and angle, we try to maintain a relatively fixed position for 100 

grasps for each object during the data collection process to achieve a better prediction result with 

less samples. The peak voltage maps of the T-TENG sensors for different objects shown in Fig. R3 
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provide a reference for the finger contact location on the object. The peak voltages of the 12 

T-TENG sensors for each sample are normalized between zero and one, and a darker color means 

larger contact area and contact force at this location during grasping. The grasping pressure 

differences among the 12 T-TENG sensors between objects are also clearly illustrated in this 

figure. Though the fabrication errors existing in our homemade sensors and pneumatic fingers 

may result in the asymmetrical distribution of the peak voltages in the T-TENG sensors for 

symmetric objects, this will not affect the prediction ability of the system because both the training 

and testing process are done by one specific gripper and the error between different sensors is also 

the same for all objects. This problem can be solved in the future by using more stringent and 

unified fabrication standards. 

Additionally, for those grasps, some of them from different objects may look similar at a certain 

time frame (i.e., the time of taking photo, or the time of drawing the pressure maps). However, as 

we mentioned in main manuscript and above, we are using a period of output data (200 data points 

at time series) of 15 channels as a training sample, which means the data includes the information 

of the contact force, speed, sequences, contact positions, latency, and the contact durations etc. 

Those multi-dimensional features, rather than the individual grasping position, will then define the 

identity of the grasped object. As a result, as long as those objects have distinct shape differences, 

the object recognition can be achieved. 

Actual Change: We have added the detailed explanation in Text S5 in Supplementary 

Materials. Fig. R3 has also been added in the Supplementary Materials as Fig. S17. 
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Fig. R3. Peak voltage maps of the T-TENG sensors for 16 different objects. 

 

Comment 3: I suggest the authors conduct an experiment where all data from 10-11 objects 

are used in training and all data from the rest 5-6 objects are used in testing. This will enable 

the research community understand the applicability of their sensors in more general object 

recognition, where generalisation to unknown objects is required. 
Response:  
We appreciate the reviewer’s suggestion on the experiment of generalisation to unknown objects. 

Here we choose tennis ball, big box and short can to represent the three most common shapes of 

objects in daily life: sphere, cube and cylinder, as the unknown objects for testing. In the 

experiment, we still use the 100 grasp data of the rest 13 objects for training, therefore each raw 

data consists a period of output data in time series of 15 channels, 200 data points * 15 channels = 

3000 features in total for each sample as the input to the machine. Again, we understand that the 

machine learning algorithm identifies objects still based on a complete set of 15 channel sensor 

data in each grasp, i.e., hundreds of data points extracted from the 3000 data points of 15 channels 

by PCA for each sample data, not just the peak values. 

For human being, it could be relatively easy to tell the difference when we look at the peak voltage 

map. Therefore, we conduct the next three experiments to verify effectiveness of general object 

recognition, in particular, the generalisation to unknown objects, under our sensor design and 
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present machine learning algorithm.  

(1) Tennis ball test 

The first experiment is to see the recognition outcome from the machine for the unknown object 

like a tennis ball based on the previous training data which does not have tennis grasp data at all. 

We collected 100 grasp data samples for the tennis ball, i.e., the unknown object data for the 

trained machine model. Then we see the recognition outcomes for these 100 grasp data samples 

for the tennis ball, 51 samples are recognized as the baseball, and 40 samples are predicted as the 

apple. From the 51 samples, one of the sample data is selected and only the peak voltage value is 

identified and provided as the peak voltage map of the T-TENG sensors of tennis ball in the Fig. 

R4a. Then, among the 40 samples, one of the sample data is selected and the peak voltage map of 

the T-TENG sensors of tennis ball is identified as shown in the Fig. R4b. One of the typical 

training data of the baseball and the apple are selected and the peak voltage maps are shown in Fig. 

R4c and Fig. R4d. We try to leverage the peak voltage map to help us to figure out any 

relevant information for the machine to do the unknown object recognition. 

The values and distribution of sensor outputs among channel 1-3, 7-9, 11 and 13 are quite similar 

among these three spherical objects. Furthermore, the output of channel 15 in Fig. R4a is close to 

the value in the Fig R4c, while the output of channel 15 in Fig. R4b is close to the value in the Fig 

R4d. This could be a factor observed by the machine and then suggest the sample data of R4a as 

the baseball, and the sample data of R4b as the apple. 

Back to the point indicated by reviewer “This will enable the research community understand the 

applicability of their sensors in more general object recognition, where generalisation to unknown 

objects is required.”, I think the above results show that our sensors and machine algorithm works 

effectively to recognize the spherical object.  

 

Fig. R4. Peak voltage maps of tennis ball samples predicted as a) the baseball and b) the apple 

respectively; peak voltage maps of c) the typical baseball sample and d) the typical apple sample. 

(2) Big box test 

The second unknown object recognition experiment is to test the big box grasp data for 100 times 

based on the trained model as same as the experiment 1. For the big box, most samples (total 70) 
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are recognized as the orange, and only a few samples (21) are predicted as the baseball. From the 

70 samples, one of the sample data is selected and the peak voltage map of the T-TENG sensors of 

big box is provided in the Fig. R5a. Then, among the 21 samples, one of the sample data is 

selected and the peak voltage map of the T-TENG sensors of big box is identified as shown in the 

Fig. R5b. One of the typical training data of the orange and the baseball are selected and the peak 

voltage maps are shown in Fig. R5c and Fig. R5d.  

Although we have one cube shaped object, i.e, the small box, in the trained model, we do not get 

the recognition outcome of recognizing “big box” as the “small box”. The dimension of big box 

and small box are 10 cm * 4 cm * 14cm and 8 cm * 2 cm * 14cm, respectively, where the length 

of the big box is slightly longer than that of the small box, and the width of the big box is twice 

that of the small box. When we look at the 7 and 8 voltage maps in the Fig R3, the voltage value 

in channel 11 for the small box is obviously the highest among all channels, which is quite 

different from that of the big box where the voltage value in channel 11 is much smaller than that 

of the channel 9. The voltage distribution difference between the small box and the big box may 

finally make the machine recognize the big box as other existing objects in the training set with 

more similar voltage distribution. 

On the other hand, when we look at the peak voltage maps in Fig R5, the values and distribution 

of sensor outputs among channel 1-3 and channel 11 of the big box shown in the Fig. R5a are 

quite similar to that of the orange shown in Fig. R5c. This could be a factor that most big boxes 

with such voltage distribution are identified as the orange. But for a few big box samples which 

have higher voltage values in channel 2-3 and 11 shown in the Fig. R5b, the baseball that also has 

higher values in these channels (Fig. R5d) than that of the orange becomes the most possible 

prediction result of these samples. 

After all, with the general understanding of machine learning, insufficient trained data in the cubic 

objects may make the machine suggest the 2nd best-matched objects (the orange) existing in the 

training set and putting more cubic objects of different sizes and types into the training set may be 

helpful to enhance the machine’s ability to recognize the general cubic objects. 

 
Fig. R5. Peak voltage maps of big box samples predicted as a) the orange and b) the baseball 

respectively; peak voltage maps of c) the typical orange sample and d) the typical baseball sample. 
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(3) Short can test 

The third experiment is to identify the unknown short can grasp data for 100 times based on the 

trained model. Among these samples, more than half (52) are predicted as the long can, and 23 and 

22 samples are recognized as the orange and the banana respectively. Among the 52, 23 and 22 

samples, one of the sample data is selected from each category and the corresponding three peak 

voltage maps of the T-TENG sensors of the short can are provided in the Fig. R6a, Fig. R6b and 

Fig.R6c respectively. One of the typical training data of the long can, orange and banana are 

selected and the peak voltage maps are shown in Fig. R6d, Fig. R6e and Fig. R6f.  

According to the peak voltage maps in Fig. R6a and Fig. R6d, it is clear that the short can and the 

long can have almost the same peak voltage distribution among the 12 T-TENG sensors, where 

peak voltage values in channel 1-3, channel 9, channel 11, channel 13 and channel 15 are usually 

larger than the remaining channels and the range is also relatively stable, which may make the 

recognition result of the long can dominates. For the few samples of short can that have relatively 

low values in channel 4-6 shown in the Fig. R6c, the typical banana sample which also has small 

peak voltages in these channels in the Fig. R6f shows a higher similarity to these samples and this 

may be the decisive factor that the sample data of Fig. R6c is recognized as the banana. However, 

for the sample data visualized in Fig. R6b and Fig. R6e, it’s difficult to directly tell the similarity 

just based on the peak voltage maps and the machine may make the prediction based on more 

features with higher dimensionality in the raw data, not just the peak voltage values. 

The above results show that our sensors and machine algorithm also work effectively to recognize 

the cylindrical object even though there are only a small number of cylindrical samples in the 

training set.  

 

Fig. R6. Peak voltage maps of short can samples predicted as a) the long can, b) the orange 

and c) the banana respectively; peak voltage maps of d) the typical long can sample, e) the typical 

orange sample and f) the typical banana sample. 

 

In summary, according to the prediction results of unknown objects given by the pre-trained SVM 

model based on the raw data (3000 data points) of samples, as well as the referential analysis of 

the voltage maps, the above results for three unknown objects indicate that our developed sensors 

have a certain recognition ability when encountering general spherical and cylindrical objects, 
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which will be highly likely to be identified as objects with similar shapes in the training data set. 

While in the experimental 2, due to insufficient trained data in the cubic objects, we realized that 

machine may suggest the 2nd best-matched results because of the relative values and distribution 

observed in the outputs of the 12 T-TENG sensors. The prediction ability of our system for general 

cubic objects can be enhanced in the future if we put more cubic objects of different sizes and 

types into the training set and make the machine learn more unique features of cubic objects. 

It is worth to mention that, SVM technique as a supervised learning algorithm, all of the 

recognizable objects were labelled during the training process. Hence, if we introduce the 

unknown object for testing without training, then SVM will not be able to provide the true identity 

of itself (since it does not exist), but to categorized it into the trained labels which have the most 

similar features. In another word, for unknown objects, the function of SVM-based finger grasping 

becomes classification (based on the existed classes, i.e., the trained 10~11 objects), rather than 

the precise recognition (i.e., provide the true identity of itself), and the classification should be 

shape, position, and size-based recognition. Hence, that is the reason for above test results of the 

unknown objects recognition, i.e., the tennis ball is categorized into the baseball or the apple, and 

the short can is identified as the long can. Moreover, it is universally accepted that the 

performance of generalization also relies on the population (classes) of trained data set, and hence, 

for larger database, there will be more chance to find the similar object which matches the 

unknown object better. For the above example of big box test, if we can establish a data base with 

more trained objects which contains other boxes with different sizes or shapes, the recognition 

performance will then be effectively improved.  

 

Reviewer #2  

Comments: 

In the revised manuscript, the authors clearly addressed all the concerns I raised. It can be 

seen that the authors made a great effort to clarify all uncertainties and confusing points in the 

manuscript. It is an impressive engineering development of a TENG-based technology, while 

I still don't think the scientific impacts and novelty are very high. Nonetheless, the quality of 

work in this manuscript is high and can be recommended for publication on Nature 

Communications. 

Response:  

Thank you very much for your positive comments on the manuscript. 

 

Reviewer #3 

The reviewer has reviewed the submission as well as the rebuttal to the original reviewer 

comments. The reviewer finds that the authors have effectively addressed the comments of 

the reviewers. 

Response:  

Thank you very much for your positive comments on the manuscript. 
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Reviewers' comments (R3): 

REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

 

I would like to thank again the authors for their detailed experiments, and for analytically 

addressing my comments. 

The PCA and SVM section is now more complete and helps the reader understand how the 

data were gathered, processed, and utilised. 

The new experiments are important because they demonstrate both the strengths and the 

limitations of the TENG sensor in object recognition. The TENG signals are similar for rounded 

surfaces, leading to good recognition of curved surfaces (sphere and cylinder recognition 

experiment), and additional research can improve the results in flat surface recognition. 

I suggest publication of the article, and I wish the authors further success in their future 

research. 
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