GigaScience

PacBio assembly with Hi-C mapping generates an improved, chromosome-level goose **genome** --Manuscript Draft--

Manuscript Number:	GIGA-D-20-00133			
Full Title:	PacBio assembly with Hi-C mapping generates an improved, chromosome-level goose genome			
Article Type:	Data Note			
Funding Information:	National Key R & D Program of China (2018YFD0500403)	Prof. Mingzhou Li		
	National Natural Science Foundation of China (U19A2036)	Prof. Mingzhou Li		
	National Natural Science Foundation of China (31872335)	Not applicable		
	National Natural Science Foundation of China (31772576)	Prof. Mingzhou Li		
	National Natural Science Foundation of China (31802044)	Dr. Yan Li		
	China Postdoctoral Science Foundation (2018M643514)	Dr. Yan Li		
Abstract:	Background The domestic goose is an economically important and scientifically valuable waterfowl; however, a lack of high-quality genomic data has hindered research concerning its genome, genetics, and breeding. As domestic geese breeds derive from both the swan goose (Anser cygnoides) and the graylag goose (Anser anser), we selected a female Tianfu goose (A. anser × A. cygnoides) for genome sequencing. We generated a high-quality goose genome assembly by adopting a hybrid de novo assembly approach that combined PacBio single-molecule real-time sequencing, high- throughput chromatin conformation capture mapping, and Illumina short-read sequencing. Findings We generated a 1.11 Gb goose genome with contig and scaffold N50 values of 1.85 Mb and 33.12 Mb, respectively. The assembly contains 39 chromosomes (2n = 78) accounting for ca. 88.36% of the goose genome. Compared with previous goose assemblies, our assembly has more continuity, completeness, and accuracy; the annotation of core eukaryotic genes and universal single-copy orthologs has also been improved. We have identified 17,568 protein-coding genes (PCGs) and a repeat content of 8.67% (96.57 Mb) in this genome assembly. We also explored the spatial organization of chromatin and gene expression in the goose genome, in terms of inter- chromosomal interaction patterns, compartments, topologically associating domains, and promoter-enhancer interactions. Conclusions			
Corresponding Author:	Mingzhou Li, Ph.D. Sichuan Agricultural University Chengdu, Sichuan CHINA			
Corresponding Author Secondary Information:				

Corresponding Author's Institution:	Sichuan Agricultural University
Corresponding Author's Secondary Institution:	
First Author:	Yan Li
First Author Secondary Information:	
Order of Authors:	Yan Li
	Guangliang Gao
	Yu Lin
	Silu Hu
	Yi Luo
	Guosong Wang
	Long Jin
	Qigui Wang
	Jiwen Wang
	Qianzi Tang
	Mingzhou Li, Ph.D.
Order of Authors Secondary Information:	
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly	

encouraged to cite <u>Research Resource</u> <u>Identifiers</u> (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information	
requested as detailed in our Minimum	
Standards Reporting Checklist?	
Availability of data and materials	Yes
All datasets and code on which the	
conclusions of the paper rely must be	
either included in your submission or	
deposited in publicly available repositories	
(where available and ethically	
appropriate), referencing such data using	
the "Availability of Data and Materials"	
section of your manuscript.	
Have you have met the above	
requirement as detailed in our Minimum	
Standards Reporting Checklist?	

1	PacBio assembly with Hi-C mapping generates an improved, chromosome-level goose genome
2	Yan Li ^{1,†} , Guangliang Gao ^{1, 2,†,*} , Yu Lin ^{1,†} , Silu Hu ¹ , Yi Luo ¹ , Guosong Wang ^{1,3} , Long Jin ¹ , Qigui Wang ² ,
3	Jiwen Wang ¹ , Qianzi Tang ¹ , Mingzhou Li ^{1, *}
4	
5	¹ Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan
6	Agricultural University, Chengdu 611130, China;
7	² Institute of Poultry Science, Chongqing Academy of Animal Sciences, Chongqing 402460, China;
8	³ Department of Animal Science, Texas A&M University, College Station 77843, United States of
9	America
10	[†] These authors contributed equally to this paper.
11	* Corresponding author(s): Guangliang Gao: guanglianggaocq@hotmail.com; Mingzhou Li:
12	mingzhou.li@sicau.edu.cn.
13	Abstract
14	Background:
15	The domestic goose is an economically important and scientifically valuable waterfowl; however,
16	a lack of high-quality genomic data has hindered research concerning its genome, genetics, and breeding.
17	As domestic geese breeds derive from both the swan goose (Anser cygnoides) and the graylag goose
18	(Anser anser), we selected a female Tianfu goose (A. anser \times A. cygnoides) for genome sequencing. We
19	generated a high-quality goose genome assembly by adopting a hybrid de novo assembly approach that
20	combined PacBio single-molecule real-time sequencing, high-throughput chromatin conformation
21	capture mapping, and Illumina short-read sequencing.
22	Findings:

23 We generated a 1.11 Gb goose genome with contig and scaffold N50 values of 1.85 Mb and 33.12

24	Mb, respectively. The assembly contains 39 chromosomes $(2n = 78)$ accounting for ca. 88.36% of the
25	goose genome. Compared with previous goose assemblies, our assembly has more continuity,
26	completeness, and accuracy; the annotation of core eukaryotic genes and universal single-copy orthologs
27	has also been improved. We have identified 17,568 protein-coding genes (PCGs) and a repeat content of
28	8.67% (96.57 Mb) in this genome assembly. We also explored the spatial organization of chromatin and
29	gene expression in the goose genome, in terms of inter-chromosomal interaction patterns, compartments,
30	topologically associating domains, and promoter-enhancer interactions.
31	Conclusions:
32	We present the first chromosome-level assembly of the goose genome. This will be a valuable
33	resource for future genetic and genomic studies on geese.
34	Key Words: goose genome, chromosome-length assembly, hybrid de novo assembly approaches,
35	annotation, Pacbio, Hi-C
36	
37	Data description
38	Context
39	The goose is a member of the family Anatidae and is an economically important waterfowl with
40	distinctive characters. Domesticated geese derive from the swan goose (Anser cygnoides) and the graylag
41	goose (Anser anser) ¹ , and approximately 6,000 years of artificial selection have led to significant
42	alterations in their body size, reproductive performance, egg production, feather color, and other features ² .
43	Currently, more than 181 domesticated breeds are reared globally to supply meat, eggs, and valuable
44	byproducts (feathers, fatty liver) for human consumption ^{2,3,4} . The domestic goose is also well suited to

46 for human food⁵. Its excellent disease resistance and behavioral patterns also allow for large-scale

47 farming and easy management⁶. Interestingly, despite the liver weight of goose increasing 5–10 times 48 after two to three weeks of overfeeding, the amount of fat in hepatic cells (and other biomedical 49 parameters) returns to normal levels when overfeeding ceases. This suggests that the goose liver could 50 provide a novel animal model for the study of human non-alcoholic fatty liver disease⁶.

51 The goose was one of the earliest animals to be domesticated^{2,7}, and wide-ranging genomic and 52 breeding research has been conducted to study its domestication process and the unique morphological 53 and physiological features of these animals. For example, recently published goose genome sequences have been assembled into scaffolds using short reads from the Illumina platform^{8,9}; however, the genetic 54 55 basis of the fatty liver of goose and their selective breeding remains largely unknown. To address such 56 issues, a high-quality genome sequence is required. Currently, there are many advantages to using hybrid 57 de novo assembly approaches to improve the quality of genome assemblies. This is because short, 58 accurate reads from the Illumina platform can be combined with the longer, less accurate reads generated by the single-molecule real-time (SMRT) sequencing platform¹⁰. With Hi-C, linking information can 59 60 then be ordered and oriented into scaffolds, after which assembly errors can be identified and corrected¹¹. 61 This approach has been applied to improve the genome assemblies of many species, including humans¹², goats¹³, rockfish¹⁴, Aedes aegypti¹¹, and barley¹⁵. 62

Here, we have generated a high-quality goose assembly with chromosome-length scaffolds by adopting a hybrid *de novo* assembly approach using a combination of short reads from the Illumina platform, long reads from the PacBio platform, and Hi-C-based chromatin interaction maps. Our draft goose genome comprises fewer scaffolds than currently available goose genome assemblies, and these scaffolds are of a higher-quality and are more continuous and accurate. Our new genome assembly thus provides a valuable resource for exploring the molecular basis of the morphological and physiological 69 features of the goose, and will facilitate further genomic, genetic, and breeding studies of this 70 domesticated waterfowl.

71 Methods

a) Sample collection and sequencing

73 We extracted genomic DNA from the liver tissue of a healthy adult female (136 days old) from the 74 Tianfu goose maternal line, which was provided by the Experimental Farm of Waterfowl Breeding of 75 Sichuan Agricultural University (Chengdu, Sichuan, China; Figure 1). We then carried out single-76 molecule real-time DNA sequencing of ca. 20-kb inserts using the PacBio Sequel platform. This yielded 77 approximately 84.31 Gb of high-quality sequence data that were used to initially assemble the genome 78 (Table 1). Next, 149.70 Gb of high-quality sequence data were generated from a 350-bp insert size Hi-79 C library, as previously reported¹³. Finally, 350-bp paired-end libraries constructed from the same 80 genomic DNA were sequenced on the Illumina HiSeq platform, producing a further 181.52 Gb of 81 sequence data. In total, we obtained approximately 415.53 Gb of high-quality sequencing data (ca. 82 $324.63 \times$ coverage) for our draft assembly of the goose genome (Table 1).

b) *De novo* assembly of the goose genome

The size of the goose genome was estimated by k-mer distribution analysis to be 1.28 Gb. To assemble the genome, we first performed an initial assembly with the PacBio long-reads alone, using Falcon¹⁶ software. We used the pbsmrtpipe pipeline of the smrtlink software to correct this assembly sequence, which resulted in a draft assembly with a contig N50 of 1.72 Mb (**Table S1**). Next, we used the single-molecule sequence reads to scaffold these contigs and fill gaps, using SSPACE-Long¹⁷ and PBJelly¹⁸, respectively. Pilon¹⁹ software was then used to map the short reads to the assembly and correct sequence errors (**Table S1**). Most of these scaffolds were assembled into 39 chromosomes when the HiC reads were aligned using Lachesis²⁰ software (**Table S2, Figure S1**); this is consistent with the number of goose chromosomes (2n = 78) reported in previous studies²¹. With these methods we generated a highquality goose assembly with a contig N50 of 1.85 Mb and scaffold N50 of 33.12 Mb (**Table 2**). The average GC content is 42.15% and the total genome size is 1.11 Gb, which is consistent with previous studies^{8,9} and suggests that our goose assembly is reliable.

96 c) Repeat sequence and gene annotation

97 De novo methods and homology-based approaches were used to annotate the repeat content of the goose genome. First, we used *ab initio*-prediction software, including LTR-finder²², RepeatMolder²³, and 98 99 RepeatScout²⁴, to perform *de novo* annotation of the genome. For homology-based predictions, we identified repeat regions across species in published RepBase sequences²⁵ using RepeatMasker²⁶ and 100 101 RepeatProteinMask²⁷ software. Combined with these results, the repeat region of the goose genome was 102 further predicted with RepeatMasker software. From these analyses, we identified 92.11 Mb of repetitive 103 DNA (Table S3) accounting for 8.67% of our assembly, which is much higher than has been reported in 104 previous studies^{8,9}. Long interspersed nuclear elements (LINEs) were the most abundant repeat element 105 identified, representing 6.83% of the genome. The proportion of LINE repetitive sequences identified in 106 this study was also higher than has been reported in two previous goose genome assemblies (Table S3). 107 We performed PCGs annotation by combining ab initio-based, homology-based, and RNAsequencing-based prediction methods. First, GenScan²⁸, Geneid²⁹, and Augustus³⁰ were used for *ab* 108 109 initio-based predictions. Next, we selected six high-quality genomes, namely Homo sapiens 110 (GCF_000001405.39), Mus musculus (GCF_000001635.26), Gallus gallus (GCF_000002315.6), Anas 111 platyrhynchos (GCF_003850225.1), Meleagris gallopavo (GCF_000146605.3), and Taeniopygia guttata 112 (GCF_003957565.1), to use for homology-based annotation of our goose draft genome using

113	TBLASTN ³¹ and GeneWise ³² software. We found 8,255 common orthologous groups across these seven
114	species (Figure S2). To optimize genome annotation, total RNA was extracted from 11 samples
115	(abdominal fat, brain, duodenum, heart, liver, lung, muscular stomach, ovary, pancreas, pectoral muscle,
116	and spleen) taken from the same individual whose DNA was used for the draft genome assembly. We
117	pooled equal amounts of the total RNA from each of the 11 tissues and then performed RNA-seq on this
118	pooled sample using the Illumina platform. After filtering, these data were used to annotate protein-
119	coding regions of the genome assembly using Trinity ³³ and TopHat ³⁴ . Finally, the predictions from each
120	method described above were integrated using EVM ³⁵ ; overall, 17,568 PCGs were predicted (Table 3,
121	Figure 2). To identify long noncoding RNAs (lncRNAs), the goose genome reads were aligned by
122	STAR ³⁶ and subjected to Cufflinks ³⁷ and TACO ³⁸ for assembly and filtering. CPC2 ³⁹ was then applied to
123	perform coding potential analysis, and PfamScan ⁴⁰ was used to check for domain hits against Pfam31-
124	A ⁴¹ . After removing all likely domains, 3,287 lncRNAs and 542 transcripts of uncertain coding potential
125	were identified.

126 **Data validation and quality control**

127 a) Assessment of genome assembly completeness

Our assembly has more scaffolds and fewer contigs, and significantly improved contig and scaffold N50 values, than the goose genome assemblies presented in two previous studies (**Figure 3**). Moreover, we have annotated more repeat and coding sequence regions than these previous studies (**Table 3**), which suggests that we have generated an improved genome assembly and annotation. The 39 chromosomes described in our study account for 88.36% of the assembled genome and are longer than those previously reported^{8,9}, again indicating that our draft goose genome represents a significant improvement on previous work. The GC content of our genome assembly is 42% and the size of the genome is 1.11 Gb

135	(Table 2). This is comparable to the sizes reported for the two previously constructed goose genomes ^{$8,9$}
136	and is characteristic of avian genomes ⁴² . We also mapped short-insert paired-end reads (350 bp) to our
137	draft goose genome and obtained mapping and coverage rates of 97.25% and 99.71%, respectively.
138	Finally, we downloaded 19 wild goose resequencing ⁴³ datasets from public databases and mapped them
139	to our assembly, and to the two earlier draft goose genomes. We found that the mapping rate of our
140	assembly was higher than that of the previously assembled genomes (Table S4), indicating that it is more
141	contiguous. Taken together, these results demonstrate the improvements made by our study in the
142	assembly and annotation of the goose genome, in comparison to previous studies ^{8,9} .
143	To evaluate the completeness of our draft genome, we determined the number of conserved
144	eukaryotic and universal genes present in our assembly by applying the core eukaryotic genes mapping
145	approach software (CEGMA) and using a set of benchmarking universal single-copy orthologs (BUSCO).
146	We found that 211 of the 248 (85.08%) core eukaryotic genes and 2,586 (97%) of the universal single-
147	copy orthologs were assembled in our genome. Compared with previous studies, this suggests that our
148	genome assembly is more complete than previous drafts of the goose genome ^{8,9} .
149	To explore the hypothesis that the leptin gene was lost from goose ⁸ , we downloaded leptin sequences
150	from avian and mammal genomes to use as reference sequences in BLASTP searches of our newly
151	assembled goose genome. We found no sequences similar to leptin in our draft assembly. Furthermore,
152	although the human genome region that contains the leptin gene (chromosome 7, 126.0 to 129.4 Mb)
153	aligned with the goose genome, we did not find a sequence similar to the leptin gene in this region. These
154	results confirm the previous finding that the leptin gene is not present in the goose genome ⁸ .
155	b) Phylogenetic tree and lineage-specific gene families

156 Using OrthoMCL⁴⁴, 16,157 orthologous gene families across 17 species (ostrich, duck, goose,

157 chicken, turkey, saker, red-legged seriema, African crowned crane, pelican, little egret, crested ibis, 158 cormorant, great crested grebe, pigeon, woodpecker, zebra finch, and lizard) were identified. Based on 159 2,389 shared single-copy ortholog gene clusters, we constructed a maximum likelihood phylogenetic tree 160 using the RAxML software⁴⁵. This revealed that goose and duck diverged about 31.60 million years ago 161 (Mya), which is comparable to the divergence time of chicken and turkey (32.33 Mya; Figure S3). We 162 also noted that lineage-specific genes in the goose genome were significantly enriched for olfactory receptor activity (GO:0004984, $p = 3.85 \times 10^{-24}$), G protein-coupled receptor activity (GO:0004930, p =163 6.67×10^{-13}), and integral component of membrane (GO:0016021, p = 0.01; Table S5). As a migratory 164 165 bird, the goose is adapted for long-distance migration, which exposes them to a diversity of food as they 166 seek out ideal habitats. We propose that such influences could strengthen the interactions between 167 odorants and the receptors of the olfactory mucosa, and could underlie receptor family evolution in the 168 goose genome.

169 c) Expansion and contraction of gene families

170 The expansions and contractions of gene clusters in the goose genome were identified in comparison 171 to nine other avian genomes using the CAFE program⁴⁶. We found 839 expanded gene families (**Table** 172 **S6**) and 2,193 contracted gene families (**Table S7**). Interestingly, the expanded gene families were mainly 173 enriched for olfactory receptor activity (GO:0004984, $p = 8.58 \times 10^{-51}$), G protein-coupled receptor 174 activity (GO:0004930, $p = 5.81 \times 10^{-25}$), and integral component of membrane (GO:0016021, p =175 3.20×10^{-6}), which is consistent with the results from our analysis of lineage-specific genes (Table S5). 176 This further confirms that the migratory adaptations of the goose are reflected by unique characteristics 177 in the goose genome that contrast with those of nonmigratory birds. Other expanded gene families were enriched for ATPase-coupled transmembrane transporter activity (GO:0042626, $p = 1.96 \times 10^{-06}$), 178

179	NAD(P)+-protein-arginine ADP-ribosyl transferase activity (GO:0003956, $p = 3.20 \times 10^{-04}$), ATPase
180	activity (GO:0016887, $p = 8.28 \times 10^{-05}$), and aspartic-type endopeptidase activity (GO:0004190, $p =$
181	9.63×10 ⁻⁰⁶ ; Table S6), while gene families contracted in the goose were significantly enriched for
182	transmembrane transport (GO:0055085, $p = 8.30 \times 10^{-04}$), ion channel activity (GO:0005216, $p =$
183	1.87×10^{-9}), ion transmembrane transport (GO:0034220, $p = 5.30 \times 10^{-6}$), and ATPase-coupled
184	intramembrane lipid transporter activity (GO:0140326, $p = 8.60 \times 10^{-10}$; Table S7). As these pathways
185	are related to ATP utilization, ATP production, and energy regulation, these data support a previous
186	finding that goose energy metabolism is different to that in other avian species ⁴⁷ . This feature of the
187	goose is likely related to its migratory habits and artificial selection-the goose is unique among
188	migratory birds because of its large body size, which requires much energy for long-distance, high
189	altitude flying ⁴⁸ .

190

d) Genes under positive selection

191 We identified 52 positively selected genes (PSGs) in the goose genome based on orthologous genes 192 from the 17 species above, using a branch-site model and F3x4 codon frequencies in Codeml (Table S8). Some of these PSGs, such as GCH149, MDH250, and OGFOD251 are involved in hypobaric hypoxia and 193 194 hypoxic sensing. The viral transcription-related genes RPL7A⁵², SNW1⁵³, and POU2F3⁵⁴ are also under 195 positive selection in the goose, indicating that disease resistance may help the goose adapt to high altitude migration, and to harsh, changeable environments^{55, 56}. 196

197 e) Initial characterization of the three-dimensional organization of goose genome

We analyzed the inter-chromosomal interaction pattern⁵⁷, compartments^{58, 59}, topologically 198

- associating domains (TADs)⁶⁰, and promoter-enhancer interactions (PEI)⁶¹ of the goose genome. The 199
- 200 matrix resolution of our Hi-C experiment reached ~2 Kb (defined as the smallest locus size such that 80%

201	of loci have at least 1,000 contacts), which was adequate for subsequent analyses of the chromatin
202	architecture. Our results showed that the whole inter-chromosomal interaction pattern was distinguished
203	by two clusters, that is, short chromosomes and longer chromosomes, which suggests that goose
204	chromosomes tend to interact with one another on the basis of size (Figure 4). As for the identification
205	of A and B compartments, which represent relatively active and inactive chromatin states, respectively,
206	we found that the number of transcriptional start sites (TSSs) in each 100 Kb bin was significantly
207	correlated with PC1 values (R = 0.39, $p = 2.2 \times 10^{-16}$; Figure S5), and that the transcripts per kilobase
208	millions (TPMs) of PCGs located in A compartments were significantly higher than those in B
209	compartments ($p = 2.2 \times 10^{-16}$; Figure S6, Table S9). We identified 734 TADs across the goose assembly,
210	accounting for 80% of the genome (Figure S7, Table S10). The mean and median sizes of the TADs
211	were 1.21 Mb and 1.00 Mb, respectively. We also observed that the TSSs of PCGs were enriched in
212	TAD-boundary regions (Figure S8). After filtering for interaction distances lower than 20 Kb, we
213	identified 13,017 PEIs (Table S11) and found that gene expression levels positively correlated with the
214	number of PEIs (Figure S9). This is suggestive of additive effects of enhancers on target-gene
215	transcription levels.

216

Availability of supporting data

The goose assembled draft genome sequence is available at National Center for Biotechnology Information (NCBI) GenBank through the accession number WTSS00000000; The high-quality Hi-C data are available through the NCBI Sequence Read Archive (SRA) database under accession number SRR10483522. The high-quality PacBio long-read sequencing data have been deposited in the NCBI SRA (SRR10483521). The high-quality Illumina short-read sequencing data are available through NCBI SRA accession number: SRR10483516, SRR10483517, SRR10483518 and SRR10483520. The transcriptome data are available through the NCBI SRR10483519.

224 List of abbreviations

- 225 (1) Anser anser : A. anser;
- 226 (2) Anser cygnoides : A. cygnoides;
- 227 (3) BUSCO: Benchmarking Universal Single-Copy Orthologs;
- 228 (4) CHMP1B: charged multivesicular body protein 1B;
- 229 (5) CEGMA: Core Eukaryotic Genes Mapping Approach software;
- 230 (6) GCH1: GTP cyclohydrolase 1;
- 231 (7) Hi-C, Chromosome conformation capture;
- 232 (8) IVNS1ABP: influenza virus NS1A binding protein;
- 233 (9) LINEs: Long interspersed nuclear elements;
- 234 (10) LncRNAs: long noncoding RNAs;
- 235 (11) OGFOD2: 2-oxoglutarate and iron dependent oxygenase domain containing 2
- 236 (12) MDH257: malate dehydrogenase 2
- 237 (13) PCGs: protein coding genes
- 238 (14) PEI: promoter-enhancer interactions;
- 239 (15) PSGs: positively selected genes;
- 240 (16) SMRT: single-molecule real-time;
- 241 (17) TADs: topological associated domains;
- 242 (18) TPMs: transcripts per kilobase millions.
- 243

244 Ethics approval

- 245 All animal experiments were approved and reviewed by Animal Care and Use Committee
- 246 Institutional of Sichuan Agricultural University (Approval No. DKY-B20121406) and the Ministry of
- 247 Science and Technology of the People's Republic of China (Approval No. 2006–398).

248

250		The authors declare no competing interest.		
251				
252	Ac	knowledgments		
253		This work was supported by grants from the National Key R & D Program of China		
254	(20	18YFD0500403), the National Natural Science Foundation of China (U19A2036, 31872335,		
255	317	72576 and 31802044) and the China Postdoctoral Science Foundation (2018M643514).		
256	Au	thor contributions		
257		Mingzhou Li, Guangliang Gao designed and supervised the project. Yan Li, Yu Lin, Qianzi Tang,		
258	Silu Hu performed bioinformatics analyses. Jiwen Wang, Yan Li and Yi Luo contributed to collect the			
259	sam	ples. Mingzhou Li, Qigui Wang, Guangliang Gao, Yi Luo and Long Jin were involved in the data		
260	ana	lyses and wrote the manuscript.		
261				
262	Re	ferences		
263	1.	Shi XW, Wang JW, Zeng FT, et al. Mitochondrial DNA cleavage patterns distinguish independent		
264		origin of Chinese domestic geese and western domestic geese. Biochem Genet. 2006; 44(5-6) : 237-		
265		245.		
266	2.	Kozák J. Variations of geese under domestication. World's Poult Sci J. 2019; 75(2): 247-260.		
267	3.	Goluch-Koniuszy Z, Haraf G. Geese for slaughter and wild geese as a source of selected mineral		
268		elements in a diet. J Elementol. 2018; 23: 1343-1360.		
269	4.	Janan J, Tóth P, Hutas I, et al. Effects of dietary micronutrient supplementation on the reproductive		

Competing interests

249

270

traits of laying geese. Acta Fytotech Zootech. 2015; 18(1): 6-9.

271 5. Zhang Y, Sha Z, Guan F, et al. Impacts of geese on weed communities in corn production systems

- and associated economic benefits. Biol Control. 2016. 99: 47-52.
- 273 6. Wang G, Jin L, Li Y, et al. Transcriptomic analysis between Normal and high-intake feeding geese
- 274 provides insight into adipose deposition and susceptibility to fatty liver in migratory birds. BMC
- 275 genomics. 2019; 20(1): 372.
- 276 7. Honka J, Heino M, Kvist L, et al. Over a thousand years of evolutionary history of domestic geese
- from Russian archaeological sites, analysed using ancient DNA. Genes. 2018; 9(7): 367.
- 278 8. Lu L, Chen, Y, Wang Z, et al. The goose genome sequence leads to insights into the evolution of
 279 waterfowl and susceptibility to fatty liver. Genome Biol. 2015; 16(1): 89.
- 280 9. Gao G, Zhao X, Li Q, et al. Genome and metagenome analyses reveal adaptive evolution of the host
- and interaction with the gut microbiota in the goose. Sci Rep. 2016; 6: 32961.
- 282 10. Schadt E, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet.
- 283 2010; 19(R2): R227-R240.
- 11. Dudchenko O, Batra SS, Omer AD, et al. *De novo* assembly of the *Aedes aegypti* genome using
- 285 Hi-C yields chromosome-length scaffolds. Science. 2017; 356(6333): 92-95.
- 286 12. Pendleton M, Sebra R, Pang AWC, et al. Assembly and diploid architecture of an individual human
- 287 genome via single-molecule technologies. Nat Methods. 2015; 12(8): 780–786.
- 288 13. Bickhart DM, Rosen BD, Koren S, et al. Single-molecule sequencing and chromatin conformation
- 289 capture enable *de novo* reference assembly of the domestic goat genome. Nat Genet. 2017; 49(4):
- 290 643.
- 14. Liu Q, Wang X, Xiao Y, et al. Sequencing of the black rockfish chromosomal genome provides
 insight into sperm storage in the female ovary. DNA Research, 2019. 26(6):453–464,
- 293 15. Mascher M, Gundlach H, Himmelbach A, et al. A chromosome conformation capture ordered

- sequence of the barley genome. Nature. 2017; 544(7651): 427
- 295 16. Chin CS, Peluso P, Sedlazeck FJ et al. Phased diploid genome assembly with single molecule real-
- time sequencing. Nat Methods. 2016;13:1050.
- 297 17. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read
- sequence information. BMC Bioinf. 2014; 15(1): 211.
- 299 18. English AC, Richards S, Han Y, et al. Mind the gap: upgrading genomes with Pacific Biosciences
- 300 RS long-read sequencing technology. PLoS One. 2012; 7(11): e47768.
- 301 19. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant
- detection and genome assembly improvement. Plos One. 2014; 9(11): e112963.
- 303 20. Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale scaffolding of *de novo* genome
- 304 assemblies based on chromatin interactions. Nat Biotechnol. 2013; 31(12): 1119–1125.
- 305 21. Jun X, Tianxing L, Qing C, et al. Karyotypes of Zhedong White Goose and Siji Goose. China Poultry.
- 306 2007; 21(9): 27-29.
- 307 22. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;
- 308 27(2): 573–580.
- 309 23. RepeatMolder software. http://www.repeatmasker.org/RepeatModeler/.
- 310 24. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes.
- 311 Bioinformatics2005;21(suppl 1):i351–8.
- 312 25. Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes.
- 313 Bioinformatics. 2005;21:i351–8. Bao W, Kojima KK, Kohany O. Repbase Update, a database of
- 314 repetitive elements in eukaryotic genomes. Mobile DNA. 2015; 6(1):11.
- 315 26. Maja TG, Nansheng C. Using RepeatMasker to identify repetitive elements in genomic sequences.

- 316 Curr Protoc Bioinf. 2009; 25(1): 4.10.11-14.10.14.
- 27. Allred DB, Cheng A, Sarikaya M, et al. . Three-dimensional architecture of inorganic nanoarrays 317
- 318 electrodeposited through a surface-layer protein mask. Nano Lett. 2008;8(5):1434-8.
- 319 28. Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol.
- 320 1997; 268(1): 78-94.
- 29. Blanco E, Parra G, Guigó R. Using geneid to identify genes. Curr Protoc Bioinf. 2007; 18(1): 4.3.1-321 322 4.3.28.
- 323 30. Stanke M, Steinkamp R, Waack S. AUGUSTUS: a web server for gene finding in eukaryotes.
- 324 Nucleic Acids Res. 2004; 32(suppl_2): W309–W312.
- 31. Gertz EM, Yu YK. Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-based statistics and 325 326 translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 2006; 4(1):
- 327 41.
- 328 32. Birney E, Clamp M, Durbin R. Gene Wise and Genomewise. Genome Res. 2004; 14(5): 988–995.
- 329 33. Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data
- 330 without a reference genome. Nat Biotechnol. 2011; 29(7): 644-652.
- 331 34. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. 332 Bioinformatics. 2009; 25(9): 1105-1111.
- 333 35. Haas BJ, Salzberg SL, Zhu W, et al. Automated eukaryotic gene structure annotation using
- 334 EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008; 9(1): R7.
- 36. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 335
- 336 2013; 29(1): 15-21.
- 337 37. Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq

- reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol.
- 339 2010; 28(5): 511–515.
- 340 38. Niknafs YS, Pandian B, Iyer HK, et al. TACO produces robust multisample transcriptome
- 341 assemblies from RNA-seq. Nat Methods. 2017; 14(1): 68.
- 342 39. Kang YJ, Yang DC, Kong L, et al. CPC2: a fast and accurate coding potential calculator based on
- 343 sequence intrinsic features. Nucleic Acids Res. 2017; 45(W1): W12-W16.
- 40. Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res.
- 345 2014; 42(D1): D222–D230.
- 41. Bateman A, Coin L, Durbin R, et al. The Pfam protein families database. Nucleic Acids Res. 2004;
- 347 32 (suppl_1): D138–D141.
- 348 42. Zhang G, Li C, Li Q, et al. Comparative genomics reveals insights into avian genome evolution and
- 349 adaptation. Science. 2014; 346(6215): 1311-1320.
- 43. Ottenburghs J, Megens HJ, Kraus RH, et al. A history of hybrids? Genomic patterns of introgression
- 351 in the True Geese. BMC Evol Biol. 2017; 17(1): 201.
- 44. Fischer S, Brunk BP, Chen F, et al. Using OrthoMCL to assign proteins to OrthoMCL- DB groups
- or to cluster proteomes into new ortholog groups. Curr Protoc Bioinf. 2011; 35(1): 6-12.
- 45. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
- 355 phylogenies. Bioinformatics. 2014; 30(9): 1312–1313.
- 46. Bie T, Cristianini N, Demuth J. CAFE: a computational tool for the study of gene family evolution.
- 357 Bioinformatics. 2006; 22(10): 1269-1271.
- 47. Józefiak DA, Rutkowski A, Martin SA. Carbohydrate fermentation in the avian ceca: a review.
- 359 Anim Feed Sci Technol. 2004; 113(1-4): 1-15.

- 360 48. Watanabe, YY. Flight mode affects allometry of migration range in birds. Ecol Lett. 2016; 19(8):
 361 907-914.
- 49. He Y B, Duojizhuoma C Y, Cai-juan D B, et al. GCH1 plays a role in the high-altitude adaptation
 of Tibetans. Zool Res. 2017; 38(3): 155–162.
- 364 50. Lu H, Wang R, Li W, et al. Plasma proteomic study of acute mountain sickness susceptible and
- 365 resistant individuals. Sci Rep. 2018; 8(1): 1-9.
- 366 51. McDonough M A, Loenarz C, Chowdhury R, et al. Structural studies on human 2-oxoglutarate
 367 dependent oxygenases. Curr Opin Struct Biol. 2010; 20(6): 659-672.
- 368 52. Brahma R, Gurumayum S, Naorem L D, et al. Identification of hub genes and pathways in Zika
- 369 virus infection using RNA-seq data: a network-based computational approach. Viral Immunol. 2018;
- 370 31(4): 321-332.
- 53. Verma S, De Jesus P, Chanda S K, et al. SNW1, a novel transcriptional regulator of the NF- κ B
- 372 pathway. Mol Cell Biol. 2019; 39(3): e00415-18.
- 373 54. Huang Y H, Klingbeil O, He X Y, et al. POU2F3 is a master regulator of a tuft cell-like variant of
- 374 small cell lung cancer. Gene Dev. 2018; 32(13-14): 915-928.
- 375 55. Jones E, Fugger L, Strominger J. MHC class II proteins and disease: a structural perspective. Nat
- 376 Rev Immunol. 2006; 6(4): 271.
- 377 56. Cardona C, Xing Z, Sandrock C. Avian influenza in birds and mammals. Comp Immunol. 2009;
 378 32(4): 255-273.
- 379 57. Battulin N, Fishman VS, Mazur AM, et al. Comparison of the three-dimensional organization of
- 380 sperm and fibroblast genomes using the Hi-C approach. Genome Biol. 2016; 17(1): 6.
- 381 58. Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range

- interactions reveals folding principles of the human genome. Science. 2009; 326(5950): 289-293.
- 383 59. Rowley MJ, Nichols MH, Lyu X, Ando-Kuri M, et al. Evolutionarily Conserved Principles Predict
- 384 3D Chromatin Organization. Mol Cell. 2017; 67(5): 837-852.
- 385 60. Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by
- analysis of chromatin interactions. Nature. 2012; 485(7389): 376-380.
- 387 61. Ron G, Globerson Y, Moran D and Kaplan T. Promoter-enhancer interactions identified from Hi-C
- data using probabilistic models and hierarchical topological domains. Nat Commun. 2017; 8(1):

389 2237.

Table 1 Summary of sequencing data for goose genome assembly.					
Pair-end libraries	Insert size (bp)	Total data (Gb)	Read length (bp)	Sequence coverage (×)	
Illumina reads	350	181.52	150	141.81	
Pacbio reads	20,000	84.31		65.86	
Hi-C	350	149.70	150	116.95	
Total		415.53		324.63	

Table1 Summary of sequencing data for goose genome assembly.

Genomic features	This study	Lu <i>et al.</i> ª	Gao <i>et al.</i> ^b
Estimate of genome size (bp)	1,277,099,016	1,208,661,181	1,198,802,839
Total length of assembled contigs (bp)	1,113,842,245	1,086,838,604	1,100,859,441
Total size of assembled scaffolds (bp)	1,113,913,845	1,122,178,121	1,130,663,797
Number of contigs (>2kb)	2,771	60,979	53,336
Number of scaffolds (>2kb)	2,055	1,050	1,837
Contigs N50 (bp)	1,849,874	27,602	35,032
Scaffolds N50 (bp)	33,116,532	5,202,740	5,103,766
Longest contig (bp)	10,766,871	201,281	399,111
Longest scaffold (bp)	70,896,740	24,051,356	20,207,557
GC content (%)	42.15	38.00	41.68
Number of gene model	17,568	16,150	16,288
Repeats share in genome (%)	8.67	6.33	6.90

Table2 Comparison of quality metrics of this study and the previous goose genome assemblies.

^a From the ref. 8. ^b From the ref. 9.

Property	This study	Lu <i>et al</i> .ª	Gao <i>et al.</i> ^b
Total genes length (bp)	326,863,440	439,289,059	500,923,091
Genes percentage of genome (%)	29.34	39.25	44.31
Total exons number	152,392	158,713	167,532
Average exons per gene	8.67	10.92	10.29
Total exons length (bp)	26,883,354	25,763,242	26,157,477
Exons percentage of genome (%)	2.41	2.31	2.31
Average exons length (bp)	176.41	162.33	156.13
Average introns length (bp)	2224.97	2867.48	3139.07

Table 3 A comparative summary of predicted genes within each goose genome assembly.

^a From the ref. 8. ^b From the ref. 9.

Figure S3 Divergence of time and the expansion, contraction gene families in the seventeen species

Table S1 Summary of the Pacbio initial assembly and Hi-C reads mapping used for goose genome assembly process.

Click here to access/download Supplementary Material Table S1.xls Table S2 Summary of the length of pseudo-chromosomes in goose genome.

Click here to access/download Supplementary Material Table S2.xls Table S3 A comparative summary of assembled repeat content in this study and previous studies.

Click here to access/download Supplementary Material Table S3.xls Table S4 Summary the map rates of the wild goose resequencing data.

Click here to access/download Supplementary Material Table S4.xls Table S5 Gene ontology (GO) enrichment analysis for the lineagespecific gene annotation in goose genome.

> Click here to access/download Supplementary Material Table S5.xls

Table S6 Functional gene categories enriched for the goose genome-specific expansion gene family.

Click here to access/download Supplementary Material Table S6.xls Table S7 Functional gene categories enriched for the contraction of genes family in goose genome.

Click here to access/download Supplementary Material Table S7.xls Table S8 Positively selected genes (PSGs) identified in the goose genome.

Click here to access/download Supplementary Material Table S8.xlsx Table S9 The PC1 values (100 Kb) through Principal Component Analysis (PCA) and A-B index values (25 Kb).

Click here to access/download Supplementary Material Table S9.xlsx Table S10 TAD in genome coordinates of our goose genome by using method of DI values.

Click here to access/download Supplementary Material Table S10.xlsx Table S11 Detailed information of promoter-enhancer interactions (PEIs) identified in goose genome.

Click here to access/download Supplementary Material Table S11.xlsx